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PREFACE 
_____________________________________________________________________________________ 
 
 
 
 
 According to the official document of UNESCO (1985) - 'Teaching aids in 
Hydrology': "The main purpose of using hydrological models in the teaching process is 
not to duplicate the complicated hydrological process in detail by a sophisticated model, 
but to demonstrate the principal elements of the process, their combination into a simple 
or comprehensive model, and the importance of the model in solving typical problems 
of engineering hydrology". 
 The course “Hydrological analysis and modelling” at the Department of Earth 
Sciences, Uppsala University consists of two parts, the first part deals with statistical 
analysis of hydrological data and the second part deals with modelling of runoff 
processes. This monograph serves as the lecture book for the second part. In particular, 
it is concerned with hydrologic models of precipitation-runoff process on catchment 
scale (groundwater modelling and urban storm flow modelling are not included). We 
will discuss their uses, formulations and methodology for model evaluation. The subject 
matter is divided into eight chapters.  
 Chapter 1 is to give students a basic knowledge about modelling in hydrology. That 
includes: (1) the reasons of using models in problem solving in hydrology; (2) some 
definitions commonly used in the literature of hydrological modelling; (3) classification 
of runoff models; and (4) objectives of hydrologic models. 
 Chapter 2 is to give an introduction to the students about the concept of the time 
series analysis and stochastic models. By this chapter, students will learn how to analyse 
a given time series of a hydrological variable, how stochastic models are formulated and 
what are their application fields. 
 Chapters 3 through 5 show how the principal hydrological processes, such as, 
precipitation (rainfall and snowfall), evapotranspiration, streamflow, infiltration, etc., 
are generally treated in different kinds of runoff models. 
 Chapter 6 is to study the methodology of model evaluation, which includes the 
issues in model selection, in model calibration (parameter estimation), in model 
verification, and estimation of its range of applicability. Although it is important to 
recognise that all four evaluations are of equal fundamental importance, estimation of 
the parameters and verification of model performance will receive more attention in this 
chapter. 
 Some topics in optimisation are discussed in Chapter 7. Since the automatic 
optimisation procedures have attracted increasing interests in the field of conceptual 
catchment modelling, and they are, nowadays, widely used to minimise differences 
between selected features of modelled and observed streamflows by systematic trial 
alterations in the values of the model parameters. Although it is not necessary that the 
user himself writes programs, since a great number of these programmes are stored in 
many computer libraries. Nevertheless it is useful to have an idea of the principles of 
these algorithms in order to judge the results obtained, and moreover to choose the 
algorithm in such a way that it is adapted to the problem proposed. 
 In chapter 8, some particular catchment models are discussed in more detail to 
illustrate how such models are formulated and what are their uses. The proposed models 
for discussion include, but not limited to, the HBV model (a simple conceptual 
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deterministic model), WASMOD model (a simple stochastic-conceptual snow and 
water balance model), the TOPMODEL (a relatively simple physically-based model), 
and the SHE model (a physically-based, distributed-parameter model). 
 Moreover, this course includes a certain amount of individual computer work, 
which is not specified in this text: preparation of the inputs, running of different models 
and analysis of the outputs, etc. Several computer exercises will be done. By these 
means, the students learn to use hydrological models and develop them into powerful 
tools in the process of decision making. 
 The content presented in the above chapters may be refined during the lecture time 
according to the interests of the students, and the orders of the appearance of the 
chapters may be changed. 
 I accept the full responsibility for any omissions, shortcomings, or mistakes that 
remain. I would benefit and be obliged if readers would transmit to me any errors, 
omissions, or criticisms. 
 This lecture note is intended for internal use only.  
 
 
 
 
 
 
         Chong-yu Xu 
         Docent in Hydrology 
         2002-08-05 
         New edition 
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CHAPTER 1 
MODELLING IN HYDROLOGY 
_____________________________________________________________________________________ 
 
 
 
 
1.1. WHY HYDROLOGICAL MODELS ARE NEEDED? 
 
 Recently, mathematical models have taken over the most important tasks in 
problem solving in hydrology (UNESCO, 1985). Many discussions regarding modelling 
have appeared in the scientific literature, but the rationale for model building was 
perhaps best expressed by Rosenblueth and Wiener (1945): 

 
 No substantial part of the universe is so simple that it can be 
grasped and controlled without abstraction. Abstraction consists 
in replacing the parts of the universe under consideration by a 
model of similar but simpler structure. Models, formal or 
intellectual on the one hand, or material on the other, are thus a 
central necessity of scientific procedure.  
 

 Most hydrologic systems are extremely complex, and we cannot hope to understand 
them in all detail. Therefore, abstraction is necessary if we are to understand or control 
some aspects of their behaviour. Indeed, man has found through experience that 
understanding and predicting the behaviour of any significant part of his environment 
requires abstraction.  
 The catchment hydrologic models have been developed for many different reasons 
and therefore have many different forms. However, they are in general designed to meet 
one of the two primary objectives. One objective of catchment modelling is to gain a 
better understanding of the hydrologic phenomena operating in a catchment and of how 
changes in the catchment may affect these phenomena. Another objective of catchment 
modelling is the generation of synthetic sequences of hydrologic data for facility design 
or for use in forecasting. They are also providing valuable for studying the potential 
impacts of changes in landuse or climate. The variety of uses and the rapid increase both 
in scientific understanding and in technical support, from data collection systems and 
computer technology, have produced an enormous range in levels of sophistication.  
 
1.2. HISTORICAL PERSPECTIVE 
 
 The development and application of hydrological models have gone through a long 
time period, the remarkable dates in the history of the development of hydrological 
models are: 

• In the 19th century: The origins of rainfall-runoff modelling in the broad sense 
can be found in the middle of the 19th century arising in response to three types 
of engineering problems: (1) urban sewer design, (2) land reclamation drainage 
systems design, and (3) reservoir spillway design. In all three problems the 
design discharge was the major parameter of interest. The concept of the rational 
method for determining flood peak discharge from measurements of rainfall 
depths owes its origins to Mulvaney (1850), an Irish engineer who was 
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concerned with land drainage. Some Americans attribute first mention of the 
formula to one of their engineers engaged upon sewer design (Kuichiling, 1889). 
The method to give the peak flow Qp is: 

 
 Qp = CiA (1.1) 
 

Where C is the coefficient of runoff (dependent on catchment characteristics) i is 
the intensity of rainfall in time Tc and A is the area of catchment. Tc is the time 
of concentration, the time required for rain falling at the farthest point of the 
catchment to flow to the measuring point of the river. The well-known rational 
formula may be seen as the first generation of hydrologic models, where Qp is 
the output variable, i and A are input variables, and C is the model parameter. By 
its main assumption, i.e., rainfall intensity and catchment characteristics are 
uniformly distributed in space and time, the use of rational formula is limited to 
small urban catchments.   

• In the 1920s: During the 1920’s, when the need for a corresponding formula for 
large catchments was perceived, many modifications were introduced in the 
rational method in order to cope with the non-uniform distribution, in space and 
time, of rainfall and catchment characteristics. The modified rational method, 
based on the concept of isochrones or lines of equal travel time, can be seen as 
the first basic rainfall-runoff model based on a transfer function whose shape 
and parameter were derived by means of topographic maps and the use of 
Manning’s formula to evaluate the different travel times. 

• In the 1930s: A major step forward in hydrological analysis was the concept of 
the unit hydrograph introduced by the American engineer Sherman in 1932 on 
the basis of superposition principle. Although not yet known at the time, the 
superposition principle implied many assumptions, i.e., the catchment behaves 
like a causative, linear time invariant system with respect to the rainfall/surface 
runoff transformation. The use of unit hydrograph made it possible to calculate 
not only the flood peak discharge (as the rational method does) but also the 
whole hydrograph (the volume of surface runoff produced by the rainfall event). 
At the end of 1930s and during the 1940s a number of techniques were proposed 
in order to improve the objectivity of the method and results, and the techniques 
of statistical analysis were invoked. A discussion on the different approaches 
and the relevant bibliography can be found in a report by Dooge (1973).  

• In the 1950s: The real breakthrough came in the 1950s (Todini, 1988) when 
hydrologists became aware of system engineering approaches used for the 
analysis of complex dynamic systems. They finally realised that the unit 
hydrograph was the solution of a causative, linear time invariant system and that 
the use of mathematical techniques such as Laplace, Fourier and Z transforms 
could lead to the derivations of the response function from the analysis of input 
and output data. This was the period when conceptual models originated.  
The derivation of the unit hydrograph in discretized form (the unit graph) from 
sampled data (known as the inverse problem) still remained a big problem by 
that time, due to the non-particularly linear behaviour of the system and the 
generally large errors in input and output data. To overcome this problem, 
hydrologists found that shapes of the unit hydrograph could be provided on the 
basis of the solution of more or less simplified differential equations, such as for 
instance those describing the time behaviour of the storage in a reservoir or in a 
cascade of reservoirs (Nash, 1958, 1960). The unit hydrograph could then be 
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expressed in terms of few parameters to be estimated from catchment 
characteristics or by means of statistical procedures: moments, regression, 
maximum likelihood, etc. a bloom of these models gave rise an unbelievable 
variety of solutions: a cascade of linear reservoirs, linear channels, linear 
channels and reservoirs, nonlinear reservoirs (Prasad, 1967). However, in 
deriving the unit graph shape from actual data, very few advances were made 
before the work of Tikhonov (1963a,b) and the introduction of continuity and 
regularization constraints in the estimation phase (Eagleson et al, 1965; Natale 
and Todini, 1977) more realistic and reliable estimates of the unit hydrograph 
were obtained.  

• From the 1960s: Many other approaches to rainfall-runoff modelling were 
considered in the 1960s. In search for a more physical interpretation of the 
process one could represent the behaviour of single components of the 
hydrologic cycle, at the catchment scale, by using a number of interconnected 
conceptual elements, each of which represented the purpose of a particular 
subsystem. A large number of conceptual, lumped, rainfall-runoff models 
appeared thereafter include: Dawdy and O’Donnell (1965), Stanford Model IV 
(Crawford and Linsley, 1966), Sacramento Model (Burnash et al., 1973), the 
HBV model (Bergström and Forsman, 1973), the Tank model (WMO, 1975) 
which represented differently the interconnected subsystems and were 
considered the leading models of 1960s and 1970s.  

• In the 1970s:  
o Box and Jenkins (1970) provided hydrologists with an alternative model 

type – i.e. the autoregressive moving average (ARMA) model and other 
forms of time series stochastic models.  

o The real-time forecasting models as an answer for the need of warning in 
flood prone areas, and as a tool for reservoirs or hydraulic structure 
management were developed. Generally based on recent updating and 
recalibrating techniques such as Kalman filters (Kalman, 1960; Kalman 
and Bucy, 1961; Todini, 1978; Todini and Wallis, 1978; O’Connell, 
1980; Wood, 1980; Wood and O’Connell, 1985).  

o One of the remark model developed in the late 1970s is the TOPMODEL 
(Beven and Kirkby, 1979) that is based on the idea that topography 
exerts a dominant control on flow routing through upland catchments is 
called. TOPMODEL calculates not only the streamflow hydrograph but 
information that is useful for linking hydrological calculations to 
hydrochemical models.  

• In the 1980s: To meet the need of forecasting (1) the effects of land-use 
changes, (2) the effects of spatially variable inputs and outputs, (3) the 
movements of pollutants and sediments, and (4) the hydrological response of 
ungauged catchments where no data are available for calibration of a lumped 
model, the physically-based distributed-parameter models were developed. The 
most sophisticated models take a three-dimensional view of water exchange, 
with meshes superimposed vertically. These techniques have opened the way for 
major advances in modelling by linking them with elevation models 
(DTM/DEM) derived from maps, or with other data derived from raster-based 
satellite imagery, which may indicate vegetation cover, soil moisture patterns 
and lines of subsurface drainage. The Systéme Hydrologique Européen (SHE) 
model developed during the 1980s in a multinational programme stimulated by 
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the European Community is a good example of such models (Abbott et al., 
1986).  

• From the late 1980s: The evolution of continental-scale hydrology has placed 
new demands on hydrologic modellers. The macro-scale hydrological models 
were developed on the basis of the following motivations. First, for a variety of 
operational and planning purposes, water resource managers responsible for 
large regions need to estimate the spatial variability of resources over large 
areas, at a spatial resolution finer than can be provided by observed data alone. 
Second, hydrologists and water managers are interested in the effects of land-use 
and climate variability and change over a large geographic domain. Third, there 
is an increasing need of using hydrologic models as a base to estimate point and 
non-point sources of pollution loading to streams. Fourth, hydrologists and 
atmospheric modellers have perceived weaknesses in the representation of 
hydrological processes in regional and global atmospheric models. Examples of 
GIS supported macro-scale hydrological models include those developed by 
Vörösmarty et al. (1989), the VIC model (Wood et al., 1992) and the Macro-
PDM (Arnell, 1999). These models are state-of-the-art tools in assessing 
regional and continental scale water resources. 

• Nowadays, mathematical models have taken over the most important tasks in 
problem solving in hydrology. 

 
1.3. HYDROLOGIC SYSTEM ANALYSIS AND MODELLING 
 
 We begin by defining some terms as they are to be used throughout this course.  
 - a hydrological system: A more general definition is given by Dooge (1973). In a 
simplified way it can be said as a set of physical, chemical and/or biological processes 
acting upon an input variable or variables, to convert it (them) into an output variable 
(or variables).  
 - a variable: is understood to be a characteristic of a system which may be 
measured, which assumes different values when measured at different times. Daily 
rainfall, runoff, evaporation, temperature, infiltration, soil moisture, etc. are some of 
examples.  
 - a parameter: is a quantity characterising a system. It may or may not remain 
constant in time (in most cases of modelling we consider it as time constant).  
 - a model: is a simplified representation of a complex system. Consequently, a 
model always describes the basic and most important components of a complex system, 
or as pointed out by Dooge (1977), a model involves similarity without identity and it 
simulates some, but not all the characteristics of the prototype system. 
 The watershed can be considered as a hydrologic system. The system boundary is 
drawn around the watershed by projecting the watershed divide vertically upwards and 
downwards to horizontal planes at the top and bottom (Fig1.1). Rainfall is the input, 
distributed in space over the upper plane; streamflow is the output, concentrated in 
space at the watershed outlet. Evaporation and subsurface flow are also outputs. By 
using the system concept, effort is directed to the construction of a model relating inputs 
and outputs rather than to the extremely difficult task of exact representation of the 
system details, which may not be significant from a practical point of view or may not 
be known. Nevertheless, knowledge of the physical system helps in developing a good 
model and verifying its accuracy. 
 The objective of hydrologic system analysis is to study the system operation and 
predict its output. A hydrologic system model is an approximation of the actual system; 
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its inputs and outputs are measurable hydrologic variables and its structure is the 
concept of system transformation. 
 

 
 

Fig.1.1 The watershed as a hydrologic system (from Chow et al, 1988) 
 
 A general model of the hydrologic system may be derived as follows. Let the input 
and output be expressed as functions of time, I(t) and Q(t) respectively, for t belonging 
to the time range T under consideration. The system performs a transformation of the 
input into the output represented by 
 
 Q(t) = Ω I(t) (1.2) 
 
which is called the transformation equation of the system. The system Ω is a transfer 
function between the input and the output. If this relationship can be expressed by an 
algebraic equation, then Ω is an algebraic operator. For example, if  
 
 Q(t) = C I(t) (1.3) 
 
where C is a constant, then the transfer function is the operator 
 

 C
tI
tQ ==Ω
)(
)(  (1.4) 

 
 If the transformation is described by a differential equation, then the transfer 
function serves as a differential operator. For example, a linear reservoir has its storage 
S related to its outflow Q by 
 
 S = kQ (1.5) 
 
 where k is a constant having the dimensions of time. By continuity, the time rate of 
change of storage dS/dt is equal to the difference between the input and the output 
 

1-5 



Ch1. Modelling in Hydrology 

 )()( tQtI
dt
dS −=  (1.6) 

 
Eliminating S between the two equations and rearranging, 
 

 )()( tItQ
dt
dQk =+  (1.7) 

 
so 
 

 
kDtI

tQ
+

==Ω
1

1
)(
)(  (1.8) 

 
where D is the differential operator d/dt. If the transformation equation has been 
determined and can be solved, it yields the output as a function of the input. Equation 
(1.8) describes a linear system if k is a constant. If k is a function of the input I or the 
output Q then (1.8) describes a nonlinear system which is much more difficult to solve. 
 
1.4. CLASSIFICATION OF HYDROLOGIC MODELS 
 
 Hydrologic models can be variously classified. One of the classification methods 
used by Singh (1988) is used here which distinguishes hydrologic models as (1) 
material and (2) symbolic or formal. (Fig.1.2) 
 

 
 

Fig.1.2. A classification of hydrologic models 
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1.4.1 Material models 
 
 A material model (also called a physical model in the literature, e.g. Chow et al, 
1988) is the representation of the real system by another system, which has similar 
properties but is much easier to work with. Material (physical) models can be classified 
as iconic, scale, or "look-alike" models and analog models. A scale model represents the 
system on a reduced scale and bears a physical resemblance to the prototype system. 
Examples in this class may include laboratory watersheds, lysimeters, and hydraulic 
model of a dam spillway. Analog models measure different physical substances than the 
prototype (i.e. use another physical system having properties similar to those of the 
prototype), such as flow of electric current which represents the flow of water. An 
analog model does not physically resemble the prototype but depends on the 
correspondence between the symbolic models describing the prototype and the analog 
system.  
 Material models are useful in the following cases: 
 1). They may assist the researcher in replacing a phenomenon in an unfamiliar 
field. 
 2). A material model may permit experiments to be conducted under more 
favourable conditions than would be normally available with the prototype system. 
 A material model that does not involve a change in scale may still be valuable 
because experiments can be carried out more conveniently or can be repeated at will. 
Some experimental watershed systems installed in the NOPEX project area can be 
considered to be of prototype scale. 
 
1.4.2 Symbolic or Formal models 
 
 A formal model (also called an abstract model in the literature, e.g. Chow et al., 
1988) is a symbolic expression in logical terms of an idealised, relatively simple 
situation sharing the structural properties of the original system. Symbolic models can 
be variously expressed, in this course we are concerned with symbolic models of 
mathematical nature. 
 A mathematical model expresses the system behaviour by a set of equations, 
perhaps together with logical statements expressing relationships between variables and 
parameters. Equation (1.9) is an example of a mathematical model, 
 
y f x x x y y a at t t t t t= ⋅⋅⋅ ⋅⋅⋅ ⋅⋅⋅ +− − − −

*( , , , ; , , ; , , )1 2 1 2 1 2 εt  (1.9) 
 
where xt is the input variable,  is a function of specified form and ai, i=1,2, ..., are 
measured or estimated parameters, and 

f * ( )⋅
εt

( )⋅
 is a residual expressing lack of fit between 

observed output yt and fitted output . In order to classify models it is necessary to 
consider what features they have in common and the respects in which they differ. The 
feature that all mathematical models have in common is that the observed output 
variable yt (often discharge from a basin) derived from its fitted values  by a 
residual amount 

f *

f * ( )⋅
εt ; the respects in which they differ are the assumptions made about 

 and assumptions made about f * ( )⋅ εt . The most important terms, which are often seen 
in the hydrological literature, are explained in the following paragraphs. 
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1.4.3 The distinction between theoretical, conceptual and empirical models 
 
 Theoretical models (sometimes called white-box models or physically-based 
models) presumably are the consequences of the most important laws governing the 
phenomena. A theoretical model has a logical structure similar to the real-world system 
and may be helpful under changed circumstances. Examples of theoretical models may 
include watershed runoff models based on St. Venant equations, infiltration models 
based on two phase flow theory of porous media (Morel-Seytoux, 1978), evaporation 
models based on theories of turbulence and diffusion (Brutsaert and Mawdsley, 1976), 
and groundwater models based on fundamental transport equations (Freeze, 1971). An 
example of physically-based models is the SHE model (Abbott et al., 1986). 
 Empirical models (sometimes called black-box models or input output models) do 
not aid in physical understanding. They contain parameters that may have little direct 
physical significance and can be estimated only by using concurrent measurements of 
input and output. Examples are stochastic time series models. In many situations, 
empirical models can yield accurate answers and can, therefore, serve a useful tool in 
decision-making. The ARMA (autoregressive moving average model) and other time 
series models are examples of this class. 
 Conceptual models (sometimes called grey-box models) are intermediate between 
theoretical and empirical models. Hydrologic models are here considered as conceptual 
if the form of the function of equation (1.9) is, suggested by consideration of the 
physical processes acting upon the input variable(s) to produce the output variable(s). 
Generally, conceptual models consider physical laws but in highly simplified form. 
They are very many models belong to this class; an example which is familiar for us is 
the HBV model. 
 All three types of mathematical models are useful but in somewhat different 
circumstances. Each has its own effectiveness, depending upon the objective of study, 
the degree of complexity of the problem, and the degree of accuracy desired. There is 
no conflict between these models; they represent different levels of approximation of 
reality. 
 
