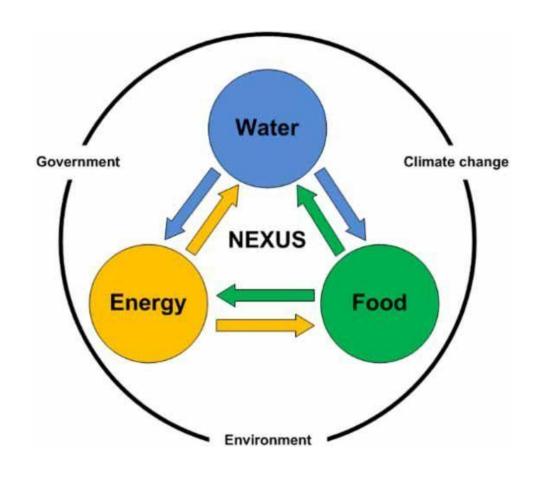


The NEXUS across water, energy and food

8 July 2021

Jonathan Lautze

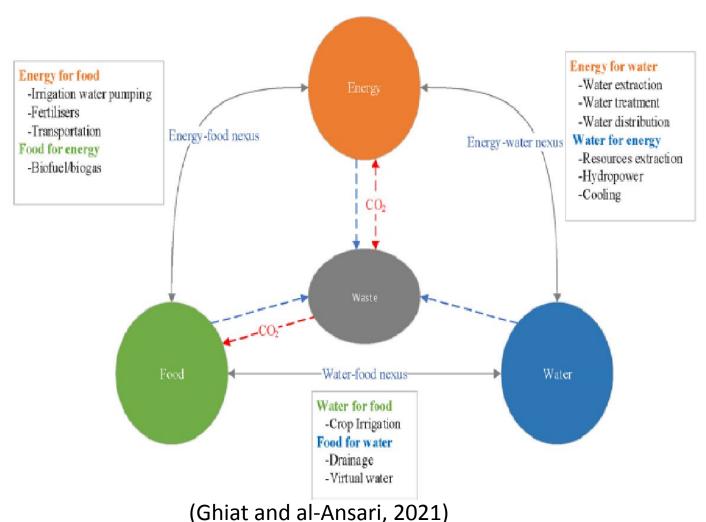
Global Challenges


- Water, land, energy, forests and biodiversity are critical to rural livelihoods and food and nutrition security and are strongly interconnected.
- All these systems are under extreme stress from climate change and other mutually reinforcing human-induced pressures.
- Single-sector approaches are rarely optimal, & thinking about sectors together presents opportunites

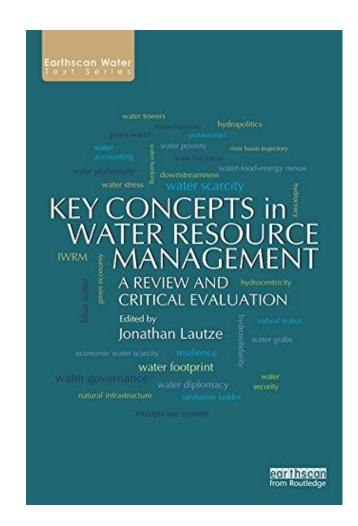
• GAINS

- Increase benefits and sustainability
- Re-orient trajectories of high water abstraction, deforestation, food insecurity, variable electricity

What is the WEF Nexus?

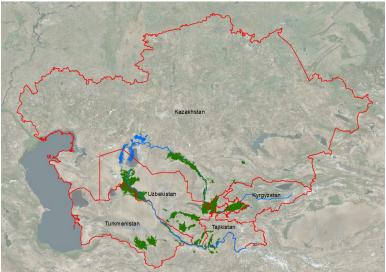

- it presents a conceptual approach to better understand and systematically analyse the interactions between the natural environment and human activities, and to work towards a more coordinated management and use of natural resources across sectors and scales (FAO, IUCN, GWP)
- The nexus approach aims to identify tradeoffs and synergies of water, energy, and food systems, internalize social and environmental impacts, and guide development of cross-sectoral policies (Albrecht et al., 2018)
- Grew to prominence following the Bonn 2011
 Conference WEF Security Nexus Solutions for a Green Economy
- > 8300 hits on google scholar

(Wicaksono et al. 2017)

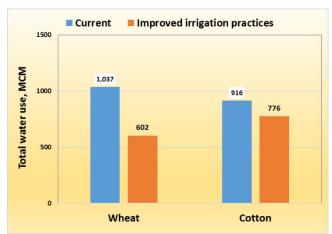

What is different about the nexus?