1.4.4 The distinction between linearity and non-linearity in the system-theory sense 
and in the statistical regression sense. 
 
 Models whether theoretical, conceptual or empirical may be linear or non-linear. 
Usage of the term linearity has at least two meanings. A model is linear in the system-
theory sense (LST) if the principle of superposition holds: that is, given that y1(t), y2(t) 
are the outputs corresponding to inputs x1(t), x2(t), a model is LST if the output 
corresponding to input x1(t)+x2(t) is y1(t)+y2(t). This is the sense in which linearity is 
most widely used in the literature. However, linearity has an alternative meaning; the 
model is linear in the statistical regression sense (LSR) if it is linear in the parameters to 
be estimated, and it is in this sense that it is used by mathematical modellers in fields 
other than hydrology. Thus if input x(t) and output y(t) were related by the equation y = 
a + bx + cx2, this model is linear in statistical regression sense, but non-linear in the 
system-theory sense; the converse is true for y = a + x/b.  
 
1.4.5 The distinction between time-invariant and time-variant models 
  
 A model is time-invariant if its input-output relationship does not change with time. 
The form of the output depends only on the form of the input and not on the time at 
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which the input is applied. Models do not have this property are called time-variant. 
Most hydrologic systems are time-variant due to variations in solar activity during the 
day and seasonal variations during the year. For simplicity, they are assumed to be time-
invariant.  
 
1.4.6 The distinction between lumped and distributed models 
 
 In terms of spatial discretization or resolution we can identify an ascending scale of 
sophistication beginning with lumped models treating the complete basin as a 
homogeneous whole, through semi-distributed models, which attempt to calculate flow 
contributions from separate areas or sub-basins that are treated as homogeneous within 
themselves, to fully distributed models, in which the whole basin is divided into 
elementary unit areas like a grid net and flows are passed from one grid point (node) to 
another as water drains through the basin (Fig. 1.3). Becker and Serban (1990) further 
distinguished spatial variability of the models into geometrically-distributed models, 
which express spatial variability in terms of the orientation of the network points one to 
another and their distance apart (Fig.1.3), and probability-distributed models describe 
the spatial variability without reference to the geometrical configuration of the points in 
the network at which an input variable such as rainfall is measured, or for which a 
model parameter is to be measured or estimated. For example, the Stanford watershed 
model (Crawford and Linsley, 1966) is of this type. It is assumed that infiltration 
capacity at any time varies over the segment. For lack of better information this 
variation is assumed to be linear.  
 

 
 
Fig.1.3 Graphic representation of geometrically – distributed and lumped models.  
(from Jones, 1997). I is input and O is output. 
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1.4.7 The distinction between deterministic and stochastic models 
 
 If any of the variables x yt t, , tε  in equation (1.8) are regarded as random variables 
having distributions in probability, then the model is a stochastic model: stochastic, 
rather than statistical (probabilistic), to emphasise the time-dependence of the 
hydrological variables related by the model. If all variables in equation (1.8) are 
regarded as free from random variation, so that none is thought of as having a 
distribution in probability, then the model is here regarded as deterministic. 
 
1.4.8 Summary on classification 
  
 The two most often used classification methods are that according to the description 
of the physically processes hydrological models may be classified as conceptual and 
physically based, and according to the spatial description of catchment processes as 
lumped and distributed. In this respect, two typical model types are lumped conceptual 
and the distributed physically based ones. Typical examples of lumped conceptual 
model codes are the Stanford watershed model (Crawford and Linsley, 1966), the HBV 
model (Bergström, 1976) and the Sacramento (Burnash, 1995). Typical models of 
distributed physically based are the SHE (Abbott et al., 1986a,b), the IHDM (Beven et 
al., 1987) and the Thales (Grayson et al., 1992a,b). A code such as TOPMODEL 
(Beven and Kirkby, 1979) may by characterized as conceptual distributed. 
 
1.5 THE USE OF HYDROLOGIC MODELS 
 
 Physically-based or theoretical models are often use in research purpose to gain a 
better understanding of the hydrologic phenomena operating in a catchment and of how 
changes in the catchment may affect these phenomena. The hydrologic phenomena they 
calculate are generally defined by the laws of continuity, energy and momentum. As 
such these models are seldom used to generate synthetic data.  
 All other type of models, vary from deterministic form, using much information 
about the physical processes involved, to “black box” forms, where physical processes 
are not involved, are used in operational purpose to generate synthetic sequences of 
hydrologic data for facility design or for use in forecasting.  
 
1.6 METHODOLOGY FOR USING HYDROLOGIC MODELS 
 
 Dooge (1972) outlined a rational methodology for the use of hydrologic models. 
This methodology consists of a number of steps. These, with slight modifications, are as 
follows (see also Singh, 1988): 
 
 1. Define the problem. 
 2. Specify the objective. 
 3. Study the data available. 
 4. Determine the computing facilities available. 
 5. Specify the economic and social constraints. 
 6. Choose a particular class of hydrologic models. 
 7. Select a particular type of model from the given class. 
 8. Calibrate the model (that is, optimise the parameters). 
 9. Evaluate the performance of the model. 
 10. Use the model for prediction purposes. 
 11. Embed the model in a more general model. 
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 In a systematic application of the methodology, steps 6-9 could be iterated until a 
satisfactory model was obtained. Step 9 is, however, crucial in this entire operation. 
Only when a model has been objectively calibrated and evaluated can it be applied to a 
specific problem with assurance that the best use is being made of the data and that 
something is known about the order of magnitude of the accuracy of prediction. There 
exists a multitude of hydrologic models. However, a rational methodology for their 
choice is yet to be developed.  
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CHAPTER 2 
TIME SERIES ANALYSIS AND STOCHASTIC MODELLING 
_____________________________________________________________________________________ 
 
 
 
2.1 INTRODUCTION 
 
 Methods and procedures of time series analysis and stochastic modelling will be 
discussed in the chapter, while the remaining chapters of this monograph deal with 
problems and approaches used in modelling hydrologic systems and components. In 
general, they describe the physical processes involved in the movement of water onto, 
over, and through the soil surface. Quite often the hydrologic problems we face do not 
require a detailed discussion of the physical process, but only a time series 
representation of these processes. Stochastic models may be used to represent, in 
simplified form, these hydrologic time series. 
 Unlike the models that to be discussed in the remaining chapters, stochastic 
modelling places emphasis on the statistical characteristics of hydrologic processes. 
Some background in probability and statistics is necessary to fully understand this 
chapter. However, references and examples throughout the chapter should give readers 
with a more limited background an appreciation of the role of stochastic models in 
hydrology. 
 The material presented in this chapter can be divided into four major parts. The first 
part is a discussion of the statistical properties and components of a time series. The 
next part of the chapter is a discussion of the methods for identifying and modelling of 
different components of a hydrologic time series. The third part of the chapter is a 
discussion of different kinds of stochastic models that are available. The last part of the 
chapters is a presentation of the application fields of stochastic models.  
 Since this chapter concentrates on the basic concepts of stochastic processes and 
not on models of specific processes, details of such models may not be described. Many 
such models are described in the listed references. 
 
2.2 TIME SERIES 
 
 The measurements or numerical values of any variable that changes with time 
constitute a time series. In many instances, the pattern of changes can be ascribed to an 
obvious cause and is readily understood and explained, but if there are several causes 
for variation in the time series values, it becomes difficult to identify the several 
individual effects. In Fig.2.1, the top graph shows a series of observations changing 
with time along the abscissa; the ordinate axis represents the changing values of y with 
time, t. From visual inspection of the series, there are three discernible features in the 
pattern of the observations. Firstly, there is a regular gradual overall increase in the size 
of values; this trend, plotted as a separate component y1(t), indicates a linear increase in 
the average size of y with time. The second obvious regular pattern in the composite 
series is a cyclical variation, represented separately by y2(t), the periodic component. 
The third notable feature of the series may be considered the most outstanding, the 
single high peak half way along the series. This typically results from a rare catastrophic 
event which does not from part of a recognisable pattern. The definition of the function 
y3(t) needs very careful consideration and may not be possible. The remaining hidden 
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feature of the series is the random stochastic component, y4(t), which represents an 
irregular but continuing variation within the measured values and may have some 
persistence. It may be due to instrumental of observational sampling errors or it may 
come from random unexplainable fluctuations in a natural physical process. A time 
series is said to be a random or stochastic process if it contains a stochastic component. 
Therefore, most hydrologic time series may be thought of as stochastic processes since 
they contain both deterministic and stochastic components. If a time series contains only 
random/stochastic component is said to be a purely random or stochastic process. 
 The complete observed series, y(t), can therefore be expressed by: 
 
  (2.1) y t y t y t y t y t( ) ( ) ( ) ( ) ( )= + + +1 2 3 4
 
The first two terms are deterministic in form and can be identified and quantified fairly 
easily; the last two are stochastic with major random elements, and some minor 
persistence effects, less easily identified and quantified. 
 
 

 
 

Fig.2.1 The time series components. 
 
 

2-2 



Hydrological Models 

2.3 PROPERTIES OF TIME SERIES 
 
 The purpose of a stochastic model is to represent important statistical properties of 
one or more time series. Indeed, different types of stochastic models are often studied in 
terms of the statistical properties of time series they generate. Examples of these 
properties include: trend, serial correlation, covariance, cross-correlation, etc. Therefore, 
before reviewing the different types of stochastic models used in hydrology, some 
distribution properties of stochastic processes will be discussed. The following basic 
statistics are usually used for expressing the properties/characteristics of a time series. 
 
 Name Sample estimation Notation  
   for population 
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Where L is the time lag. 
 
Stationary time series 
 If the statistics of the sample (mean, variance, covariance, etc.) as calculated by 
equations (2.2)-(2.4) are not functions of the timing or the length of the sample, then the 
time series is said to be stationary to the second order moment, weekly stationary, or 
stationary in the broad sense. Mathematically one can write as: 
 

µ=)( tXE  
2)( σ=tXVar  

LLtt XXCov λ=+ ),(  
 
 In hydrology, moments of the third and higher orders are rarely considered because 
of the unreliability of their estimates. Second order stationarity, also called covariance 
stationarity, is usually sufficient in hydrology. A process is strictly stationary when the 
distribution of Xt does not depend on time and when all simultaneous distributions of 
the random variables of the process are only dependent on their mutual time-lag. In 
another words, a process is said to be strictly stationary if its n-th (n for any integers) 
order moments do not depend on time and are dependent only on their time lag.  
 
Nonstationary time series 
 If the values of the statistics of the sample (mean, variance, covariance, etc.) as 
calculated by equations (2.2)-(2.4) are dependent on the timing or the length of the 
sample, i.e. if a definite trend is discernible in the series, then it is a non-stationary 
series. Similarly, periodicity in a series means that it is non-stationary. Mathematically 
one can write as: 
 
 

ttXE µ=)(  
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2)( ttXVar σ=  

tLLtt XXCov ,),( λ=+  
 
White noise time series 
 For a stationary ties series, if the process is purely random and stochastically 
independent, the time series is called a white noise series. Mathematically one can write 
as: 
 

µ=)( tXE  
2)( σ=tXVar  

0),( =+Ltt XXCov  for all L ≠ 0 
 
Gaussian time series  
 A Gaussian random process is a process (not necessarily stationary) of which all 
random variables are normally distributed, and of which all simultaneous distributions 
of random variables of the process are normal. When a Gaussian random process is 
weekly stationary, it is also strictly stationary, since the normal distribution is 
completely characterised by its first and second order moments.  
 
2.4 ANALYSIS OF HYDROLOGIC TIME SERIES  
 
 Records of rainfall and river flow form suitable data sequences that can be studied 
by the methods of time series analysis. The tools of this specialized topic in 
mathematical statistics provide valuable assistance to engineers in solving problems 
involving the frequency of occurrences of major hydrological events. In particular, 
when only a relatively short data record is available, the formulation of a time series 
model of those data can enable long sequences of comparable data to be generated to 
provide the basis for better estimates of hydrological behaviour. In addition, the time 
series analysis of rainfall, evaporation, runoff and other sequential records of 
hydrological variables can assist in the evaluation of any irregularities in those records. 
Cross-correlation of different hydrological time series may help in the understanding of 
hydrological processes.  
  
Tasks of time series analysis include: 
 

(1) identification of the several components of a time series, 
(2) mathematical description (modelling) different components identified. 

 
 If a hydrological time series is represented by X1, X2, X3, ..., Xt, ..., then 
symbolically, one can represent the structure of the Xt by: 
 
 X T P Et t t⇔ , , t   
 
where Tt is the trend component, Pt is the periodic component and Et is the stochastic 
component. The first two components are specific deterministic features and contain no 
element of randomness. The third, stochastic, component contains both random 
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fluctuations and the self-correlated persistence within the data series. These three 
components form a basic model for time series analysis.  
 The aims of time series analysis include but not limited to: 
 

(1) description and understanding of the mechanism, 
(2) Monte-Carlo simulation, 
(3) forecasting future evolution, 
 
Basic to stochastic analysis is the assumption that the process is stationary. The 

modelling of a time series is much easier if it is stationary, so identification, 
quantification and removal of any non-stationary components in a data series is under-
taken, leaving a stationary series to be modelled. 
 
2.4.1 Trend component 
 
 This may be caused by long-term climatic change or, in river flow, by gradual 
changes in a catchment's response to rainfall owing to land use changes. Sometimes, the 
presence of a trend cannot be readily identified.  
 
Methods of trend identification: 
Different statistical methods, both nonparametric tests and parametric tests, for 
identifying trend in time-series are available in the literature. Two commonly used 
methods for identifying the trend are discussed briefly in this section. 
 
(1) Mann-Kendall test 

The test uses the raw (un-smoothed) hydrologic data to detect possible trends. The 
Kendall statistic was originally devised by Mann (1945) as a non-parametric test for 
trend. Later the exact distribution of the test statistic was derived by Kendall (1975). 

The Mann-Kendall test is based on the test statistic S defined as follows: 
 

∑ ∑
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Mann (1945) and Kendall (1975) have documented that when , the statistic S is 
approximately normally distributed with the mean and the variance as follows: 
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where  n = number of data 
 = the number of ties for the ppt th value (number of data in the pth group) 
 q = the number of tied values (number of groups with equal values/ties) 
 
The standardised Mann-Kendall test statistic ZMK is computed by 
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The standardised MK statistic Z follows the standard normal distribution with mean of 
zero and variance of one. 
The hypothesis that there has not trend will be rejected if 
 

21 α−> ZZMK  (2.10) 

 
where 

21 α−Z  is the value read from a standard normal distribution table with α being 

the significance level of the test.  
 
(2) Linear regression method 
 Linear regression method can be used to identify if there exists a linear trend in a 
hydrologic time series. The procedure consists of two steps, fitting a linear regression 
equation with the time T as independent variable and the hydrologic data, Y as 
dependent variable, i.e. 
 

TY ⋅+= βα   (2.11) 
 

and testing the statistical significance of the regression coefficient β. 
 
Test of hypothesis concerning β can be made by noting that βββ So /)−

  : ooH
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distribution with n-2 degrees of freedom. Thus the hypothesis ββ = versus 
  : oaH ββ ≠ is tested by computing  
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and  
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where S is the standard error of the regression, Y  are observed and estimated 
hydrologic variable from the regression equation, respectively. 

ii Ŷ and 

 
The hypothesis , i.e. no trend, is rejected if oH 2 ,2/1 −−> ntt α  

 
Models for trend: 
The shape of the trend depends on the background of the phenomenon studied. Any 
smooth trend that is discernible may be quantified and then subtracted from the sample 
series. Common models for trend may take the following forms: 
 
 Tt = a + bt  (a linear trend, as in Fig.2.1) (2.15) 
or 
 Tt = a + bt + ct2 + dt3 + ... (a non-linear trend) (2.16) 
 
The coefficients a, b, c, d, ... are usually evaluated by least-squares fitting. The number 
of terms required in a polynomial trend being primarily imposed by the interpretation of 
the studied phenomenon. The number of terms is usually based on statistical analysis, 
which determines the terms contributing significantly to the description and the 
interpretation of the time series. Restriction is made to the significant terms because of 
the principle of parsimony concerning the number of unknown parameters (constants) 
used in the model. One wishes to use as small a number of parameters as possible, 
because in most cases the addition of a complementary parameter decreases the 
accuracy of the other parameters. Also prediction- and control procedures are negatively 
influenced by an exaggerated number of parameters. This principle of parsimony is not 
only important with respect to the selection of the trend function but also with respect to 
other parts of the model. 
 
2.4.2 Periodic component 
 
 In most annual series of data, there is no cyclical variation in the annual 
observations, but in the sequences of monthly data distinct periodic seasonal effects are 
at once apparent. The existence of periodic components may be investigated 
quantitatively by (1) Fourier analysis, (2) spectral analysis, and (3) autocorrelation 
analysis. Of which, the autocorrelation analysis method is widely used by hydrologists 
and will be discussed briefly in this section. 
 
Identification of periodic component by autocorrelation analysis: 
The procedure consists of two steps, calculating the autocorrelation coefficients and 
testing their statistical significance. For a series of data, Xt, the autocorrelation 
coefficient rL between Xt and Xt+L are calculated and plotted against values of L 
(known as the lag), for all pairs of data L time units apart in the series: 
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=
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1
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1
( )( ) / ( )  (2.17) 

 
where X  is the mean of the sample of n values of Xt and L is usually taken for values 
from zero up to n/4. A plot of rL versus L forms the correlogram. The characteristics of 
a time series can be seen from the correlogram. Examples of correlograms are given in 
Fig.2.2. Calculation of equation (2.17) for different L gives the following cases:  
 

• If L = 0, 1=Lr . That is, the correlation of an observation with itself is one. 
 
• If 0≈Lr  for all L ≠ 0, the process is said to be a purely random process. This 

indicates that the observations are linearly independent of each other. The 
correlogram for such a complete random time series is shown in Fig.2.2(a).  

 
• If 0≠Lr  for some L ≠ 0, but after L > τ, then , the time series is still 

referred to as simply a random one (not purely random) since it has a ‘memory’ 
up to L = τ. When , the process is said to have no memory for what 
occurred prior to time t-τ. The correlogram for such a non-independent 
stochastic process is shown in Fig.2.2(b). This is representative of an auto 
regressive process. Typically, such a correlogram could be produced from a 
series described by the Autoregressive model: 

0≈τr

0≈τr

 
 ttttt XaXaXaX ε++++= −−− L332211  (2.18) 

 
where ai are related to the autocorrelation coefficients ri and ε t  is a random 
independent element. 
 

• In the case of data containing a cyclic (deterministic) component, then 0≠Lr  
for all L ≠ 0, the correlogram would appear as in Fig.2.2(c). Where T is the 
period of the cycle.  
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Fig.2.2 Examples of correlograms. 
 
Modelling of periodic component: 
A periodic function Pt is a function such that 
 

tTt PP =+  for all t 
 
The smallest value of T is called the period. The dimension of T is time, T thus being a 
number of time-units (years, months, days or hours, etc.) and we also have 
 

tnTt PP =+  for all t and for all integer n. 
 
The frequency is defined as the number of periods per time-unit: 
 

period
frequency 1=  

 
Trigonometric functions are simple periodic functions. For example, 
 
α sin (ωt + β) 
 
has a period of 2π/ω, because  
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α sin [ω(t+2π/ω)+β] = α sin(ωt+2π+β) = α sin(ωt + β) 
 
The pulsation or angular frequency is defined as 
 

frequency
period

⋅== ππω 22  

 
the constant α is termed the amplitude and β the phase (with respect to the origin) of the 
sine-function. 
 A simple model for the periodic component may be defined as (for more 
discussions refer to the literature of Time Series Analysis):  
 
 )/2sin( TtCmPt π+=  (2.19) 
 
where C is the amplitude of the sine wave about a level m and of wavelength T. 
 The serial (auto) correlation coefficients for such a Pt are given by: 
 

)/2cos( TLrL π=  (2.20) 
 
The cosine curve repeats every T time units throughout the correlogram with rL = 1 for 
L = 0, T, 2T, 3T, …. Thus periodicities in a time series are exposed by regular cycles in 
the corresponding correlograms. 
 Once the significant periodicities, Pt, have been identified and quantified by µt (the 
means) and σt (the standard deviations) they can be removed from the original times 
series along with any trend, Tt, so that a new series of data, Et, is formed: 
 

t

ttt
t s

mTXE −−=  (2.21) 

 
 Simple models for periodic component in hydrology can be seen in the literature. 
For example, in many regions, typical monthly potential evapotranspiration variation 
during the year can be modelled more or less by a sinusoidal function, with a couple of 
parameters to tune the annual mean and the amplitude (Xu and Vandewiele, 1995). 

This behavior leads to the idea to model  by a truncated Fourier series tep
 

[{ +−+= ))(12/2(sin ctbaept π ]}   
 

where again t  is time in month. The plus sign at the end is necessary for avoiding 
negative values of ep  which otherwise may occur in rare cases. Again parameters a, b 
and c are characteristics of the basin.  

t

 
2.4.3 Stochastic component 
 
 Et represents the remaining stochastic component of the time series free from non-
stationary trend and periodicity and usually taken to be sufficiently stationary for the 
next stage in simple time series analysis. This Et component is analysed to explain and 
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quantify any persistence (serial (auto) correlation) in the data and any residual 
independent randomness. It is first standardized by: 
 

 Z
E E

st
t

E
=

−
 (2.22) 

 
where E  and s  are the mean and standard deviation of the Et series. The series, Zt, 
then has zero mean and unit standard deviation. The autocorrelation coefficients of Zt 
are calculated and the resultant correlogram is examined for evidence and recognition of 
a correlation and/or random structure. 

E

 For example, in Fig.2.3a for a monthly flow, the correlogram of the Zt stationary 
series (with the periodicities removed) has distinctive features that can be recognised. 
Comparing it with Fig.2.2, the Zt correlogram resembles that of an auto regressive 
(Markov) process. For a first order Markov model 
 
 Z r Z et t= +−1 1 t  (2.23) 
 
where r1 is the autocorrelation coefficient of lag 1 of the Zt series and et is a random 
independent residual. A series of the residuals et may then be formed from the Zt series 
and its known lag 1 autocorrelation coefficient, r1: 
 
   (2.24) 11 −−= ttt ZrZe
 
 The correlogram of residuals is finally computed and drawn (Fig.2.3b). For this 
data this resembles the correlogram of 'white noise', i.e. independently distributed 
random values. If there are still signs of autoregression in the et correlogram, a second-
order Markov model is tried, and the order is increased until a random et correlogram is 
obtained. The frequency distribution diagram of the first order et values (Fig.2.3c) 
demonstrates an approximate approach to the normal (Gussian) distribution. 
 At this stage, the final definition of the recognisable components of the time series 
has been accomplished including the distribution of the random residuals. As part of the 
analysis, the fitted models should be tested by the accepted statistical methods applied 
to times series. Once the models have been formulated and quantified to satisfactory 
confidence limits, the total mathematical representation of the time series can be used 
for solving hydrological problems by synthesizing non-historic data series having the 
same statistical properties as the original data series. 
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Fig.2.3 River Thames at Teddingtom Weis (82 years of monthly flows, from Shaw, 1988) 
 
 
2.5 TIME SERIES SYNTHESIS 
 
The production of a synthetic data series simply reverses the procedure of the time 
series analysis. First, for as many data items as are required, a comparable sequence of 
random numbers, drawn from the et distribution, is generated using a standard computer 
package. Second, the corresponding synthetic Zt values are recursively calculated using 
equation 2.23 (starting the series with the last value of the historic Zt series as the Zt-1 
value). Third, the Et series then derives from equation 2.22 in reverse: 
 

EsZE Ett +=  (2.25) 
 
The periodic component Pt represented by mt and st for time period t is then added to the 
Et values to give:  
 

ttttt msETX ++=  (from equation 2.21) (2.26) 
 
The incorporation of the trend component Tt then produces a synthetic series of Xt 
having similar statistical properties to the historic data series. 
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2.6 SOME STOCHASTIC MODELS 
 
 Ultimately design decisions must be based on a stochastic model or a combination 
of stochastic and deterministic models. This is because any system must be designed to 
operate in the future. Deterministic models are not available for generating future 
watershed inputs in the form of precipitation, solar radiation, etc., nor is it likely that 
deterministic models for these inputs will be available in the near future. Stochastic 
models must be used for these inputs. 
 
2.6.1 Purely random stochastic models 
 
 Possibly the simplest stochastic process to model is where the events can be 
assumed to occur at discrete times with the time between events constants, the events at 
any time are independent of the events at any other time, and the probability distribution 
of the event is known. Stochastic generation from a model of this type merely amounts 
to generating a sample of random observations from a univariate probability 
distribution. For example, random observations for any normal distribution can be 
generated from the relationship, 
 
 y = RNσ µ+  (2.27) 
 
where RN is a standard random normal deviate (i.e. a random observation from a 
standard normal distribution) and µ and σ are the parameters of the desired normal 
distribution of Y. Computer routines are available for generating standard random 
normal distribution. 
 
2.6.2 Autoregressive models 
 
 Where persistence is present, synthetic sequences cannot be constructed by taking a 
succession of sample values from a probability distribution, since this will not take 
account of the relation between each number of sequences and those preceding it. 
Consider a second order stationary time series, such as an annual time series, made up 
of a deterministic part and a random part. The deterministic part is selected so as to 
reflect the persistence effect, while it is assumed that the random part has a zero mean 
and a constant variance. One of the models to simulate such a series is the 
Autoregressive model. The general form of an autoregressive model is 
 

tktkttt yyyy εµβµβµβµ +−++−+−=− −−− )(...)()()( 2211  (2.28) 
 
where µ is mean value of the series, β is the regression coefficient, the {y1, y2, …, 
yt,…} is the observed sequence and the random variables εt are usually assumed to be 
Normally and independently distributed with zero mean and variance . In order to 
determining the order k of autoregression required to describe the persistence 
adequately, it is necessary to estimate k+2 parameters: β

2
εσ

1, β2, …βk, µ and the variance 
of residuals . Efficient methods for estimating these parameters have been described 
by Kendall and Stuart (1968), Jenkins and Watts (1968), and illustrated in the 
hydrological context by Carlson et al, (1970), see also Clarke (1973, page 44). 

2
εσ
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The first order autoregression  
 

ttt yy εµβµ +−=− − )( 11  (2.29) 
 
has found particular application in hydrology. When equation (2.29) is used to model 
annual discharge series, the model states that the value of y in one time period is 
dependent only on the value of y in the preceding time period plus a random 
component. It is also assumed that εt is independent of yt.  
 Equation (2.29) is the well-known first order Markov Model in the literature. It has 
three parameters to be estimated: µ, β1, and .  2

εσ
 For the moment method of parameter estimation, parameter µ can be computed 
from the time series as the arithmetic mean of the observed data.  
 As for β1, the Yule-Walker equation (Delleur, 1991) shows that 
 

∑
=

−=
P

j
jkjk

1
ρβρ ,  k > 0 (2.30) 

 
the above equation, written for k = 1, 2, …, yields a set of equations. Where ρk is the 
autocorrelation coefficient for time lag k. As the autocorrelation coefficients ρ1, ρ2, …, 
can be estimated from the data using equation (2.17), these equations can be solved for 
the autoregressive parameters β1, β2, …, βp. This is the estimation of parameters by the 
method of moments. For example, for the first order autoregressive model, AR(1), the 
Yule-Walker equations yield 
 

1 since  111 ==⋅= oo ρβρβρ   (2.31) 
 
in the similarly way we can derive the equations for computing β1 and β2 for the AR(2) 
model as 
 

2
1

21
1 1

)1(
ρ
ρρβ

−
−=  2

1

2
12

2 1 ρ
ρρβ

−
−=  (2.32) 

 
It can be shown that  is related to  (the variance of the y2

εσ 2
yσ t series) by:  

 
)1( 2

1
22 βσσε −= y  (2.33) 

 
If the distribution of y is N(µy, ) then distribution of ε is N(0, ). Random values y2

yσ 2
εσ

2
εσ

t 

can now be generated by selecting εt randomly from a N(0, ) distribution. If z is 

N(0,1) then 2
1y 1zor  βσσε −z is N(0, ). Thus, a model for generating Y’s that are 

N(µ

2
εσ

y, ) and follow the first order Markov model is 2
yσ

 

)1()( 2
111 βσµβµ −+−+= − ytytyt zyy  (2.34) 
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 The procedure for generating a value for yt is:  
 

(1) estimate µy, σy, and β1 by 1 and , , rsy x  (eq.2.17) respectively,  
(2) select a zt at random from a N(0, 1) distribution, and  
(3) calculate yt by eq. (2.34) based on 1 and , , βxsy , and yt-1.  
 
The first value of yt, i.e. y1, might be selected at random from a N(µy, ). To 

eliminate the effect of y

2
yσ

1 on the generated sequence, the first 50 or 100 generated values 
might be discarded.  
 Equation (2.34) has been widely used for generating annual runoff from watersheds 
(Fiering and Jackon, 1971, see also Haan, 1976). 
 
2.6.3 First order Markov process with periodicity: Thomas - Fiering model 
 
 The first order Markov model of the previous section assumes that the process is 
stationary in its first three moments. It is possible to generalise the model so that the 
periodicity in hydrologic data is accounted for to some extent. The main application of 
this generalisation has been in generating monthly streamflow where pronounced 
seasonality in the monthly flows exists. In its simplest form, the method consists of the 
use of twelve linear regression equations. If, say, twelve years of record are available, 
the twelve January flows and the twelve December flows are abstracted and January 
flow is regressed upon December flow; similarly, February flow is regressed upon 
January flow, and so on for each month of the year. 
 
 jandecdecjanjanjan qqbqq ε+−+= )(  
 febjanjanfebfebfeb qqbqq ε+−+= )(  
 … … 
 
Fig.2.4 shows a regression analysis of qj+1 on qj, pairs of successive monthly flows for 
the months (j+1) and j over the years of record where j = 1, 2, 3, ..., 12 (Jan, Feb, ... 
Dec) and when j = 12, j+1 = 1 = Jan (there would be 12 such regressions). If the 
regression coefficient of month j+1 on j is bj, then the regression line values of a 
monthly flow, , can be determined from the previous months flow qj, by the 
equation: 

1ˆ +jq

 
 )(ˆ 11 jjjjj qqbqq −+= ++  (2.35) 
 
 To account for the variability in the plotted points about the regression line 
reflecting the variance of the measured data about the regression line, a further 
component is added: 
 
 Z s rj j⋅ −+1

21( )  
 
where  is the standard deviation of the flows in month j+1, rj is the correlation 
coefficient between flows in months j+1 and j throughout the record, and Z = N(0, 1), a 

s j+1
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normally distributed random deviate with zero mean and unit standard deviation. The 
general form may written as 
 

)1()(ˆ 2
1,11,1,1 jjijjijjjij rsZqqbqq −⋅+−+= ++−++  (2.36) 

 
 Where b r sj j j= × +1 / s j , there are 36 parameters for the monthly model 
(q ,  for each month). The subscript j refers to month. For monthly synthesis j 
varies from 1 to 12 throughout the year. The subscript i is a serial designation from year 
1 to year n. Other symbols are the same as mentioned earlier.  

 r and s

 

 
 

Fig.2.4 Thomas-Fiering model 
 
The procedure for using the model is as follows: 
 

(1) For each month, j = 1, 2, … 12, calculate 
 

(a) the mean flow ) ,24 ,12 ,(                  ;1
, Ljjjiq

n
q

i
ijj ++== ∑  

(b) the standard deviation 
1

)( 2
,

−

−
=

∑

n

qq
S i

jij

j  

 
(c) the correlation coefficient with flow in the preceding month, 
 

∑ ∑

∑

++

=
++

−−

−−
=

i i
jijjij

i
jijjij

j
qqqq

qqqq
r

2
1,1

2
,

1
1,1,

)()(

))((
 

 
(d) the slope of the regression equation relating the month’s flow to flow in the 

preceding month: 
 

 
j

j
jj S

S
rb 1+=  

 
(2) The model is then set of twelve regression equations 
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 )1()(ˆ 2
1,11,1,1 jjijjijjjij rsZqqbqq −⋅+−+= ++−++  

 
 where Z is a random Normal deviate N(0, 1). 
 

(3) To generate a synthetic flow sequence, calculate (generate) a random number 
sequence {Z1, Z2, … }, and substitute in the model. 

 
2.6.4 Moving average models 
 
The model form: 
 The moving average has frequently been used to smooth various types of 
hydrologic time series such as daily or weekly air temperature, evaporation rates, wind 
speed, etc. The moving average process used in the stochastic generation hydrologic 
data is somewhat different. In this use, the moving average process describes the 
deviations of a sequence of events from their mean value.  
 A process {  defined as  }tx
 
xt = et + φ1et-1 + φ2et-2 + ...+ φqet-q (2.37) 
 
where  is an uncorrelated stationary process, is called a moving average process of 
order q, denoted MA(q)-process.  

{ }te

It can also be written as  
 
 xt = et - θ1et-1 - θ2et-2 - ...- θqet-q (2.38) 
 
with φ1 = -θ1, φ2 = -θ2, ..., φq = -θq. 
 
The properties of the moving average process: 
 The autocovariance of the process is obtained by forming the product  and 
taking the expectation: 

kti xx −⋅

 
( )( )[ ]qktqktktqtqttk eeeeeeE −−−−−−− −−−−−−= θθθθγ ...... 1111  (2.39) 

 
For k = 0 we obtain the variance of the process 
 

∑
=

=++++==
q

j
jeqeo

0

2222
2

2
1

22 )...1( θσθθθσγσ  (2.40) 

 
with the convention θo = -1  
 

kj

kq

j
jeqkqkkkek +

−

=
−++ ∑=++++−= θθσθθθθθθθσγ

0

2
2211

2 )...(  for k ≤ q (2.41) 

0=kγ   for k > q (2.42) 
 
The autocorrelation function is then 
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γρ

 (2.43) 

 
Equations (2.40) and (2.41) can be used for the estimation of the parameters by method 
of moments. For this purpose they are rewritten as follows: 
 

22
2

2
1

2

...1 q

o
e θθθ

γσ
++++

=  (2.44) 

 

)...( 2211 qjqjj
e

j
j θθθθθθ

σ
γ

θ −++ +++−−=  (2.45) 

 
Equ. (2.44) and (2.45) are used recursively. For example for the MA(1) model 
 
xt = et - θ1et-1 (2.46) 
 
we have  
 

2
1

2
ˆ1

ˆˆ
θ

γσ
+

= o
e  2

1
1 ˆ

ˆˆ
eσ

γθ =  (2.47) 

 
where 1̂ and ˆ γγo  are estimates of the auto-covariance and computed from the data. 
 
2.6.5 ARMA models 
 
Model form: 
 In stochastic hydrology ARMA models are known as Auto-Regressive Moving 
Average (ARMA) models. They combine any direct autocorrelation properties of a data 
series with the smoothing effects of an updated running mean through the series. The 
two components of the model for a data series xt, e.g. annual river flows, are described 
by: 
 Auto-regression (AR(p)) 
 
 tptpttt exxxx ++++= −−− βββ L2211  (2.48) 
 
 Moving average (MA(q)) 
 
 xt = et - θ1et-1 - θ2et-2 - ...- θqet-q (2.49) 
 
where et are random numbers with zero mean and variance .  2

eσ
The Auto-regressive moving average (ARMA(p, q)) model is defined as: 
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qtqtttptpttt eeeexxxx −−−−−− −−−−++++= θθθβββ ...22112211 L  (2.50) 

 
One of the merits of the ARMA process is that, in general, it is possible to fit a model 
with a small number of parameters, i.e. p+q. This number is generally smaller than the 
number of parameters that would be necessary using either an AR model or a MA 
model. This principle is called the parsimony of parameters. 
The first order model ARMA(1, 1) is:  
 
 1)<<(-1 and 1)<<(-1        111111 θβθβ −− ++= tttt eexx  (2.51) 
 
Properties of ARMA model: 
 Consider in the ARMA(1, 1) model which has been used extensively in hydrology: 
 

1111 −− ++= tttt eexx θβ  (2.52) 
 
Multiplying both sides of (2.52) by  ktx −
 

1111 −−−−−− ++= tkttkttkttkt exexxxxx θβ  
 
and taking the expectation of both sides we obtain the autocovariance 
 

) () ( 1111 −−−− −+= tkttktkk exEexE θγβγ  (2.53) 
 
For k = 0, equ (2.53) becomes 
 

) () ( 1111 −−+= tttto exEexE θγβγ  
 
but 
 

[ ] 2
11

2
11)( ettttttt eeeexEexE σθβ =++= −−  

 
and  
 

[ ]
[ ]

2
11

2
1111

2
1111111

)(                 

                

)(

e

ett

ttttttt

exE

eeeexEexE

σθβ

σθβ

θβ

−=

−=

++=

−−

−−−−−

 (2.54) 

 
Thus 
 

2
111

2
11 )( eeo σθβθσγβγ −−+=  (2.55) 

 
For k = 1 equ (2.53) becomes 
 

2
1011 0 eσθγβγ −+=  
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Combining with the previous equation 
 

2
111

22
11

2
1 )( eeeoo σθβθσσθβγβγ −−+−=  

 
or  
 

2
1

11
2

1

1
21

β
θβθγ

−
−+=o  (2.56) 

 
and  
 

2
2

1

1111
1 1

)1)((
eσ

β
θβθβγ

−
−−=  (2.57) 

 
For k ≥ 2 
 

11 −= kk γβγ  k ≥ 2 (2.58) 
 
the autocorrelation function (ACF) is obtained by dividing (2.56), (2.57) and (2.58) by γ 
to obtain 
 

kρ  = 1 k = 0 (2.59a) 

 
111

1111
21

)1)((
θβθ

θβθβ
−+

−−=  k = 1 (2.59b) 

 = k 11 −γβ  k ≥ 2 (2.59c) 
 
Observe that the MA parameter θ1 enters only in the expression for ρ1. For ρ2 and 
beyond the behaviour of the autocorrelation is identical to that of the AR(1) model.  
 
Estimates of the parameters 1θ  and β1 can be obtained from equations (2.59b) and 
(2.59c), since the serial (auto) correlation coefficients ρ1 and ρ2 can be computed from 
data. More efficient methods of estimating ARMA parameters are to be found in 
advanced texts (e.g. Box & Jenkins, 1970). 
 
In general for an ARMA(p, q) model the autocovariance is 
 

[ ] [ ] ...... 1111 −−+++= −−−−− tkttktpkpkk exEexE θγβγβγ  

 [ ]qtktq exE −−−θ   k < q+1 (2.60a) 
 

pkpkk −− ++= γβγβγ ...11   k ≥ q+1 (2.60b) 
 
and the ACF is 
 

pkpkk −− ++= ρβρβρ ...11   k ≥ q+1 (2.61) 
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after lag q+1 the ACF tails off as for an AR(p) process. For the first q lags, the ACF 
depends on AR and MA parameters. 
 
Hydrologic justification of ARMA models 
 A physical justification of ARMA models for annual streamflow simulation is as 
follows. Consider a watershed with annual precipitation Xt, infiltration aXt and 
evapotranspiration bXt. The surface runoff is (1-a-b)Xt = dXt. (See Fig 2.5). 
 

 
Fig.2.5 Conceptual representation of the precipitation-streamflow process after Salas and Smith 
(1980) 
 
Let the groundwater contribution to the stream be cSt-1.  
Thus, 
 

ttt dXcSZ += −1    (2.62) 
 
The conservation of mass for the groundwater storage is 
 

11 −− −+= tttt cSaXSS    (2.63) 
 
or 
 

ttt aXScS +−= −1)1(  (2.64) 
 
Rewriting (2.62) 
 

121 −−− += ttt dXcSZ  
 
or 
 

112
1

−−− += ttt X
c
dZ

c
S  (2.65) 
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and rewriting (2.64) as 
 

121 )1( −−− +−= ttt aXScS  (2.66) 
 
Combining (2.62), (2.66) and (2.65) we obtain 
 

tttt dXacXSccZ ++−= −− 12)1(  
 

ttttt dXacXXcdZcZ ++−−−= −−− 111 )1()1(  
 

[ 11 )1()1( −− −−−+−= tttt XaccddXZcZ ]  (2.67) 
 
which has the form of an ARMA (1, 1), i.e. equation (2.52) model when the 
precipitation, Xt is an independent series and when (1-c) = β1, d = 1, and [d(1-c)-ac)] = 
θ1..  
 