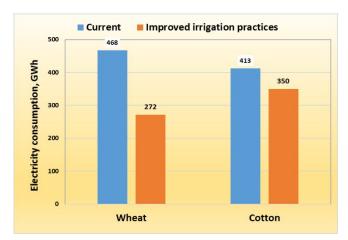
- It is a two (or three) way street
 - Water is less central
- More technical in focus
 - Governance is less central

Challenges or Obstacles


- Complexity is not easy to operationalize
 - Existing conditions (e.g. institutions) may deter
 - Transaction of integrating can be daunting
- Complexity is not easy to communicate
- Too driven by the water sector
- ■New concepts are often subject to discussion and debate (like today? ②) in an effort to perfect and/or overcome confusion
 - ☐ may redirect focus from doing
 - ☐ suggest to find value, do, and learn from what's done (instead of more frameworks)

Successes


- Project: Mitigating competition for water and energy use in transboundary Amu Darya and Syr Darya rivers by improving WUE (2017-2019)
 - Led by Kakhramon Djumaboev
- 2.2 million hectares land out of 4.3 million hectare under pump irrigation. 70% of pump units outdated and have low efficiency. About 21% of generated energy of Uzbekistan is used for pump operations
- ☐ Assessed the potential impact of improvements in the water use efficiency and energy use intensity through development of different scenarios of water and energy savings



Potential efficiency gains, Karshi steppe

	Crop	Total pumped area, ha	Irrigation application, mm		Total water use, MCM		Total	Electricity consumption, GWh		Total	GHG emissions, Kton		CO_2
				Improve d irrigatio n practice s	Current	Improved irrigation practices	water saving, MCM	Current	T	energy saving,	Current	Improved irrigation practices	reduction, Kton of GHGs
	Wheat	102600	1011	587	1037	602	435	468	272	196	219	127	92
	Cotton	119681	765	648	916	776	140	413	350	63	194	164	30
	Total	222281	N/A	N/A	1953	1378	575	880	621	259	413	291	122

☐ 25-30% savings in water, elec, carbon emissions, some increase in yield

Outcomes

Outcomes

- Government of UZ issues decree incentivizing adoption of water-saving technologies (drip, sprinkler, laser leveling)
- ☐ Drip irrigation has expanded drastically
- ☐ More productive agriculture, less water use, less energy, and more water of better quality available downstream

Successes

WE4F in MENA (https://we4f.org/filter-innovators)

Sector	Innovation	Innovator Name
	Solar Pumping systems	Agrisolar
	Nano grid	IRSC
	Solar Panels	Green Essence
	solar power water treated technology	Alvatech
		Solar Wind
	Energy produced from PV Panels	Middle East
		Spark
Solar Energy	Solar PV energy	Renewables
	Organic Pesticides and Fungicides	Chitosan Egypt
	Organic Compost	Baramouda
	Organic Framing with Technology and Internet of things	Biomass SAL
Organic Pesticides and Organic Compost	Bio-waste disposal - Organic Compost	Compost Baladi
	Drip Irrigation System	Robinson Agri
	Daily Irrigation Scheduling	The Platform
	Farm Integrated software for irrigation	SOWIT
Irrigation Systems	Waste Water Treatment for irrigation	SUWACO
	Urban Farming Kit	Schaduf
	Software for the whole value chain for breeding poultry	AbuErdan
	Goat Value Chain	GoBaladi
	Engage rural women in the agriculture value chain through	High Atlas
Complete type of Food value chain	planting nurseries	Foundation