2.6.6 Daily data generation models 
 
The synthetic generation of series of daily events is an extremely complicated problem 
for certain types of data. Data which can be considered nearly independent from one 
day to the next are not particularly difficult and can be handled by any of the previously 
described processes. However, daily processes such as temperature, solar energy, and 
streamflow have characteristics that are much more difficult to model. Streamflow, for 
example, is extremely difficult.  
 The high degree of persistence, due to the drainage of flood water from the channel 
system within which it has been stored, makes streamflow difficult to model on a daily 
basis. During the recession, correlation between the flow for period and that either 
preceding or following is very high. The magnitude of the autocorrelation (slope of the 
recession) is a function of many things such as the irregularity (roughness) of the 
channel, slope of the channel, size of the channel, temperature of the water, sediment 
content, and the amount and condition of vegetation on channel banks. Changes in these 
factors can cause the autocorrelation coefficients to vary from event to event, season to 
season and even year to year. Moreover, streamflow is made up of two components of 
entirely different character. One component is surface runoff which is a nonlinear 
response due to the high degree of control that solar energy, vegetation growth, 
evapotranspiration and soil moisture exercise on flow characteristics. The other 
component is groundwater flow which is much more linear in response because it acts 
primarily like drainage from one or more reservoirs. The magnitude of the different 
components varies considerably from one site to another. It can be entirely surface 
runoff, for example, where streams have small headwater catchments and are in soils of 
very low permeability, to entirely subsurface runoff such as is experienced in some sand 
soil or coastal plain soil areas.  
 These characteristics of streamflow make the synthetic generation of daily data 
extremely difficult. Few studies (Weiss, 1973, 1977, O’Connell, 1977; see also Haan et 
al., 1982), nevertheless, have been made to use shot-noise model to represent daily flow 
records as a stochastic process. Fitting of such a model to daily hydrologic data is quite 
complex and can be a laborious task. No details will be given here. In many respects, 
the best model of daily data may be obtained from catchment rainfall-runoff models as 
discussed in other chapters of this book. 
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2.6.7 Miscellaneous models 
  
 The models of some hydrologic processes are such that they cannot be classified 
into any of the previous categories. Several rainfall models fall into this group. Since 
these are quite important from the standpoint of stochastic models, they are mentioned 
here. However, since they were developed to model a specific process and are not 
general models of runoff process, they will not be described extensively. Readers who 
are interested in this specific model types, can easily found many examples in the 
literature with the keyword of ‘rainfall models’. 
 
2.7 THE USES OF STOCHASTIC MODELS 
 
(1) To make predictions of frequencies of extreme events 
 Stochastic models have been used to make predictions about the frequency of 
occurrence of certain extreme events of interest to the hydrologist. Models such as that 
given by equation (2.29) are selected, and the residual εt  is taken to be random variable 
with probability distribution whose parameters are specified. The parameters are 
estimated from data; so-called "synthetic" sequence {yt} can then be constructed, and 
the frequency with which the extreme event occurs in them can be taken as an estimate 
of the "true" frequency with which it would occur in the long run. 
 
(2) For the investigation of system operating rules 
 A further use for synthetic sequences generated by stochastic models is in reservoir 
operation, such as the investigation of the suitability of proposed operating rules for the 
release of water from complex systems of interconnected reservoirs. By using the 
generated sequence as inputs to the reservoir system operated according to the proposed 
rules, the frequency with which demands fail to be met can be estimated. This may lead 
to revision of the proposed release rules; the modified rules may be tested by a similar 
procedure. 
 
(3) To provide short-term forecasts 
 Stochastic models have been used to make forecasts. Given the values xt, xt-1, xt-2, 
...; yt, yt-1, yt-2, ... assumed by the input and output variables up to time t, stochastic 
models have been constructed from this data for forecasting the output from the system 
at future times, t+1, t+2, ..., t+k, .... In statistical terminology, k is the lead-time of the 
forecast. Many stochastic models have a particular advantage for forecasting purposes 
in that they provide, as a by-product of the procedure for estimating model parameters, 
confidence limits for forecasts (i.e. a pair of values, one less than the forecast and one 
greater, such that there is a given probability P that these values will bracket the 
observed value of the variable at time t+k). Confidence limits therefore express the 
uncertainty in forecasts; the wider apart the confidence limits, the less reliable the 
forecast. Furthermore, the greater the lead-time k for which forecasts is required, the 
greater will be the width of the confidence interval, since the distant future in more 
uncertain than the immediate. 
 
(4) To "extend" records of short duration, by correlation 
 Stochastic models have been used to "extend" records of basin discharge where this 
record is short. For example, suppose that it is required to estimate the instantaneous 

2-23 



Ch2. Time series analysis and stochastic models 

peak discharge with a return period of T years (i.e. such that it would recur with 
frequency once in T years, in the long run). One approach to this problem is to examine 
the discharge record at the site for which the estimate is required, to abstract the 
maximum instantaneous discharge for each year of record, and to represent the 
distribution of annual maximum instantaneous discharge by a suitable probability 
density function. The abscissa, Yo, say, that is exceeded by a proportion 1/T of the 
distribution then estimates the T-year flood. 
 It, however, frequently happens that the length of discharge record available is 
short, say ten years or fewer. On the other hand, a much longer record of discharge may 
be available for another gauging site, such that the peak discharges at the two sites are 
correlated. In certain circumstances, it is then permissible to represent the relation 
between the annual maximum discharges at the two sites by a regression equation and 
to use this fitted equation to estimate the annual maximum instantaneous discharges for 
the site with short record. 
 
(5) To provide synthetic sequences of basin input 
 Suppose that the model has been developed for a system consisting of a basin with 
rainfall as input variable, streamflow as output variable. If a stochastic model were 
developed from which a synthetic sequence of rainfall could be generated having 
statistical properties resembling those of the historic rainfall sequence, the synthetic 
rainfall sequence could be used as input to the main model for transformation to the 
synthetic discharge sequence. The discharge so derived could then be examined for the 
frequency of extreme events. 
 This approach to the study of the frequency of extreme discharge events is 
essentially an alternative to that described in paragraph (1) above. In the latter, a 
synthetic sequence is derived from a stochastic model of the discharge alone; in the 
former, a synthetic discharge sequence is derived by using a model to convert a 
synthetic sequence of rainfall into discharge. 
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CHAPTER 3 
PRECIPITATION IN CATCHMENT MODELS 
_____________________________________________________________________________________ 
 
 
 
 
3.1 INTRODUCTION 
 
 In general precipitation is the largest quantity in the hydrological cycle and in a 
water balance equation. Precipitation is the main input to most hydrologic models. The 
accuracy of measurement and computation of precipitation from a network of stations 
determines to a considerable extent the reliability of water balance computations. No 
reliable water balance computation is possible with insufficient knowledge of the spatial 
rainfall patterns. The main reason for errors in the areal mean of precipitation is the high 
spatial-temporal variability of precipitation and the resulting complicated statistical 
structure of precipitation data. 
 The proposed use of a hydrologic model dictates the needed detail and complexity 
of precipitation input. Economic considerations usually determine whether the desired 
sampling detail is actually achieved. For example, data from a single standard rain-gage 
may be sufficient to determine average annual or seasonal rainfall on a small watershed. 
A single recording rain-gage may provide enough information to predict average annual 
erosion and surface water yield. A network of recording gages is needed to describe the 
variation of precipitation in time and space. Data from a network of recording gages 
may be needed to estimate flood peaks, erosion, and sedimentation from individual 
events, or spatial variability of runoff production. Other hydrologic measurements, like 
temperature, humidity, solar radiation, evapotranspiration, and antecedent soil moisture, 
may be needed as well as precipitation for accurate water balance calculations or 
accurate crop yield estimates. 
 For details concerning point precipitation measurement, calculation of areal 
precipitation, etc., refer to the course "Catchment Hydrology". 
 
3.2 SEPARATION OF SNOWFALL FROM PRECIPITATION  
 
 Precipitation includes rainfall, snowfall, and other processes by which water falls to 
the land surface, such as hail and sleet. The first two forms constitute the major part of 
precipitation and are of importance in hydrologic models.  
 Snow and snowfall play a significant part in the hydrologic regime in many parts of 
the world. Snow has received attention as a water resource, primarily in the northern 
part of North America, Europe, and Asia. All of Sweden receives snow in 
hydrologically significant amounts. For hydrologic purposes, the water content is more 
important than depth, unless one is interested in the insulating properties of the snow as 
in soil freezing studies. Snow water equivalent and snow density are more useful for 
hydrologic modelling. 
 Whether precipitation falls as rain or snow can have a very significant influence on 
the estimation of runoff, especially for the spring flows. Model performance is therefore 
sensitive to decisions made concerning the form of precipitation. The problem with 
determination of the form of precipitation is usually solved in a rather simple manner in 
most modelling processes. The air temperature is accepted as a determining factor 
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meaning that snow accumulation starts as soon as the temperature is lower than a certain 
threshold value. It may be noted that some models use a fixed value of the threshold 
temperature, whereas others treat it as a calibration parameter. This method has been 
used by the U.S. Corps of Engineers (1956), Anderson (1973) and HBV model among 
others. According to an investigation made by the U.S. Corps of Engineers, the 
threshold value may vary between -1.7oC and +4.4oC when studying hourly values. An 
investigation of daily values made at the Lilla Tivsjön climate station in Sweden is 
shown in Fig.3.1 (Bergström, 1975). This investigation shows that the threshold value 
may vary between -2.5oC and +4.0oC when studying daily values.  
 
 

 
 

Fig.3.1. The observer's note on the form of precipitation related to mean daily 
temperature. Each point represents one day with precipitation. 

 
 Methods used in conceptual hydrological models for distinguishing the rainfall and 
snowfall are quite simple. Some examples of such methods are discussed as follows:  
 
(1) In the HBV model and many others,  
 
Ps = 0, Pr  = Pt when Ta ≥ To (3.1) 
Pr = 0, Ps  = Pt when Ta < To 
 
Where 
 Pr = amount of precipitation in the form of rain (mm) 
 Ps = amount of precipitation in the form of snow (mm) 
 Pt = total precipitation (mm) 
 Ta = mean daily air temperature (oC) 
 To = Threshold temperature (oC) 
 
(2) In the Hydrocomp (1969) model the division is based on the expression shown in 
equation (3.2). 
 
Ps = 0, Pr  = Pt when To ≥ (33oF ≈ 0.6 oC) (3.2) 
Pr = 0, Ps  = Pt when To < (33oF ≈ 0.6 oC) 
 
And To is calculated by 
 

)008.012.0)(( adaao TTTTT +−−=  (3.3) 
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where  
 
 Td  = dew-point temperature, and other notations have the same meaning as in 
equation 3.1. 
  
(3) Willen (1971) and Moussavi (1988) used the following equation for estimating the 
form of precipitation in their runoff models: 
 
Ps = 0, Pr  = Pt when Tmin ≥ To 
Pr = 0, Ps  = Pt when Tmax < To (3.4) 
percent rain = [(tmax - to)/(tmax - tmin)]×100 when Tmin ≤ To ≤ Tmax 
 
where: tmax is the daily maximum air temperature, tmin is the daily minimum air 
temperature, and other notations have the same meaning as before.  
 
(4) Shih et al (1972) specify the division by the functions shown in equation (3.5) 
  
Ps = 0, Pr  = Pt when Ta ≥ Tr 
Pr = 0, Ps  = Pt when Ta ≤ Ts (3.5) 









−
−=

sr

sa
tr TT

TTPP  when Ts ≤ Ta ≤ Tr 

 
where 
 Tr  = limiting temperature above which precipitation will be rain, e.g., 38oF (3.3oC) 
 Ts = limiting temperature below which precipitation will be snow, e.g., 30oF (-
1.1oC). Other notations have the same meaning as before. 
 
(5) Xu et al. (1996) used the following equation in the monthly snow and water balance 
model. 
 

( ) ( )[{ +
−−−−= 2/exp1 srrats TTTTpP ] }  Tr ≥ Ts (3.6) 

Pr = Pt  - Ps  
   
where 
 Tr  = threshold temperature above which precipitation will be rain (2oC). 
 Ts = threshold temperature above which snowmelt process begins (-2oC). 
 Other notations have the same meaning as before. 
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3.3 MODELLING OF SNOWMELT 
 
 Problems of snowmelt runoff modelling associated with the climatic and 
physiographic conditions of these regions are functions of data availability, regional 
characteristics, modelling approach, and model application. Many of these problems are 
common to all models and regions, whereas others are unique to specific models or 
regions. The more universal problems are generally associated with data constraints, 
whereas the more unique problems are associated with model formulation and the 
climatic and physiographic conditions of a region. 
 Most models of snowmelt use variations of the energy balance method pioneered 
by Wilson (1941) in which he outlined the sources of energy that cause snowmelt. In 
this section, the use of the energy balance method and its simplifications are first 
outlined, and secondly, the application of various techniques of snowmelt calculations 
as incorporated into currently used models is described. 
 
3.3.1 Energy balance approach: 
  
 The energy balance approach uses a form of the energy balance equation for a 
snowpack that can be written as (US Army, 1956): 
 
  (3.7) qpgecsn HHHHHHHH ++++++= ln
where 
 H = energy available for snowmelt (net heat transfer to snowpack from its  
  environment).  
 Hsn = net shortwave radiation 
 Hln = net longwave radiation 
 Hc  = convective heat flux 
 He  = latent heat flux 
 Hg  = conduction of heat from the ground 
 H p = heat content of rain drops 
 Hq = change in energy content of the snowpack. 
 
If H is the total net change in energy, the melt M, is calculated as (Haan et al., 1982): 
 
M = H/Lf  (3.8) 
 
where Lf is the latent heat of fusion of ice.  
 
 The use of energy balance technique results in a model which may be very close to 
being correct, but which may be unwieldy to use, except in very specialised, highly 
instrumented situations (Kuzmin, 1973; Haan et al., 1982). Among the variables 
necessary for a complete heat budget computation according to equation (3.7), can be 
mentioned: 
 
 -total solar radiation, 
 -albedo, 
 -longwave radiation balance (effective radiation) 
 -air temperature, 
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 -air humidity, 
 -wind speed, 
 -temperature gradients in the soil and in snow, 
 -precipitation. 
 
 In addition to these variables some physical parameters governing heat exchange 
with the atmosphere, heat transfer within the snowpack, liquid water content in the 
snow and drainage of the snowpack, would have to be estimated. Limits on the 
availability of some of these data and on techniques to extrapolate point measurements 
to areal mean values have restricted most applications of equation (3.7) to snowmelt 
studies at a point or on small plots (Leavesley, 1989). A few basin scale models that use 
equation (3.7) are currently being developed and tested; these models include the 
Institute of Hydrology Model, IHDM (Morris, 1980) and the SHE model (Jonch-
Clausen, 1979).  
 To work with limits imposed by data availability on the energy balance approach, 
many investigators have studied the relative importance of the various energy balance 
components, this greatly aids in simplifying the computations when the situation 
justifies it or more detailed data are not available. Various modified versions of 
equation (3.7) have been used. In most of these models, Hsn, Hln, H p and  are 
computed using measured data and the remaining components are parameterized and 
fitted, or are assumed to be negligible. Examples include the Precipitation and Runoff 
Modelling System, PRMS (Leavesley et al., 1983) and the Snowmelt Model, 
MELTMOD (Leaf & Brink, 1973). 

qH

 
3.3.2 Simplifications 
 
 Zuzel and Cox (1975) measured daily values of wind, air temperature, vapor 
pressure, net radiation, and melt at a point. They found that for an area with continuous 
snow cover, vapour pressure, net radiation, and wind run explained 78% of the 
variations in melt, whereas air temperature and net radiation explained 60%. 
Temperature alone had a coefficient of determination of 0.51 and net radiation was 0.40. 
 Raffelson (1974) investigated the energy balance of isolated snowdrifts in 
Wyoming during melt. He found the sensible and latent heat components were about the 
same size, and both substantially larger than the radiation component. O’Neill (1972) 
and Gray and O’Neill (1974) found that net radiation was the predominant energy 
source for snowmelt for the Canadian Prairies when the snow cover was continuous, 
supplying 93% of the melt energy. For non-continuous cover, advection of heat from 
bare ground to isolated drifts caused 44% of melt energy to be supplied by sensible heat 
transfer and 56% by net radiation. For an isolated drift, Cox and Zuzel (1976) found that 
69% of the energy available for melt and evaporation came from sensible heat input. 
The Crops of Engineers (1960) assigned a constant value to shortwave radiation during 
rain periods. King and Molnau (1976) noted that temperature index methods seem to 
work well for calculating snowmelt during overcast periods, indicating that radiation 
was relatively unimportant during those periods. Kuzmin (1973) explored five different 
simplifications of the basic energy balance method. He found that the use of 
temperature was possible for plains when mean daily temperature was greater than 2°C. 
 In conceptual hydrologic models, emphasis has been put on determining snowmelt 
by use of air temperature or a temperature index because of the ease of obtaining air 
temperatures and because temperature is the most easily extrapolated meteorological 
variable. 
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3.3.3 Temperature index approach (degree-day method): 
 
 Usually, an air temperature index approach has the form of: 
 
 M = Cm(Ta-Tb) (3.9) 
 
where 
 M = snow melt (mm/day); 
 Cm = degree day coefficient (mm/day/oC); 
 Ta = air temperature (oC); and  
 Tb = a base temperature (oC). 
  
 For most cases, Tb is assumed to be constant. It can either be determined by 
experience, e.g. Granger and Male (1977) used Tb = 0, or be estimated by model 
calibration.  
 Cm and Ta are assumed to integrate the effects of several of the individual energy-
budget components in equation (3.7). This is a very broad assumption and is a source of 
error for a variety of conditions. To minimize this error, most temperature index models 
apply a number of adjustments to Cm and Ta. Cm is adjusted to incorporate knowledge 
of the relations between it and measurable spatial and temporal variations in basin and 
climate characteristics. Anderson (1973) allows Cm to vary from a minimum on 
December 21 to a maximum on June 21, using a sine curve. For an Iowa watershed with 
no forest cover, the Cm ranged from 7.3 to 3.6 mm/°C/day. McKay (1968) presents 
curves of degree day factors for a shallow prairie snowpack. Gartska (1944) noted a 
strong correspondence between cumulative runoff and cumulative degree-hours above 0 
°C. This relationship seemed consistent within a storm, but varied between storms. King 
(1976) used the degree-day method on small watersheds in the Palouse Prairie. He used 
Cm as a function of cumulative degree-hours with good success. However, he found that 
different functions may be needed for basins with different aspects because of the 
rolling topography.  
 Bengtsson (1976) developed the idea of an equilibrium temperature to use in place 
of the base temperature. This is the temperature at which no net transfer of heat between 
the air and snow takes place. By equating the energy balance approach with degree-day 
factor, he found that Cm could be determined as a function of wind speed for a forested 
watershed and a function of solar radiation for nonforested areas 
 HBV Model (Bergström, 1976, 1995) and the Snowmelt Runoff Model, SRM 
(Martinec et al., 1983) use a different value of Cm in each basin zone depending on the 
vegetation characteristics of the zone. The HBV model holds each value of Cm constant 
for the entire melt season while SRM varies Cm as a function of snowpack density. In 
distributed models, different values of Cm for each basin zone or grid cell are used, they 
also vary the magnitude of Cm through the melt season to account for the effects of 
seasonal variation in day length on Cm. The Streamflow Synthesis and Reservoir 
Regulation Model, SSARR (US Army, 1975) uses an antecedent temperature index to 
adjust Cm seasonally.  
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 In the literature, there are many different versions of equation (3.9) in which Ta is 
replaced by, e.g., maximum daily temperature, minimum daily temperature, and 
combinations of these variables. Examples are: 
 
 1) M = Cm(Tmax - Tb) (Martinec & Range, 1986) 
 2) M = CmTmax (Power, 1986) 
 3) M = Cm (Tmax)2 (Woo, 1972) 
 4) M = Cm (Tmax - Tb) + b (Lang, 1984) 
 5) M = Cm (Tmax - Tmin) + b (Moussavi, 1988) 
 
where b is a model parameter.  
 
A different temperature index equation was used by Xu et al. (1996) in the snow and 
water balance model, where snowmelt, Mt is considered as a function of temperature 
and the snow storage, spt.  
 

( ) ( )[{ +
−−−= 2/exp1 srsatt TTTTspM ] }   (3.10) 

 
where Tr and Ts have the same meaning as in equ (3.6). 
 
3.4  SNOWMELT IN HYDROLOGIC MODELS 
  
 Many hydrologic models include routines which will compute the amount of 
snowmelt by any one or combination of methods mentioned in previous sections. Very 
few models have been designed primarily as snowmelt models; normally, the snowmelt 
routine is added to the precipitation section where the water input to the main part of the 
hydrologic model is determined. Few examples of such snowmelt routine are discussed 
in this section. 
 
Utah Water Research Laboratory Model 
 The flow chart for this hybrid model (Riley et al., 1969) is shown in Fig.3.2. This is 
a routine in a hybrid computer model and illustrates some of necessary steps in a mass 
budget of snow on the ground. This model has been used successfully in mountain 
snowpack situations, but there is nothing in its development which suggests it would not 
work on agricultural catchments. 
 
Ohio State University Model 
 The Ohio State University Model (OSUM) (Fig.3.3) is derived from the Kentucky 
Watershed Model (KWM) (Ricca, 1972). The OSUM includes a snowmelt routine 
developed specially for agricultural watersheds and was tested on the Coshocton 
Watersheds. The model includes simplified versions of each of the energy balance terms 
and requires daily average dewpoint, wind run, solar radiation, maximum and minimum 
temperature.  
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Fig.3.2 Snow accumulation and ablation (from Riley et al., 1969) 

 

 
 
Fig.3.3 Block diagram of snowmelt for the Ohio State University Model (from Ricca, 
1972) 
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CHAPTER 4 
EVAPOTRANSPIRATION IN HYDROLOGIC MODELS 
_____________________________________________________________________________________ 
 
 
 
 
4.1 GENERAL 
 Three terms are used in this course. (1) The term evaporation, ET0 is used for 
open/free water evaporation, i.e. the physical process involving a phase change from 
liquid to vapor by which water is returned to the atmosphere from lakes and reservoirs 
and, in some cases, from river channels in a river catchment. (2) The term actual 
evapotranspiration, AET describes all the processes by which liquid water at or near the 
land surface becomes atmospheric water vapor. Looking at a global average, two-thirds 
of the precipitation that falls on the continents is evapotranspired. Of this amount, 97% 
is from land surfaces and 3% is open-water evaporation. (3) The term potential 
evapotranspiration, ET is the maximum rate of evapotranspiration from a vegetated 
catchment under conditions of unlimited moisture supply. Of the three terms, the 
potential evapotranspiration or free water evaporation is usually used as an input 
together with precipitation to many hydrologic models. The term actual 
evapotranspiration is an important output for most hydrologic models. 
 Accurate spatial and temporal estimations of evapotranspiration are required for 
hydrologic models. Many methods of estimating evapotranspiration, whether for 
hydrologic models or irrigation scheduling, have been developed. In general, the 
procedure is to first estimate a potential evapotranspiration based on meteorological 
factors, then compute the amount of that potential that is utilized by the actual 
evapotranspiration processes, given the current status of the plant- and soil-moisture-
related characteristics.  
 
4.2 ESTIMATION OF FREE WATER EVAPORATION AND POTENTIAL  
EVAPOTRANSPIRATION 
 
 The potential for evapotranspiration is usually defined as an atmospheric 
determined quantity. There exist a multitude of methods for measurement and 
estimation of ET. Certain of these methods are accurate and reliable; others provide 
only a rough approximation. Most of the methods were developed for use in specific 
studies and are most appropriate for use in climates similar to where they were 
developed. It is not uncommon to use an equation for determination of evaporation from 
open water that was actually developed for determination of potential 
evapotranspiration from vegetated lands, and vice versa (see also Winter et al. 1995) 
although they are not the same as defined in previous section.  
 In general, techniques for estimating potential ET or ET0 are based on one or more 
atmospheric variables, like solar or net radiation and air temperature and humidity, or 
some measurement related to these variables, like pan evaporation. Because climatic 
variables usually do not vary significantly over small areas, ET estimates can often be 
transferred some distance with minimal error. For most hydrologic applications, this is 
necessary because data are rarely available on the area where needed. 
 In the sections that follow many of the most commonly used techniques for 
estimating evaporation and potential evapotranspiration are described.  
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4.2.1 Climatological Methods 
 
4.2.1.1 Air temperature-based methods 
 

In certain regions of the world, meteorological and climatological data may be quite 
limited. Models based almost solely on air temperature may be used in such cases to 
provide estimates of ET. The temperature methods are some of the earliest methods for 
estimating ET (Jensen et al., 1990). If estimates are made for periods of several weeks 
or a month, reasonable approximations are possible. Some of the more common 
temperature-based models are described below. Most temperature-based equations take 
the form:  
 
ΕΤ = cTa   (4.1) 
 
or   
 
ΕΤ = c1dlT(c2-c3h)   (4.2) 
 
in which ET is potential evapotranspiration, T is air temperature, h is a humidity term, 
c1, c2, c3 are constants, dl is day-length. Many temperature-based equations have been 
developed and used. The following seven temperature-based equations each 
representing a special form of the equations (4.1) or (4.2) are discussed, namely: 
Thornthwaite (1948), Linacre (1977), Blaney-Criddle (1950), Hargreaves (1985), 
Kharrufa (1985), Hamon (1961), and Remanenko (1961) methods.  
 
(1) Thornthwaite method:  
 A widely used method for estimating potential evapotranspiration was derived by 
Thornthwaite (1948) who correlated mean monthly temperature with evapotranspiration 
as determined from water balance for valleys where sufficient moisture water was 
available to maintain active transpiration. In order to clarify the existing method, the 
computational steps of Thornthwaite equation are discussed as follows: 
 
Step 1: The annual value of the heat index I is calculated by summing monthly indices 
over a 12-month period. The monthly indices are obtained from the equation  
 

i = 51.1)
5

( aT  (4.3a) 

 
and 
 

∑
=

=
12

1j
jiI   (4.3b) 

 
in which I = annual heat index; i = monthly heat index for the month j, (which is zero 
when the mean monthly temperature is 0 °C or less); Ta = mean monthly air temperature 
(degree Celsius); and j = number of months (1 - 12). 
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Step 2: The Thornthwaite general equation, Eq. 4a, calculates unadjusted monthly 
values of potential evapotranspiration, ET' (in mm), based on a standard month of 30 
days, 12 hr of sunlight/day. 
 

aa

I
TCET )10('=   (4.4a) 

 
in which C = 16 (a constant); and .  492.0179.101.77105.67 2638 ++×−×= −− IIIa
 The value of the exponent a in the preceding equation varies from zero to 4.25 
(e.g. Jain and Sinai, 1985), the annual heat index varies from zero to 160, and ET' is 
zero for temperature below zero degree Celsius.  
 
Step 3: The unadjusted monthly evapotranspiration values ET' are adjusted depending 
on the number of days N in a month (  and the duration of average monthly 
or daily daylight d (in hr) which is a function of season and latitude. 

)311 ≤≤ N

 

)
30

)(
12

(' NdETET =   (4.4b) 

 
in which ET = adjusted monthly potential evapotranspiration (mm); d = duration of 
average monthly daylight (hr); and N = number of days in a given month, 1 - 31 (days). 
 Thornthwaite’s equation has been widely criticized for its empirical nature but is 
widely used. Because Thornthwaite’s method of estimating ET can be computed using 
only temperature, it has been one of the most misused empirical equations in arid and 
semi-arid irrigated areas where the requirement has not been maintained (Thornthwaite 
and Mather, 1955).  
 
(2) Linacre Method  

For the case of well-watered vegetation with an albedo of about 0.25, Linacre 
(1977) simplified Penman formula to give the following expression for the evaporate 
rate:  

 

)80(
)(15)100/(500

a

dam

T
TTATET

−
−+−=   (4.5) 

 
where ET = Linacre potential evapotranspiration in mm/d, Tm = T+0.006h, h is the 
elevation (meters). A is the latitude (degrees) and Td is the mean dew-point temperature. 
Ta, Tm and Td are in °C. This formula requires only geographical data (A and h), the 
mean and the dew-point temperature. 
 
(3) Blaney-Criddle method  

The Blaney-Criddle (1950) procedure for estimating ET is well known in the 
western USA and has been used extensively elsewhere also (Singh, 1989). The usual 
form of the Blaney-Criddle equation converted to metric units is written as: 

 
ET = kp(0.46Ta + 8.13) (4.6) 
 

where ET is evapotranspiration from reference crop, in mm, for the period in which p is 
expressed. Ta is mean temperature in °C, p is percentage of total daytime hours for the 

4-3 



Ch4. Evapotranspiration in hydrologic models 

used period (daily or monthly) out of total daytime hours of the year (365×12), and k is 
monthly consumptive use coefficient, depending on vegetation type, location and 
season. According to Blaney-Criddle, for the growing season (May to October) k varies 
from 0.5 for orange tree to 1.2 for dense natural vegetation.  
 
(4) Kharrufa method 

Kharrufa (1985) derived an equation through correlation of ET/p and T in the form 
of: 
 

ET = 0.34 p Ta 1.3 (4.7) 
 
where  ET = Kharrufa potential evapotranspiration in mm/month, Ta and p have the 
same definitions as given in equ (4.6).  
 
(5) Hargreaves method  

Hargreaves and Samani (1982, 1985) proposed several improvements for the 
Hargreaves (1975) equation for estimating grass-related reference ET. Because solar 
radiation data frequently are not available, Hargreaves and Samani (1982, 1985) 
recommended estimating Rs from extraterrestrial radiation, RA, and the difference 
between mean monthly maximum and minimum temperatures, TD in °C. The resulting 
form of the equation is: 

 
ET = 0.0023 RA TD1/2 (Ta+17.8) (4.8) 
 
The extraterrestrial radiation, RA, is expressed in equivalent evaporation units. For a 
given latitude and day RA is obtained from tables or may be calculated using a set of 
equations (see Jensen et al., 1990, page 179). The only variable for a given location and 
time period is air temperature. Therefore, the Hargreaves method has become a 
temperature-based method.  
 
(6) Hamon method 

Hamon (1961) derived a potential evapotranspiration method based on the mean air 
temperature and is expressed as 
 
ET = 0.55 D2 Pt  (4.9) 
 
where ET is potential evapotranspiration in inch/day, D is the hours of daylight for a 
given day in units of 12 hr, and Pt is a saturated water vapour density term calculated 
by: 
 

100
95.4 )062.0( aTePt =  (4.10) 

 
where Ta is daily mean air temperature in °C. 
 
(7) Remanenko method 

Remanenko (1961) derived an evaporation equation based on the relationship using 
mean temperature and relative humidity:  
 

ET = 0.0018 (25+Ta)2 (100-Rh) (4.11) 
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where Ta is the mean air temperature in °C, Rh is the mean monthly relative humidity, 
which is calculated by: 
 

)(
)(

a

d

Te
TeRh

o

o

=  (4.12) 

 
in which e°(T) is the saturated vapour pressure calculated by (see Bosen, 1960): 
 

[ ]001316.488.1000019.)8072.00738(.8679.33)( 8 ++−+= TTTeo  (4.13) 
 
A comparative study of the above discussed temperature-based methods was done by 
Xu and Singh (2001). 
 
4.2.1.2 Solar radiation-based methods  
 
 The radiation-based approach has had wide application in estimation of potential 
evapotranspiration (ET) of land areas. Many empirical formulae have been derived 
based on this approach (Jensen et al., 1990; Xu and Singh, 1999). Certain methods 
based on solar radiation also involve a temperature term. 

Empirical radiation-based equations for estimating potential evaporation generally 
are based on the energy balance (Jensen et al., 1990). Most radiation-based equations 
take the form:  
 
λET = Cr(wRs) or  λET = Cr(wRn) (4.14) 
 
where λ is the latent heat of vaporisation (in calories per gram), ET is the potential 
evapotranspiration (in mm per day), Rs is the total solar radiation (in calories per cm2 
per day), Rn is the net radiation (in calories per cm2 per day), w is the temperature and 
altitude-dependent weighting factor, and Cr is a coefficient depending on the relative 
humidity and wind speed. Eight popular radiation-based equations were evaluated and 
compared in this study: Turc (1961), Makkink (1957), Jensen and Haise (1963), 
Hargreaves (1975), Doorenbos and Pruitt (1977), McGuinness and Bordne (1972), 
Abtew (1996), and Priestley and Taylor (1972) equations. For the sake of completeness, 
these equations are briefly summarised in what follows. For more complete discussion, 
the reader is referred to the cited literature. 
 
(1) Turc method  
 

Under general climatic conditions of western Europe, Turc (1961) computed ET in 
millimetres per day for 10-day periods as 

 

)50(
15

013.0 +
+

= st R
T

TE  for RH ≥ 50 (4.15) 

 

)
70

501)(50(
15

013.0 RHR
T

TE st
−++

+
=  for RH < 50 (4.16) 
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where T is the air temperature in ºC, Rs is the total solar radiation in cal/cm2/day, and 
RH is the relative humidity in percentage. 

 
(2) Makkink Method  
 

Makkink (1957) estimated ET in millimetres per day over 10-day periods for 
grassed lands under cool climatic conditions of the Netherlands as: 

 

012.0
5.58

61.0 −
+∆
∆= sRET

γ
  (4.17) 

 
where ∆ is the slope of saturation vapour pressure curve (in mb/ºC), γ (in mb/ºC) is the 
psychromatic constant. These quantities are calculated as (see also Singh, 1989): 

 
∆ = 33.8639[0.05904(0.00738T+0.8072)7-0.0000342] (4.18) 
 

λ
γ

622.0
)/(

Pc
Cmb p=°   (4.19) 

 
λ (cal/g) = 595-0.51T  (4.20) 
 
P = 1013-0.1055 EL  (4.21) 
 

where EL is elevation (in metres), λ (in calories per gram) is latent heat, and P (in 
millibar) is atmospheric pressure. The specific heat of air cp (in cal/g/ºC) varies slightly 
with atmospheric pressure and humidity, ranging from 0.2397 to 0.260. An average 
value of 0.242 is reasonable.  
 On the basis of later investigation in the Netherlands and at Tåstrup, Hansen (1984) 
proposed the following form of the Makkink equation  
 

λγ
sR

ET
+∆
∆= 7.0   (22) 

 
where all the notations have the same meaning and units as in (4.17).  
 
(3) Jensen-Haise method  

 
Jensen and Haise (1963) evaluated 3000 observations of ET as determined by soil 

sampling procedures over a 35-year period, and developed the following relation: 
 

sxt RTTCET )( −=λ  (4.23) 
 

where λ and Rs have the same meaning and units as before, ET is in mm/day, CT 
(temperature constant) = 0.025, and Tx = -3 when T is in degree Celsius. These 
coefficients were considered to be constant for a given area.  
 
(4) Hargreaves method  
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Hargreaves (1975) and Hargreaves and Samani (1982, 1985) proposed several 
equations for calculating potential evapotranspiration, ET (in mm/day). One of the 
equations is written as 

 
sRTET )8.17(0135.0 +=λ  (4.24) 

 
All variables have the same meaning and units as before. The Hargreaves method was 
derived from eight years of cool season Alta fescue grass lysimeter data from Davis, 
California. 
 
(5) Doorenbos and Pruitt Method 
 

Doorenbos and Pruitt (1977) presented a radiation method for estimating ET using 
solar radiation. The method is an adaptation of the Makkink (1957) method and was 
recommended over the Penman method when measured wind and humidity data were 
not available or could not be estimated with reasonable confidence.  

 

bRaET s +







+∆
∆=

γ
 (4.25) 

 
where Rs is solar radiation in mm/day, b = -0.3 mm/day and a is an adjustment factor 
that varies with mean relative humidity and daytime wind speed. The adjustment factor 
a was presented in graphic and tabular forms, and can also be calculated from  
 

2224

32

1011.010315.0

1020.0045.01013.0066.1

d

dd

URH

URHURHa
−−

−−

×−×−

××−+×−=
 (4.26) 

 
where RH is the mean relative humidity in percentage and Ud is the mean daytime wind 
speed in m/s. 

 
(6) McGuinness and Bordne method 
 

McGuinness and Bordne (1972) proposed a method for calculating potential 
evapotranspiration based on an analysis of a lysimeter data in Florida.  

 
54.2)}1500/)(19.00082.0{( sRTET −=  (4.27) 

 
where ET is in cm/day for a monthly period, T is in degrees Fahrenheit, and Rs is in 
cal/cm2/day. 
 
(7) Abtew method  
 

Abtew (1996) used a simple model that estimates ET from solar radiation as follows 
 

λ
sRKET =  (4.28) 
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where ET is in mm/day, Rs is in MJm-2d-1, λ is in MJ kg-1, and K is a dimensionless 
coefficient. 
 
(8) Priestley and Taylor method 
 

Priestley and Taylor (1972) proposed a simplified version of the combination 
equation (Penman, 1948) for use when surface areas generally were wet, which is a 
condition required for potential evaporation, ET. The aerodynamic component was 
deleted and the energy component was multiplied by a coefficient, α = 1.26, when the 
general surrounding areas were wet or under humid conditions. 
 

λγ
α nRET

+∆
∆=  (4.29) 

 
where Rn is the net radiation (cal cm-2d-1), and other notations have the same 

meaning and units as in equation (4.17).  
 

A comparative study of the radiation-based methods was done by Xu and Singh (2000). 
 
4.2.1.3 The Penman combination method 
 
 Penman (1948) was among the first to develop a method considering the factors of 
both energy supply and turbulent transport of water vapour away from an evaporating 
surface. The physical principles combine the two approaches, i.e. the mass-transfer and 
the energy balance. The basic equations are later modified and rearranged to use 
meteorological constants and measurements of variables made regularly at 
climatological stations. Following Shaw (1989), the Penman equation (4.34) may be 
derived as follows:  
 In a simplified energy balance equation: 
 

QEH o +=  (4.30) 
 
where H is the available heat energy, Eo is energy for evaporation (latent heat flux) and 
Q is energy for heating the air (sensible heat flux). 
 The values of Eo and Q can be defined by the aerodynamic equations:  
 

))(( dso eeufE −=  (4.31) 
 
and 
 

))((1 as TTufQ −= γ  (4.32) 
 
γ is the hygrometric constant (0.27 mm of mercury/ºF) to keep units consistent. It is 
generally assumed that . If the aerodynamic equation (4.31) is based on the 
air humidity using the air temperature T

)()( 1 ufuf =
a, then: 

 
))(( daa eeufE −=  (4.33) 
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where ea is the saturated vapor pressure at air temperature Ta, and thus (ea – ed) is the 
saturation deficit (ed, the vapor pressure of the air, is the saturated vapor pressure at the 
dew point Td). The temperature, Ta, is easily measured, whence ea is easily obtained, 
whereas es in equation (4.31) is difficult to evaluate. 
 If ∆ represents the slope of the curve of saturated vapor pressure plotted against 
temperature, then: 
 

da

da

ds

ds
TT
ee

TT
ee

dT
de

−
−≈

−
−≈=∆     (if gradients are small) 

 
then from equation (4.32): 
 

][ )()()( dads TTTTufQ −−−= γ  

 





∆
−−

∆
−= )()()( dads eeeeufγ  

 
∆

−
∆

= ao EE γγ  

 
substituting for Q in the energy balance equation (equation 4.30): 
 

−= HEo ∆
+

∆
ao EE γγ  

 
aoo EHEE γγ +∆=+∆  

 

== ETEo aEH
γ

γ
γ +∆

+
+∆
∆  (4.34) 

 
This final equation is the basic Penman formula for open water evaporation. It requires 
values of H and Ea as well as ∆ for its application. 
 If net radiation measurements are available, then H, the available heat may be 
obtained directly. More often, H is calculated from incoming (RI) and outgoing (RO) 
radiation determined from sunshine records, temperature and humidity, using: 
 

OI RrRH −−= )1(  (4.35) 
 
where r is the albedo and equals 0.05 for water. RI is a function of Ra, the theoretical 
radiation (fixed by latitude and season) modulated by a function of the ratio, n/N, of 
measured to maximum possible sunshine duration. Using r = 0.05 givens: 
 

)/55.018.0(95.0)1( NnRrR aI +=−  (4.36) 
 
the term RO in equation (4.35) is given by: 
 
RO = σT  (0.56 - 0.094

a de )(0.10 + 0.90n/N) (4.37) 
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Where σT  is the theoretical black body radiation at T4
a a which is then modified by 

functions of the humidity of the air (ed) and the cloudiness (n/N). 
 Thus H in equation (4.34) is obtained from values found via equations (4.36) and 
(4.37) inserted into equation (4.35). 
 Next, Ea in equation (4.34) is found using the coefficients derived by experiment for 
open water: 
 

))(100/5.0(35.0 2 daa eeuE −+=  (4.38) 
 
 Finally, a value of ∆ is found from the curve of saturated vapor pressure against 
temperature corresponding to the air temperature, Ta. 
 The equations given are those originally published by Penman. The four 
measurements required to calculate the open water evaporation are thus: 
 
 Ta mean air temperature for a week, 10 days or a month, ºF or ºC 
 ed mean vapor pressure for the same period, mm of mercury 
 n bright sunshine over the same period, h day-1 
 u2 mean wind speed at 2 m above the surface, miles day-1 
 
 With meteorological observations made in various units and the tendency to work 
now in SI units, care is needed in converting measurements into the appropriate units 
for the formula. The evaporation ET is finally in mm/day. 
 
4.2.1.4 Penman-Monteith method  
 
 The Penman combination method (equ (4.34)) was further developed by many 
researchers, an excellent work was done by Monteith (1963, 1964) who introduced 
resistance terms and arrived at the following equation for ET from surfaces with either 
optimal or limited water supply: 
 

















++∆

−
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ET
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γλ

ρ

 (4.39) 

 
where: ET = evapotranspiration; Rn = net radiation; ∆  = rate of increase with 
temperature of the saturation vapor pressure of water at air temperature; ρ  = density of 
air; c  = specific heat of air at constant pressure; (ep s-ea) = vapor pressure deficit of air; 
ra  = aerodynamic resistance to water vapor transport; λ  = latent heat of vaporization of 

water; γ  = psychometric constant;  = bulk (canopy) surface resistance to water 
transport. G = soil heat flux.  

sr

 The Penman-Monteith approach as formulated above includes all parameters that 
govern energy exchange and corresponding latent heat flux (evapotranspiration) from 
uniform expanses of vegetation. This model requires data on ra  and r  which are not 
readily available. The FAO (Allen et al. 1998) recommended equations for computing 

s

ra  and  and substituted them into equation (4.39). From the original Penman-Monteith sr
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equation (equation 4.39) and the equations of the aerodynamic and surface resistance, 
the FAO Penman-Monteith method for calculating reference (potential) 
evapotranspiration ET can be expressed as (Allen et al. 1998):  
 

)34.01(

)(
273

900)(408.0

2

2

u

eeu
T

GR
ET

as
a

n

++∆

−
+

+−∆
=

γ

γ
 (4.39a) 

where: ET = reference evapotranspiration [mm day-1], Rn = net radiation at the crop 
surface [MJ m-2 day-1], G = soil heat flux density [MJ m-2 day-1], T = mean daily air 
temperature at 2 m height [°C], u2 = wind speed at 2 m height [m s-1], es = saturation 
vapour pressure [kPa], ea = actual vapour pressure [kPa], es - ea = saturation vapour 
pressure deficit [kPa], ∆ = slope vapour pressure curve [kPa °C-1], γ = psychrometric 
constant [kPa °C-1]. 

Apart from the site location, the FAO Penman-Monteith equation requires air 
temperature, humidity, radiation and wind speed data for daily, weekly, ten-day or 
monthly calculations.  

The procedure for using equ (4.39a) for computing reference evapotranspiration has 
been given in Chapter 3 of the FAO paper 56 (Allen et al., 1998), which is briefly 
summarized in what follows. It is important to verify the units in which the weather data 
are reported.  

Latent Heat of Vaporization (λ)  

λ = 2.501 - (2.361 × 10-3) Ta         

where: λ = latent heat of vaporization [MJ kg-1], Ta = air temperature [°C]. 

Atmospheric Pressure (P)  

26.5

293
0065.02933.101 






 −= zP   

where: P = atmospheric pressure [kPa] at elevation z [m]. 

Saturation Vapour Pressure (es)  









+

=
3.237

27.17
exp611.0)(

a

a
as T

T
Te   

where: es(Ta) = saturation vapour pressure function [kPa] and Ta = air temperature [°C]. 

Actual vapour pressure (ea)  









+

=
3.237
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exp611.0)(

d

d
da T
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where: ea(Td) = actual vapor pressure function [kPa] and Td = dew point temperature 
[°C]. 

Slope Vapour Pressure Curve (∆)  

22 )3.237(

3.237
27.17

exp2504

)3.237(
)(4098

+









+

=
+

=∆
a

a

a

a

as

T

T
T

T
Te

  

where: ∆ = slope vapour pressure curve [kPa C-1] and Ta = air temperature [°C]. 

Psychrometric Constant (γ)  

λελ
γ PPC p 00163.010 3 =×= −   

where: γ = psychrometric constant [kPa C-1], cp = specific heat of moist air = 1.013 [kJ 
kg-1 °C-1], P = atmospheric pressure [kPa], ε = ratio molecular weight of water 
vapour/dry air = 0.622 and λ = latent heat of vaporization [MJ kg-1]. 

Short Wave Radiation on a Clear-Sky Day (Rso) 

The calculation of Rso is required for computing net long wave radiation. A good 
approximation for Rso according to FAO (Allen et al., 1998) for daily and hourly 
periods is:  

Rso = (0.75 + 2 × 10-5 z)Ra   

where: Rso = short wave radiation on a clear sky day [MJ m-2 d-1], z = station elevation 
[m], Ra = extraterrestrial radiation [MJ m-2 d-1]. 

Extraterrestrial radiation for daily periods (Ra)  

The extraterrestrial radiation, Ra, for each day of the year and for different latitudes is 
estimated from the solar constant, the solar declination and the time of the year by:  
 

[ ])sin()cos()cos()sin()sin()60(24
ssrsca dGR ωδϕδϕω

π
+=   

 
where: Ra = extraterrestrial radiation [MJ m-2 day-1], Gsc = solar constant = 0.0820 MJ 
m-2 min-1, dr = inverse relative distance Earth-Sun, ωs = sunset hour angle, ϕ = latitude 
[rad] and δ = solar decimation.  

The equations for calculating dr, ωs, ϕ and δ are given in chapter 3 of FAO paper 56 
(Allen et al., 1998). 
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Net solar or net shortwave radiation (Rns)  

The net shortwave radiation resulting from the balance between incoming and reflected 
solar radiation is given by:  

Rns = (1-α)Rs   

Where: Rns = net solar or shortwave radiation [MJ m-2 day-1], α = albedo or canopy 
reflection coefficient, which is 0.23 for the hypothetical grass reference crop 
[dimensionless] and Rs = the incoming solar radiation [MJ m-2 day-1].  

Net longwave radiation (Rnl)  

The net outgoing longwave radiation is calculated by  

( ) 







−−











 +
= 35.035.114.034.0

2

4
min,

4
max,

so

s
a

KK
nl R

R
e

TT
R σ   

where: Rnl = net outgoing longwave radiation [MJ m-2 day-1], σ = Stefan-Boltzmann 
constant [4.903 10-9 MJ K-4 m-2 day-1], Tmax, K = maximum absolute temperature during 
the 24-hour period [K = °C + 273.16], Tmin, K = minimum absolute temperature during 
the 24-hour period [K = °C + 273.16], ea = actual vapour pressure [kPa], Rs/Rso = 
relative shortwave radiation (limited to ≤ 1.0), Rs = measured solar radiation [MJ m-2 
day-1] and Rso = calculated clear-sky radiation [MJ m-2 day-1]. 

Net radiation (Rn)  

The net radiation (Rn) is the difference between the incoming net shortwave radiation 
(Rns) and the outgoing net longwave radiation (Rnl):  

Rn = Rns - Rnl   

Soil heat flux (G)  

For vegetation covered surface and calculation time steps are 24 hours or longer, a 
calculation procedure proposed by FAO (Allen et al., 1998), based on the idea that the 
soil temperature follows air temperature is as follows,  

z
t
TT

cG ii
s ∆

∆
−

= −1   

where: G = soil heat flux [MJ m-2 day-1], cs = soil heat capacity [MJ m-3 °C-1], Ti = air 
temperature at time i [°C], Ti-1 = air temperature at time i-1 [°C],  = length of time 
interval [day], = effective soil depth [m], which for a time interval of one or few days 
is about 0.10 – 0.20 m. Different equations are proposed by Allen et al. (1998) in 
calculating G depending on the computation time periods.  

t∆
z∆
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4.2.2 Micrometeorological Methods 
 
4.2.2.1 The mass-transfer-based methods 
 
 The mass-transfer method is one of the oldest methods (Dalton, 1802; Meyer, 1915; 
Penman, 1948) and is still an attractive method in estimating free water surface 
evaporation, ET0, because of its simplicity and reasonable accuracy. The mass-transfer 
methods are based on the Dalton equation which for free water surface can be written 
as: 
 
ET0 = C(es-ea) (4.40) 
 
where ET0 is free water-surface evaporation, es is the saturation vapor pressure at the 
temperature of the water surface, ea is the actual vapor pressure in the air, and C is an 
empirically determined constant involving some function of windiness.  
Therefore equation (1) is expressed as: 
 
ET0 = f(u)(es-ea) (4.41) 
 
where f(u) is the wind function. This function depends, among other factors, on the 
observational heights of the wind speed and vapor pressure measurements. Although the 
two heights need not be the same, the same experimental layout must be used for a 
particular value of the function. The mass-transfer method has had wide application in 
the estimation of lake evaporation and many empirical formulae have been derived 
based on this approach (Singh, 1989). Examples of empirical equations of this type are 
included in Table 4.1.  

An inspection of the above mass-transfer-based equations reveals that three major 
meteorological factors considered to affect evaporation are (1) vapor pressure gradient, 
(2) wind speed, and (3) temperature. The air pressure, fluid density, and water surface 
elevation for a given location may not greatly affect the rate of evaporation. Table 1 also 
shows that specific formulas have resulted from the analysis of limited and site specific 
meteorological data. The data collection procedures are not only varied but are 
frequently inconsistent. Usually, such inconsistencies are a major source of site specific 
modifications and adaptations of these types of equations. Specifically, the elevations at 
which temperature and vapor pressure are measured vary widely. As a result, estimates 
of moisture gradient and wind velocity are affected.  
 
An evaluation and comparison of mass-transfer methods was performed by Singh and 
Xu (1997a). More recently, a cross-comparison of mass-transfer, radiation and 
temperature based evaporation models was done by Xu and Singh (2002).  
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 Table 4.1 Some mass-transfer-based evaporation equations for estimation of 
evaporation. 
______________________________________________________________________ 
 
No. Author Equation remarks 
-------------------------------------------------------------------------------------------------------------------- 
1) Dalton (1802) ET0 (in./mo)=a(es-ea) a=15 for small, shallow  
   water, and a=11 for 
   large deep water 
2) Fitzgerald (1886) ET0 (in./mo)=(.4+.199u)(es-ea) 
3) Meyer (1915) ET0 (in./mo)=11(1+.1u)(es-ea) ea is measured at 30 ft  
   above the surface 
4) Horton (1917) ET0 (in./mo)=.4[(2-exp(-2u))(es-ea)] 

5) Rohwer (1931) ET0 (in./da)=.77(1.465-.0186pb). pb= barometric pressure 
   (.44+.118u)(es-ea) in in. of Hg. 
6) Penman (1948) ET0 (in./da)=.35(1+.24u2)(es-ea) 
7) Harbeck et al (1954)  ET0 (in./da)=.0578u8(es-ea) 
  ET0 (in./da)=.0728u4(es-ea) 
   
8) Kuzmin (1957) ET0 (in./mo)=6.0(1+.21u8)(es-ea) 
9) Harbeck et al (1958)  ET0 (in./da)=.001813u(es-ea) Ta = average air  
   (1-.03(Ta-Tw)) temperature oC +1.9oC;  
   Tw = average water  
   surface temperature oC. 
10) Konstantinov (1968) ET0 (in./da)=.024(tw-t2)/u1+.166u1)(es-ea) 
11) Remanenko (1961) ET0 (cm/mo)=.0018(Ta+25)2(100-hn) hn =relative humidity 

12) Sverdrup (1946) 2
8228

2

0 )]200/800[ln(
))((623.)/.(

p
eeuuKhinET o −−= ρ

 Ko=von Karman's const 

   ρ = density of air 
   p=atmospheric pressure 

13) Thornthwaite &
 

2
8228

2

0 )]200/800[ln(
))((623.)/.(

p
eeuuKhinET o −−= ρ

 
 Holzman (1939)  
______________________________________________________________________ 
 
The wind speed (monthly mean) u is measured in miles per hour and vapor pressure e, 
in inches of Hg. The subscripts attached to u refer to height in meters at which the 
measurements are taken; no subscript refers to measurements near the ground or water 
surface.  
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4.2.2.2 Aerodynamic method 
 
 Theories, principles, and procedures involved in the aerodynamic methods are 
discussed in the course “Process Hydrology”. One example of such methods is briefly 
shown here. Thornthwaite and Holzman (1942) were among the first modern 
micrometeorologists to apply the aerodynamic approach to measurement of ET. They 
proposed a relationship involving the gradients of specific humidity q and the 
logarithmic wind profile. Their expression, given here without derivation, is 
 

2
12

12122

)/ln(
))((

zz
UUqqkET a

−−= ρ  (4.42) 

 
where ρa = density of moist air, k = von Karman’s constant. Over a rough cropped 
surface z - d is substituted for z. An error analysis of this method is given by Thompson 
and Pinker (1981). 
 Following Thornthwaite and Holzman’s work, many others (e.g., Pasquil, 1950; 
Pruitt, 1963; Dyer, 1974) have proposed stability-corrected aerodynamic methods for 
estimating the flux of vapor. Aerodynamic methods require stringently accurate 
observations of wind speed and specific humidity or vapour pressure at a number of 
heights above the surface, as well as temperature measurement to permit stability 
corrections to be made. Because of its origins in classical fluid dynamics theory, 
aerodynamic methods have been popular with scientists. However, the methods have 
not reached a degree of development that makes them applicable for routine use, for 
example, in hydrological modeling.  
  
4.2.2.3 Bowen ration-energy balance method 
 
 Bowen (1926) introduced a relationship between latent heat flux, λE and sensible 
heat flux, H known as the Bowen ration β. This is defined by 
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where Mw and Ma are the molecular weights of water vapor and air, Kh and Kw are the 
turbulent exchange coefficients for sensible heat and water vapor. Other notations are 
previously defined. 
 This relationship is generally simplified by assuming that the turbulent exchange 
coefficient for heat transport Kh = the exchange coefficient for water vapor transport Kw 
and that  where ∆T = TeTzezT ∆∆≈∂∂∂∂ /)//()/( 2 – T1, and ∆e = e2 – e1. Equation 
(4.43) then becomes 
 

e
T

∆
∆≈ γβ  (4.44) 

 
a simplified form of energy balance equation at the earth’s surface can be written as: 
 

0=+++ HESRn λ  (4.45) 
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From (4.43), H = βλE. Substitution into (4.45) and solution for λE yields 
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e
T
SRSRE nn

γβ
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11
 (4.46) 

 
Equation (4.46) is the so called “Bowen ratio-energy balance” (BREB) method of 
estimating λE. 
 
4.2.3 The pan Method 
 
 Measured evaporation from a shallow pan of water is one of the oldest and common 
methods for estimating ET0. It is an indirect integration of the principal atmospheric 
variables related to ET0. Pans are inexpensive, relatively easy to maintain and simple to 
operate. In humid regions, pans may also give realistic estimates of potential 
evapotranspiration, ET. However, care must be taken in relating evaporation from pans 
to ET in arid climates (Rosenberg et al., 1983, page 262). Given some standardization 
of pan shape, environmental setting, and operation, good correlations have been 
developed between pan evaporation, Ep, and potential evaporation, ET, by a simple 
relation 
 

pET ECET =  (4.47) 
 
where CET is a coefficient.  
 Pan-to-ET coefficients (CET) are necessary because evaporation for a pan is 
generally more than for a well-wetted vegetated surface, or even a pond, due to the 
pan’s excessive exposure and lower reflectance of solar radiation. The values of CET 
vary normally from 0.5 to 1.0. The actual value depends, among other factors, on the 
type of pan, the location of the measurement, and the season. Although specific 
coefficient values for application to any given situation or pan may have to be found by 
calibration, mean monthly values are usually shown in a table or graphically shown in a 
map for some major meteorological stations or regions.  
 
4.2.4 Relationship between ETo and ET 
 
 Most subsequent refinements of Penman’s formula for ET0 have been concerned 
with adapting it to calculate potential evapotranspiration, ET. Penman himself began 
with a purely empirical approach, comparing calculated ET0 with ET losses from well-
watered plots covered in base soil and short-cropped grass at Rothamsted Research 
Station, near London. Collecting data from similar plots in a wide variety of climates 
from Europe to the humid tropics, Penman produced the empirical formula 
 
ET = f ET0 
 
Where f is a seasonal correction factor which covers the effects of differing insolation 
intensity, day length, stomatal response and geometry. He concluded from the 
experiment that: 
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(1) The evaporation rate (as measured by f in the equation) for continuously wet bare 
soil is 0.9 times that an open water surfaces exposed to the same weather 
conditions in all seasons. 

(2) The corresponding relative evaporation rate from turf with a plentiful water 
supply varies with season of the year. Provisional value of f for southern England 
are: 

 Midwinter (Nov – Feb) 0.6 
 Spring and autumn (Mar, Apr, Sep, Oct) 0.7 
 Midsummer (May – Aug)  0.8 
 Whole year 0.75 
He still recommended local empirical confirmation wherever possible, because of 

the large variation that factors such as age and species can cause. 
 
4.3 ESTIMATION OF ACTUAL ET IN HYDROLOGIC MODELS 
 
 A large number of methods have been developed in recent years for actual ET 
predictions each has its own requirements and emphases. The available methods range 
from quite simple to very complex. The most complex and physical realistic method 
used for actual evapotranspiration calculation used in the physically-based models is the 
Penman-Monteith equation (Equation 4.39a) as discussed in the previous section. It is 
seen that this method requires many variables that might not be available. For most 
conceptual hydrological models, this method is too sensitive to data requirement.  
 In conceptual catchment models, the most investigators have found it necessary to 
derive "actual" evapotranspiration as a function of potential evapotranspiration and the 
dryness of the soil (Palmer, 1965; Saxton and McGuinness, 1982; Dyck, 1983). As the 
model storage ratio (actual soil moisture storage divided by the maximum storage) is 
representative of the ‘wetness’ of the soil, it would be conceptually acceptable to extract 
moisture at the potential rate when the storage was full, that is at field capacity, and 
reduce the extraction to zero when the storage was empty (when the soil moisture deficit 
had reached its maximum). However, the nature of the function that estimates actual 
evapotranspiration for conditions between these limits is not known. A number of 
functions operating between the limits of potential rate and zero have been tried by a 
number of modellers. A general form of such equations can be shown as  
  

    / SMC)f(SMTETAET ⋅=  (4.48) 
 
where SMT is the actual soil moisture storage, and SMC is the soil moisture storage at 
field capacity.  
 Some examples for  and other functions are given in Table 4.2. The 
ratio of actual evapotranspiration (AET) to potential evapotranspiration (ET) varies with 
drying of soil and that the shape of this curve differs, amount other factors, with the 
type of soil, as illustrated in Figure 4.1. 

SMC)f(SMT /
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Table 4.2 Some examples for function   SMC)f(SMT / .
_____________________________________________________________________ 
Reference  SMC)f(SMT / =
---------------------------------------------------------------------------------------------------------- 
DAILY VALUES 

Minhas et al. (1974) 
)exp()exp(21

)exp(1
SMTSMC

SMT
γγ

γ
−+−−

−−  (4.49) 

Norero(1969)  (4.50) [ 1
)/(1

−⋅+ kbSMCSMT ]
   (4.51) k PET= − −2 69 0 09 0 62. exp( . ) .

Baier & Robertson (1966)  (4.52) ∑
=

−
n

j
jjijj ZSMCSMTk

1
1, )/(

Koitzsch & Golf (1983) 
SMC

SMT
M

i

i

1
533.01
1 −

−
 (4.53) 

HBV & many others 
LP

SMT  (4.54 

 
(in the following equations RAT = ) SMCSMT /

 
Roberts (1978) (RAT)0.5 (4.55)
   (4.56) ))1()/(( 222 RATRATRAT −+

   (4.57) )

)

)1/(1(2 2 RATRATRAT +××

   (4.58) ))1/(1(2 RATRATRAT +××

   (4.59) ( 2/12/1 RATRATRAT −+

  2RAT  (4.60) 
  RAT  (4.61) 
 
5-DAY VALUES 
Renger et al. (1974)  (4.62) 22.10.22.0 RATRAT ×−×+
 
MONTHLY VALUES 
Budyko & Zubenok (1961) RAT (4.63) 
Xu et al. (1996)  (4.64) )/)((

1 11 ETPSMT iia +−−
_____________________________________________________________________ 
Where: SMT = actual soil moisture; SMC = soil moisture at field capacity; SMTj,i-1 = 
actual soil moisture in the j-th zone at the end of the previous day (i-1); Zj = fraction of 
available soil moisture at which AET<ET and plant stress sets in; Kj = fraction of soil 
moisture extraction at that zone; γ  = free parameter; b = soil specific constant; M = 
vegetation canopy density. 
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Fig.4.1 The graph compares the rates of reduction in evapotranspiration as the soil dries out 
(right to left) for sand, loam and clay, quantified as a proportion of the total water-holding 
capacity of the root zone, the part of the soil that contains water available to plants (“the 
available water capacity”). In sand, plants can extract water at full potential rates until near their 
wilting point, but in clay the supply is restricted by smaller soil pores so that uptake and 
transpiration rates can rapidly fall below potential much earlier. Based on Dunne and Leopold 
(1978), see also Jones (1997).  
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CHAPTER 5 
RUNOFF IN HYDROLOGIC MODELS 
_____________________________________________________________________________________ 
 
 
 
 
5.1 INTRODUCTION 
 
Runoff, which may be variously referred to as streamflow, stream or river discharge, or 
catchment or watershed yield, is normally expressed as a volume per unit of time. The 
m3/s, i.e., one cubic meter per second. Runoff may also be expressed as a depth 
equivalent over a catchment, i.e., millimeters per day or month or year. This is a 
particularly useful unit for comparing precipitation and runoff rates and totals since 
precipitation is almost invariably expressed in this way.  
 Runoff or streamflow comprises the gravity movement of water in channels which 
may vary in size from the one containing the smallest ill-defined trickle to the ones 
containing the large river. In a general sense, this water representing the excess of 
rainfall over evapotranspiration, when allowance is made for storage on and under the 
ground surface.  
 Models of runoff processes have been developed for a wide variety of purposes, 
from the ‘one-off’ design of engineering structures and water supply systems to modern 
real-time models used continuously in river regulation schemes, they are also providing 
valuable for studying the potential impacts of changes in landuse or climate. Model 
outputs vary from predictions of peak discharges or total volumes of flood flow to the 
complete specification of the distribution of flow over time, either for individual storm 
events in event models or for continuous sequences of flows in continuous or sequential 
models. In this chapter, event-based models and continuous models of runoff processes 
are discussed separately and more details are placed on the former. This emphasis has 
been chosen because event-oriented models provide a direct means of continuous 
simulation. Continuous simulations can be obtained by specifying a continuous 
precipitation input.  
 
5.2. SOURCES AND COMPONENTS OF RUNOFF  
 
 In order to select a method of modelling, it is essential to recognize the different 
runoff components and their regime. The different runoff terminologies used in the 
literature have resulted in much confusion and ambiguity about the sources and 
components. Ward (1972) provided a consistent and unambiguous terminology which 
has been adopted in this chapter. The total runoff from a typically heterogeneous 
catchment area may be conveniently divided into four component parts: channel 
precipitation, overland flow, interflow, and groundwater flow (see figure 5.1). 
 
Channel precipitation 
Direct precipitation onto the water surfaces of streams, lakes, and reservoirs makes an 
immediate contribution to streamflow. In relation to other components, however, this 
amount is normally small in view of the small percentage of catchment area normally 
covered by water surfaces. In catchments containing a large area of lakes or swamps 
channel precipitation may make a substantial contribution to streamflow. 
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Fig.5.1 Diagrammatic representation of the runoff process (Ward, 1972) 

 
Overland flow 
Overland flow comprises the water which, falling to infiltrate the surface, travels over 
the ground surface towards a stream channel either as quasi-laminar sheet flow or, more 
usually, as flow anastomosing in small trickles and minor rivulets. The main cause of 
overland flow is the inability of water to infiltrate the surface and in view of the high 
value of infiltration characteristic of most vegetation-covered surfaces it is not 
surprising that overland flow is a rarely observed phenomenon (except on laboratory 
models!). Conditions in which it assumes considerable importance include the 
saturation of the ground surface, the hydrophobic nature of some very dry soils, the 
deleterious effects of many agricultural practices on infiltration capacity, and freezing of 
the ground surface. Surface runoff may then be defined as that part of the total runoff 
which travels over the ground surface to reach a stream channel and thence through the 
channel to reach the drainage basin outlet. 
 
Interflow 
Water which infiltrates the soil surface and then moves laterally through the upper soil 
horizons towards the stream channels, either as unsaturated flow or, more usually, as 
shallow perched saturated flow above the main groundwater level is known as 
interflow. Alternative terms found in the literature include subsurface storm flow, 
storm-seepage, and secondary base flow. The general condition favouring the 
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generation of interflow is one in which lateral hydraulic conductivity in the surface 
horizons of the soil is substantially greater than the overall vertical hydraulic 
conductivity through the soil profile. Then during prolonged or heavy rainfall water will 
enter the upper part of the profile more rapidly then it can pass vertically through the 
lower part, thus forming a perched saturated layer from which water will 'escape' 
laterally, i.e., in the direction of greater hydraulic conductivity. They may be several 
levels of interflow below the surface corresponding to textural changes between 
horizons and to the junction between weathered mantle and bedrock. In addition, some 
hydrologists argue that water may travel downslope through old root holes and animal 
burrows and other subsurface pipes. In view of the variety of possible interflow routes it 
is to be expected that some will result in more rapid movement of water to the stream 
channels than will others, so that it is sometimes helpful to distinguish between rapid 
and delayed interflow (see Fig.5.1). The experimental evidence has long indicated that 
the interflow may account for up to 85 per cent of total runoff (Ward, 1972). 
 
Groundwater flow 
Most of the rainfall which percolates through the soil layer to the underlying 
groundwater will eventually reach the main stream channels as groundwater flow 
through the zone of saturation. Since water can move only very slowly through the 
ground, the outflow of groundwater into the stream channels may lag behind the 
occurrence of precipitation by several days, weeks, or often years. Groundwater flow 
also tends to be very regular, representing as it does, the overflow from the slowly 
changing reservoir of moisture in the soil and rock layers. In general, groundwater flow 
represents the main long-term component of total runoff and is particularly important 
during dry spells when surface runoff is absent. 
 
Snowmelt 
In some areas, particularly at high altitudes or in high latitudes, a large proportion of 
streamflow may be derived from the melting of snows and glaciers. Although, in terms 
of the phase relationship between precipitation and runoff, snow accumulation and melt 
pose particular problems, in terms of the present discussion snowmelt does not represent 
a special case or merit consideration as a fifth component of runoff. Snow falling 
directly on to the stream surface has already been discussed under the heading of 
channel precipitation, while water generated by the process of snowmelt will either flow 
over the ground surface as overland flow or will infiltrate to become interflow and 
groundwater flow depending on whether the sub-snowpack surface is saturated and/or 
frozen. 
 
Surface and subsurface runoff 
The foregoing discussion should have clarified the definition and role of four other 
runoff terms, illustrated in Fig.5.1, which are used somewhat indiscriminately in the 
literature, i.e., surface and subsurface runoff and quickflow and baseflow. Surface 
runoff, as has been shown, is that part of total runoff which reaches the drainage basin 
outlet via overland flow and the stream channels, although it may in some 
circumstances also include interflow which has discharged at the ground surface at 
some distance from the stream channel. Subsurface runoff is the sum of interflow and 
groundwater flow and is normally equal to the total flow of water arriving at the stream 
as saturated flow into the stream bed itself, and as percolation from the seepage faces on 
the stream bank. 
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Quickflow and baseflow 
 Quickflow, or direct runoff, is the sum of channel precipitation, surface runoff and 
rapid interflow and will clearly represent the major runoff contribution during storm 
periods and is also the major contributor to most floods. It will be observed that 
quickflow and surface runoff as defined above cannot be used synonymously. Baseflow 
or base runoff may be defined as the sustained or fair-weather runoff and is the sum of 
groundwater runoff and delayed interflow, although some hydrologists prefer to include 
the total interflow as illustrated by the broken line in Fig.5.1. Again it will be observed 
that baseflow and groundwater flow, as defined above cannot be used synonymously; 
indeed Hewlett (1961, 1963) demonstrated that baseflow from steep mountain drainage 
basins may consist almost entirely of unsaturated lateral flow from the soil profile. 
Hewlett and Nutter (1969) suggested that in upland forested catchments about 85 per 
cent of total runoff might consist of baseflow. 
The separations of runoff components can be done by using of hydrograph analysis, to 
this point refer to the course of "Catchment Hydrology". 
 
5.3 APPROXIMATE INFILTRATION MODELS 
 
 Before modelling of various runoff components is discussed, modelling of 
infiltration process is described. Infiltration is the process of entry of water into a soil 
through the soil surface. For example, it is the infiltration capacity of the soil that 
determines for a given storm, the amount and time distribution of rainfall excess that is 
available for runoff and surface storage. Hence, an understanding of infiltration and 
factors affecting it is important to the determination of surface runoff as well as the 
subsurface movement and storage of water within the catchment. Philip (1969) and 
Morel-Seytoux (1973) have presented excellent reviews of the infiltration processes. 
Infiltration can be characterized for most initial and boundary conditions of interest by 
solving the governing differential equations using numerical methods. Although these 
solutions provide a physically consistent means of quantifying infiltration in terms of 
soil properties governing movement of water and air, such elaborate procedures are 
rarely used in practice. One reason is that numerical solutions are usually expensive due 
to computational requirements. A more severe limitation is the difficulty of obtaining 
necessary soil property data. Attempts to characterize infiltration for field applications 
have usually involved simplified concepts which permit the infiltration rate or 
cumulative infiltration volume to be expressed algebraically in terms of time and certain 
soil parameters. Some of the approximate models have been developed by applying 
principles governing soil water movement for simplified boundary and initial 
conditions. The parameters in such models can be determined from soil water 
properties, when they are available. Other models are strictly empirical and the 
parameters must be obtained from measured infiltration data or estimated using more 
approximate procedures. The most obvious characteristics of the infiltration process are 
that for ponded surfaces the rate decreases rapidly with time during the early part of an 
infiltration event. Although attributed to different physical phenomena, this 
characteristic is reflected by all of the approximate infiltration equations. 
 Considerable literature exists on approximate infiltration models. This section 
presents, as an example, one empirical and one conceptual infiltration models. 
Physically based models employing the Richards equation will be discussed separately 
in Chapter 8 together with the SHE model. 
 We define a number of terms that are to be used in this section and give their 
notations and dimensions here. 
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• The infiltration rate, f is the rate at which water enters into the soil surface. It is 
expressed as volume per unit area per unit time and has the dimensions of length 
per unit of time.  

• Cumulative infiltration, F denotes the volume of infiltration from the beginning 
of time t, or the rainfall event. It also is called infiltration volume or 
accumulated infiltration and is measured in centimetres. 

• Infiltration capacity, fp is the maximum rate at which soil can absorb water 
through its surface and has the dimensions of length per unit of time. A 
distinction should be made between f and fp;  .0 pff ≤≤

 
Horton Model 
The Horton model (Horton, 1939, 1940) is one of the best-known infiltration models in 
hydrology. Horton recognised that the infiltration capacity decreased with time until it 
approached a more-or-less constant rate. He expressed the view that the decrease in 
infiltration capacity was controlled probably more by the factors operating at the soil 
surface than by the flow process in the body of the soil.  
 Horton (1940) hypothesized that infiltration is similar to exhaustion process 
according to which the rate of performing work is proportional to the amount of work 
remaining to be performed. In case of infiltration, the work remaining to be performed 
at any time t is equal to that of changing the infiltration rate f to its ultimate constant 
value fc. The rate of performing work is df/dt. The amount of work remaining to be 
performed is (f – fc). Since f decreases with t,  
 

)( cffk
dt
df −−=  (5.1) 

 
where k is a proportionality factor dependent on soil type and initial moisture content. 
The initial condition is:  
 
When t = 0, f = f0,  
 
Equation (5.1) can be integrated to yield 
 

kt
coc effff −−+= )(  (5.2) 

 
and  
 

kt
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dF −−+= )(  where f = dF/dt (5.3) 

 
The initial condition is: When t = 0, F = 0. Then 
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This model is simple and fits well to experimental data. The principal weakness of this 
model lies in determination of its parameters fo, fc, and k. These have to be determined 
by data fitting. The parameters fo, fc, and k can be estimated in two ways (see Singh, 
1989).  
• First taking the logarithm of equation (5.2) 
 

ktffff coc −−=− )ln()ln(   (5.5) 
 
Equation (5.5) represents a straight line on a semilog plot whose slop, -k, and intercept, 

, can readily be determined (Toebes, 1963). For given infiltration data, f)ln( co ff −

( f

c is 
taken to be the lowest value of f where it tends to become constant. The value of (f – fc) 
at t = 0 is .  )co f−
• Second, a least squares method can be used (Blake, et al., 1968) directly to estimate 

parameters of equation (5.3), which is of the form 
 

cco
kt faff

k
aeataaF =−=−+= −

10010       ),(1         ,  

 
This equation can be fitted to the experimental data. During the last 5 min or so 
(assuming that the experiment is continued until the runoff becomes constant), the 
exponential term becomes small. Therefore, 
 

taaF 10 +=  
 
the values of ao and a1 can be estimated using the data for this time interval.  
 To determine k, we can write 
 

o

o

a
taaFkt

−
−−=− 1ln  

 
By applying the linear regression analysis to the remainder of the data, excluding those 
for which  
 

)( 10 taaF +<  
 
the parameter k can be obtained. 
 
The Green-Ampt method: 
A simple conceptual model, based on Darcy’s law, was proposed by Green and Ampt 
(1911). For details about the assumptions, deriving procedure, etc., refer to the course 
“Process hydrology”. The section presents only the calculation procedure of the method 
(see also Chow et al., 1988): 
 Following the flow chart (Fig.5.2): 
Step 1: Calculate the current potential infiltration rate, ft from the known value of 
cumulative infiltration Ft. For the Green-Ampt method, one uses 
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







+Ψ∆= 1

t
t F

Kf θ  (5.6) 

 
where: 
θ is the moisture content, i.e. the ratio of the volume of water to the total volume,  

ees θθ )1( −=∆  is the change of moisture content,  
se is the effective saturation, 
θe is the effective porosity 
Ψ is suction head, 
K is hydraulic conductivity 
 
Step 2: Calculation of Cumulative infiltration, Ft 

Case 1: If ft ≤ it then (ponding occurs throughout the interval), and 
 

tK
F

FFF
t

tt
ttt ∆=








Ψ∆+

Ψ∆+Ψ∆+= ∆+
∆+ θ

θθ ln  (5.7) 

Case 2: if ft > it and no ponding at the beginning of the interval. Assume that this 
remains so throughout the interval, then the infiltration rate is it and a tentative value for 
cumulative infiltration at the end of the time interval is 
 

tiFF tttt ∆+=∆+
'  (5.8) 

 
Step 3: Calculate a corresponding infiltration rate  from .  '

ttf ∆+
'

ttF ∆+

If  is greater than i'
ttf ∆+ t, then , no ponding throughout the interval. '

tttt FF ∆+∆+ =

If  is less than or equal to i'
ttf ∆+ t, ponding occurs during the interval. The cumulative 

infiltration Fp at ponding time is found by setting ft = it and Ft = Fp in equation (5.6) and 
solving for Fp to give, for the Green-Ampt equation, 
 

Ki
KF
t

p −
Ψ∆= θ  (5.9) 

 
The ponding time is then t , where 't∆+
 

t

tp
i

FF
t

−
=∆ '  (5.10) 

 
and the cumulative infiltration is found by substituting FttF ∆+ t = Fp and  
in equation (5.7).  
  

'ttt ∆−∆=∆

The excess rainfall values are calculated by subtracting cumulative infiltration and 
other losses from cumulative rainfall and then taking successive differences of the 
resulting values. Direct runoff can then be calculated from excess rainfall. 
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Fig.5.2 Flow chart for determining infiltration and ponding time under variable rainfall 
intensity (after Chow et al., 1988). 
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5.4 SIMULATING RUNOFF WITH LUMPED MODELS 
 
 The number of runoff components to be analysed depends on the characteristics of 
the basin and the objective of the separation including the time base to be considered 
(Figure 5.1). In most conceptual lumped catchment models, the following four 
components (left) or even the right two components may be identified and modelled 
explicitly: 
 

surface flow
fast interflow 





 fast components 

slow interflow
base flow 





 slow components 

 
 A lumped approach to the modelling of runoff considers the catchment as a 
spatially singular entity which transforms rainfall excess into an outflow hydrograph. 
The approach ranges from the use of a mathematical transfer function, or “black-box” 
approach, to a modelling of the detailed interrelationship of processes for hydrologically 
significant phenomena. 
 
5.4.1 Event-based models  
 
Streamflow simulation for individual storms is needed to solve a wide variety of water 
resources problems, including design of hydraulic structures such as dams, culverts, 
bridges, spillways; urban and highway drainage; planning of flood-control works; 
source pollution; disposal of waste material; evaluation of environmental impacts of 
land use and management practices; and planning of soil conservation works. 
 Many event-based streamflow simulation models have been developed (Renard et 
al., 1982; Singh, 1988). Some of the models are summarised in Table 5.1. The objective 
of this section is to present the general concepts of event-based streamflow simulation 
and then make some comments about the models. No attempt is made to describe all the 
models. Complete details of the models can be found in the cited references. 
 
5.4.1.1 Determination of effective/excess rainfall hyetograph (ERH) 
 
Excess rainfall, or effective rainfall, is that rainfall which is neither retained on the land 
surface nor infiltrated into the soil. The graph of excess rainfall vs. time, or excess 
rainfall hyetograph (ERH), is a key component of the study of rainfall runoff 
relationships. The excess rainfall hyetograph (ERH) may be determined from rainfall 
(hyetograph) data in one of two ways, depending on whether streamflow data are 
available for the storm or not.  
 In case the rainfall and streamflow data area available, the ERH can be determined 
by using the Φ–index method which consists of the following steps: 

• Estimate the baseflow by applying a base flow separation method. 
• Calculate the direct runoff which equals to the observed streamflow minus 

baseflow. 
• Compute the volume and depth of direct runoff, Vd and rd. And 
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 where Qd is the ordinate of the direct runoff. 

• Estimate the rainfall loss rate Φ, and M, the number of nonzero pulses of excess 
rainfall, by solving the following equation with a trial and error method (an 
example can be sound on page 138 of Chow et al, 1988). 

 

  (5.12) ∑
=
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M

m
md tRr

1
)(

 
  where Rm is the rainfall depth in pulse m. 

• Calculate the excess rainfall hyetograph (ERH). The ordinates of ERH are found 
by subtracting Φ∆t from the ordinates of the observed rainfall hyetograph.  

 
 In case, the streamflow data are not available, the ERH can be calculated from 
either the SCS curve-number method or infiltration abstraction method (Chow et al., 
1988).    
 
5.4.1.2 Computation of direct runoff hydrograph (DRH) 
 
At this stage a decision has to be made regarding the type of the model to be used in 
light of available data. This approach ranges from the use of a mathematical transfer 
function, or "block-box" approach, such as the time-area method, and unit hydrograph 
method (For details refer to the course of “Process Hydrology”), to conceptual method, 
such as the linear-channel and linear-reservoir (Nash, 1957).  
 Suppose, a linear conceptual model is chosen for this purpose. Then the IUH 
(instantaneous unit hydrograph) for this model must be derived as well as a method for 
estimating the IUH parameters. Thereafter, the IUH is convoluted with the ERH 
estimated already to obtain the DRH. To summarise, three tasks are performed for this 
choice: (a) computation of the IUH, (b) determination of the IUH parameters, and (C) 
convolution of the IUH with the ERH. 
 
5.4.1.3 The Instantaneous unit hydrograph 
 
If the excess rainfall is of unit amount and its duration is infinitesimally small, the 
resulting hydrograph is an impulse response function called the instantaneous unit 
hydrograph (IUH). For an IUH, the excess rainfall is applied to the drainage area in zero 
time. Of course, this is only a theoretical concept and cannot be realized in actual 
catchments, but it is useful because the IUH characterizes the catchment’s response to 
rainfall without reference to the rainfall duration. Therefore, the IUH can be related to 
catchment geomorphology.  
 The convolution integral is  
 

∫ −= t dItutQ 0 )()()( τττ  (5.13) 
 

 If the quantities I(τ) and Q(t) have the same dimensions, the ordinate of the IUH 
must have dimensions [T-1]. The properties of the IUH are as follows, with l = t – τ. 
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 0 ≤ u(l) ≤ some positive peak value for l > 0 
 u(l) = 0 for l ≤ 0 
 u(l) → 0 as l → ∞ 
  and  ∫

∞ =0 1)( dllu ∫
∞ =0 )( Ltldllu

 
 The quantity tL is the lag time of the IUH. It can be shown that tL gives the time 
interval between the centroid of an excess rainfall hyetograph and that of the 
corresponding direct runoff hydrograph.  
 The IUH can be determined by various methods of mathematical inversion, using, 
for example, orthogonal functions such as Fourier series (O’Donnell, 1960) or Laguerre 
functions (Dooge, 1973); integral transforms such as the Laplace transform (Chow, 
1964), the Fourier transform (Blank et al., 1971), and the Z transform (Bree, 1978). The 
complexity of the methods has deterred practising engineers from applying them in day-
to-day problems. Techniques incorporating catchment parameters have had their 
attractions. These methods, based on unit hydrograph theory, are more akin to 
mathematical models, and will be discussed hereafter.  
 
5.4.1.4 The Nash linear conceptual model 
 
 In view of the difficulty of directly deriving instantaneous unit hydrographs (IUHs), 
the influence of a catchment in transferring rainfall excess into direct runoff was viewed 
conceptually as equivalent to transferral through a series of reservoirs linked by 
channels (Nash, 1957).  
 
• A linear reservoir is a conceptual reservoir in which the storage, S, is directly 

proportional to the outflow, Q, or 
 
 S = KQ (5.14) 
 
The proportionality constant K, is known as the storage coefficient. The difference 
between inflow (I) and outflow (Q), is the time rate of change in storage, i.e., by 
continuity, 
 
 I - Q = dS/dt (5.15) 
 
 Substituting equation (5.14) in equation (5.15), 
 
 I -Q =KdQ/dt (5.16) 
 
or 
 
 dQ/dt + Q/K = I/K (5.17) 
 
the solution for which is: 
 
 Q = I(1-e-t/K) (5.18) 
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 If the inflow stops at time t = t0 at which time the outflow Q = Q0, then from 
equation (5.16) with I = 0 and τ = -t t0, 
 
 dQ / d + Q / K =  0τ  (5.19) 
 
for which the solution is: 
 
 Q Q eo

K= −τ /  (5.20) 
 
For an instantaneous inflow which fills a reservoir of storage S0 in time t0 = 0, 
 
 Q0 = S0/K (5.21) 
 
combining equations (5.20)and (5.21), and since τ = t  
 
 Q S K eo

t K= −( / ) /  (5.22) 
 
The IUH for a linear reservoir, in which S0=1 and inflow is instantaneous, is 
 
 u t K e t K( ) ( / ) /= −1  for t ≥ 0 (5.23) 
 u(t) = 0 fot t < 0 
 
as shown in Fig.5.3 (left). If the inflow were a unit pulse of duration D, the UH u(D, t), 
as shown in Fig.5.3(right), and the direct runoff Q(t) (ignoring the dimensions of u(D, t) 
and Q(t)) would be 
 
 , t ≤ D (5.24) [ ]kteItDutQ /1) ;()( −−==
 
and 
 
  t > D (5.25) kDt

peQtDutQ /)() ;()( −−==
 
where Qp represents the hydrograph peak and is given by  
 
  (5.26) [ ]kD

p eIQ /1 −−=
 
Here I = 1/D. the hydrograph peak will occur at the end of the duration of unit pulse.  
 As t → ∞, Q(t) = I(t). This implies an equilibrium conditions: outflow becoming 
equal to inflow. As t → 0, Q = 0. As I(t) terminates at t = D, the recession starts 
immediately. For an instantaneous inflow, which fills the reservoir of storage S in t = 0, 
Qp = S/k. The equation of outflow is simply 
 

 kte
k
StQ /)( −=   (5.27) 

 
For a unit inflow, S = 1 and I(t) = δ(t). Consequently Q(t) → u(t), the IUH is the same 
as given by equation 5.23.  
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u(t)

t
 

 
Fig.5.3 A linear reservoir: hydrograph due to a pulse of instantaneous input (left);  
hydrograph due to a pulse of duration D hours duration (right). 
 
• A linear channel is a fictitious channel in which the cross-sectional flow area at a 

section is proportional to the discharge, or  
 
 A = CQ (5.28) 
 
The proportionality constant, C, is known as the translation coefficient. The velocity at 
a section of the channel therefore remains constant, but may vary from section to 
section. An inflow hydrograph or excess rainfall hyetograph routed through a linear 
channel remains unchanged in shape and is merely translated in time, i.e., y(t) = x(t-T) 
and this is shown in figure 5.4. 
 
 

 
 

Figure 5.4. A linear channel which is just a translation  
without changing of the hydrograph. 

 
• Cascaded reservoirs: A conceptual model of a catchment having the same 

hydrologic response as a series of n linear reservoirs, each having the same storage 
coefficient, K, was formulated by Nash (1957). This model has proved to be a 
simple but effective method for deriving catchment IUHs. 

 As shown diagrammatically in Fig.5.5, a hydrograph-shaped outflow curve is 
developed and modified by successively routing the outflow from one reservoir as 
inflow to the next lower reservoir.  
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Fig.5.5 Cascaded reservoirs of the Nash model. Catchments having considerable impervious 
area, such as small urban catchments, commonly exhibit IUHs of the one or two reservoir shape 
due to the rapid response. Conversely, large flat agricultural catchments having little channel 
formation exhibit the considerable lag of a large number of reservoir routings. 
 
 Assuming instantaneous unit input into the initial reservoir, the outflow from this 
reservoir (previously developed as equation (5.23) may in turn be considered as input to 
the second reservoir. Using τ as the variable in the convolution integral, the outflow 
from the second reservoir may be obtained as  
 
Q I u t d K e K e

t K e

t K t

t K

2 0

2

1 1= −∫ = ∫

=

− − −

−

( ) ( ) ( / ) ( / )

( / )

/ ( )/

/

τ τ τ τ τ

      

dK τ

 (5.29) 

  
 For n repetitions of the above convolution, the generalised formula for the IUH of 
the conceptualized drainage basin may be derived as 
 

Ktn
n eKt

nK
tuQ /1)/(

)!1(
1)( −−
−

==  (5.30) 

 
in which the value n is not necessarily an integer. When n is not an integer, (n-1)! is 
replaced by Γ(n) in equation (5.30). Γ(n) can be interpolated from tables of the gamma 
function. This equation expresses the instantaneous unit hydrograph of the proposed 
model; mathematically, it is a gamma probability distribution function. The integral of 
the right side of the equation over t from zero to infinity is equal to 1. 
 The two parameters, K, the storage constant for each of the reservoirs and n, the 
number of reservoirs, may be simply evaluated by taking incremental moments of the 
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excess rainfall hyetograph (ERH) and the direct runoff hydrograph (DRH), and 
substituting in the formulas 
 
M M nD E1 1− = K

E

 (5.31) 
 
and 
M M n n K nKMD E2 2

2
11 2− = + +( )  (5.32) 

 
in which: 
 
MD1 = first moment of the DRH about the time origin divided by the total direct runoff 
MD2 = second moment of the DRH about the time origin divided by the total direct 
runoff 
ME1 = first moment of the ERH about the time origin divided by the total effective 
rainfall 
ME2 = second moment of the ERH about the time origin divided by the total effective 
rainfall 
 The value nK, as indicated by equation (5.31), represents the time lag between 
centroids of the rainfall and runoff curves. 
 
An example: Given the ERH and the DRH shown in Fig.5.6, determine n and K for the 
IUH. 
Solution: Determine the moments of the excess rainfall hyetograph and the direct runoff 
hydrograph. Each block in the ERH and DRH has duration 6 h = 6×3600 s = 21600 s. 
The rainfall has been converted to units of m3/s by multiplying by the watershed area to 
be dimensionally consistent with the runoff. The sum of the ordinates in the ERH and in 
the DRH is 700 m3/s, so the area under each graph = 700 × 6 =4200 (m3/s) h. 
 

∑ 



 ×=

area total
armmoment area lincrementa

1EM  

  

 [ ]211001520093003100
4200

6 ×+×+×+×=  

 
  h 57.11=
 
The second moment of area is calculated using the parallel axis theorem. 
 
ME2 = {∑[incremental area ×(moment arm)2] 
 
 + ∑[second moment about centroid of each increment]}/total area 

 {
4200

6= [100 ] 2222 211001520093003 ×+×+×+×

 36
12
1+ [100 + 300 + 200 + 100]} 

 
 =166.3 h2 
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By a similar calculation for the direct runoff hydrograph 
 
 MD1 = 28.25 h 
 MD2 = 882.8 h2 
 
Solve for nK using (5.31): 
 
  nK  = MD1 – ME1 
  = 28.25 – 11.57 
  = 16.68 
 
Solve for n and K using (5.32): 
 
  MD2 – ME2  = n(n+1)K2 – 2nKME1 
   = n2K2 + nK×K + 2nKME1 
  
Hence 
 
 882.8 – 166.3 = (16.68)2+16.68K+2×16.68×11.57 
 
and solving yields K = 3.14 h 
 
Thus 
 n  = 16.68/K 
  = 16.68/3.14 
  = 5.31 
These values of n and K 
can be substituted into 
Eq. (5.30) to determine 
the IUH of this 
watershed. By using the 
methods described in 
Process Hydrology 
Course, the 
corresponding unit 
hydrograph can be 
determined for a 
specific rainfall 
duration. Surface 
(direct) runoff 
hydrograph of any 
rainfall event can then 
be calculated. 

 

 
 
Fig.5.6 Excess rainfall hyetograph (ERH) and direct runoff 
hydrograph (DRH) for calculation of n and K in a linear 
reservoir model (from Chow et al., 1988). 
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5.4.2 Flow routing 
 
Depending upon the drainage pattern and the existence of dams or reservoirs, bridges, 
and the like, within the basin, the calculated direct runoff hydrograph, DRH of each 
sub-basin is to be routed during its journey to the catchment outlet. Here again, a 
decision has to be made about the routing method. Suppose that the Muskingum method 
is chosen for flow routing through channels, and Level-pool method is used for routing 
through reservoirs. Then the parameters of the Muskingum method (weighting factor, 
X, and lag time, K) are estimated first for each channel reach. Because this model is 
linear, it will be sufficient to obtain its IUH and then convolute it with the reach inflow 
hydrograph, which is usually the DRH, to compute the reach-outflow hydrograph. For 
reservoir flow routing, storage-elevation and outflow-elevation relationships must be 
established for each reservoir. These relationships are then combined to form a storage-
outflow graph, which is then used to perform flow routing through the reservoir. These 
and other reservoir flow routing and channel flow routing methods are discussed in the 
course of “Catchment hydrology”. 
 
5.4.3 Continuous streamflow simulation models  
 
Continuous streamflow simulation (CSS) has many applications, such as (1) extending 
streamflow records, (2) flow forecasting, (3) evaluating the effect of land-use practices 
on catchment response, (4) design urban drainage, highway culverts, reservoirs, and the 
like, water-quality modelling, (5) irrigation planning and management. An extensive 
listing of applications of the CSS models is given by James et al (1982). 
 
5.4.3.1 Comparison with event based models 
 
 As the name suggests, CSS models allow simulation of streamflow for long periods 
of time and thus more fully utilise capability of the digital computer. These models 
maintain a more or less continuous accounting of the water in storage in the catchment. 
Because of long periods of time, such hydrologic processes as evaporation and 
transpiration, infiltration, interception, depression storage, subsurface flow, and 
baseflow assume added significance. These processes are calculated separately in most 
conceptual models. In event-based streamflow simulation some of these processes are 
neglected, some are lumped, and some are considered with considerable approximation, 
for the period of simulation is usually as long as the duration of the DRH. The emphasis 
in CSS is on simulation of the entire land phase of the hydrologic cycle, whereas the 
emphasis in EBSS is on modelling the DRH or its peak characteristics. Thus, CSS 
models are models of the hydrologic cycle, whereas EBSS models are models of 
rainfall-runoff cycle. It is logical to say that CSS models are more general and 
encompass EBSS models as their special cases.  
 Naturally then, discussion of CSS models involves what has already been presented 
about EBSS models plus discussion of components not included in EBSS models, such 
as, evapotranspiration (chapter 4), snowmelt (chapter 3), subsurface runoff 
(groundwater runoff plus delayed interflow, to be discussed in the section), soil 
moisture storage (to be discussed in this section). 
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5.4.3.2 Simulation of subsurface runoff 
 
 In general, quantitative simulation of interflow and baseflow is much less advanced 
than is the simulation of either infiltration or movement of subsurface water within its 
own domain. Further, except in few physically-based models, almost no one has tried to 
include physically-based simulation of subsurface flow in general watershed models.  
 Fleming (1975) briefly discussed subsurface processes and how hydrologic 
models commonly handle them. The usual method is to consider subsurface water as 
resident in one or more storages or reservoirs. The following storage concepts might be 
applied: 
 

single linear reservoir  →  QKS '= SKQ ⋅= 

 single logarithmic reservoir  →  QKS ln'= SeKQ ⋅=

 single nonlinear reservoir  →  mQKS '= mSKQ /1⋅=
 
where S = storage; Q = reservoir outflow (discharge); K and K′ = storage constants; and 
m = exponent. 
 The storage is usually updated by a balance equation, which is usually a simple 
accounting of inflows and outflows, 
 
  (5.33) tOtISS tt ∆−∆+= −1
 
where 
  = total water in storage at time t tS
 I = a summation of such inflow rates as infiltration or inflowing seepage. 
 O = a summation of such outflow as evapotranspiration, outflowing seepage 
(baseflow, interflow, etc.) 
 Subsurface outflow rates are usually expressed as functions of the amount of 
subsurface water remaining in storage.  
 For example, in the HBV model, the interflow and groundwater flow are calculated 
by the following equations, respectively: 
 
 Q1 = K1 Suz (5.34) 
 Q2 = K2 Slz (5.35) 
 
where Q1, Q2 = Runoff components, K1 and K2 = recession coefficients (parameters), 
Suz and Suz are the storages at upper zone and lower zone, respectively. 
where 
 The Stanford Watershed model computes the interflow on a 15-min time interval 
according to equation: 
 
 { } SRGXIRCqi ⋅−= 96/1)(0.1   (5.36) 
 
where 
 qi = interflow volume entering the channel during a 15-min time interval 
 IRC = daily recession rates of interflow (1/96 converts to 15-min interval)  
 SRGX = volume of interflow storage. 
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Sgw

The ground water discharge for each 15-min time interval is computed by: 
 
 G KK KU Sg = − + ⋅( ( ) ( )/1 24 11 96  (5.37) 
 
where 
 KK24 = minimum observed daily ground water recession constant 
 KU = variable ground water recession parameter 
 S = ground water slope 
 Sgw = ground water storage 
 
 More equations used in other models will be discussed in Chapter 8 while 
discussing the particular models. 
 
5.4.3.3 Building a continuous streamflow simulation model  
 
 From the preceding discussion, it is clear that building a catchment model involves 
modelling the various components of the hydrologic cycle and maintaining a continuous 
water balance involving these components. Some of these components are interactive 
and involve iterative calculation. Larson et al. (1982) presented a good discussion on 
assembling these components into a catchment model. Fig.5.7 shows a general 
conceptual framework for building a catchment model. Many of the models, as 
summarized in Table 5.2, posses similar arrangements of components.  
 
5.5 DISTRIBUTED MODELING OF RUNOFF PROCESSES  
 
 A truly distributed hydrologic model would require the development and solution 
of a comprehensive set of partial differential hydrodynamic and porous media flow 
equations. The solution of such equations is highly boundary value dependent. A 
detailed description of the infinite variety of boundary conditions present in a natural 
watershed is not currently feasible. Therefore, those models that are currently classified 
as distributed parameter models only approximate this approach.  
 Models can be classified as distributed when they utilize data concerning the spatial 
distribution of controlling parameter variations in conjunction with computational 
algorithms to evaluate the influence of this distribution on simulated behaviour. Such 
models attempt to increase the accuracy of the simulation by preserving and utilizing 
information concerning the areal distribution of all spatial non-uniform processes 
characterized by the model. This increased accuracy usually comes at the expense of 
increased computational and data preparation effort. The ready availability on Internet 
and CD-ROM of data describing the land surface, especially digital elevation data for 
land surface terrain, has made it practical for the first time to delineate catchments in a 
few minutes in an automated way, and to compute the hydrologic properties of those 
catchments.  
 More details about distributed models will be discussed in chapter 8 using the SHE 
model as an example. 
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Fig.5.7 Components of a continuous catchment model (from Singh, 1988) 
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5.6 A REVIEW OF MODELS USED IN WATER RESOURCES ASSESSMENT  
 
5.6.1 Long-term water balance models 
 
A traditional way of water resources assessment was based on the long-term average 
water balance equation over a basin in a form of 
 

QAEP +=  (5.38) 
 
where P, AE and Q are the long-term average annual precipitation, evapotranspiration 
and streamflow, respectively. To solve equation (5.38) and get available water 
resources, Q, two terms, P and AE, must be known. Areal precipitation P is usually 
computed from point measurement. The key element in the long-term water balance of a 
large catchment or a region is the value of the actual long-term evapotranspiration (AE).  
 The first attempts at linking actual evapotranspiration to precipitation and potential 
evapotranspiration were made in the early years of last century on the basis of available 
measurements of catchment rainfall and runoff. The fundamental assumption in the 
formulae commonly suggested for the long-term water balance of catchments is that the 
ratio of actual to potential evapotranspiration may be expressed as a function of the ratio 
of precipitation to potential evapotranspiration. Well-known formulae of this type 
include Schreiber (1904); see also Dooge (1992),  
 















−−=

P
PE

PE
P

PE
AE exp1  (5.39) 

 
It was formulated on the basis of measured precipitation and runoff in a number of 
catchments in Europe. A few years later, Ol’dekop (1911) suggested 
 







=

PE
P

PE
AE tanh  (5.40) 

 
based on measurements in Russia.  
 
 Budyko and Zubenok (1961) examined the long-term water balance data for 1200 
regions throughout the U.S.S.R. and found that these data fell within the limits of the 
formulae proposed by Schreiber and Ol’dekop. Turc (1954) proposed a simpler formula 
based on measurements from African catchments, which later was somewhat modified 
by Pike (1964) on the basis of further measurements:  
 

( )21 PE
P
PE

P

PE
AE

+
=  (5.41) 

 
 The long-term water-balance method for estimating renewable water resources from 
meteorological data, though being very simple, has a number of essential disadvantages. 
First, in arid and semiarid regions, river runoff is very small by the absolute value and 
close to the error of determination of evaporation and precipitation. Second, it is 
impossible to estimate water resources for seasons and months. These data are crucial 
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for modern planning of water management. Third, this technique is inapplicable to 
estimate water resources of the countries and regions located in the basins of 
international rivers. In this case a larger volume of river runoff comes from outside 
rather than is formed on the territory at issue.  
 
5.6.2 Monthly water balance models 
 
Simple water balance models that simulate hydrographs of streamflow on the basis of 
available meteorological data and few physically relevant parameters, have been used 
by hydrologists and agricultural engineers in the assessment of regional water resources. 
Such models were first developed in the 1940s by Thornthwaite (1948) and have since 
been adopted, modified, and applied to a wide spectrum of hydrological problems (e.g. 
Alley, 1984; Schaake and Liu, 1989; Xu, 1999). A general review on monthly water 
balance models being used all over the world is made by Xu and Singh (1998).  
 The general structure of all water balance models is similar and building such a 
model involves writing equations that relate the rates of change of water properties 
within the control volume to flow of those properties across the control surface. For 
example, a simple soil water balance model for a control volume drawn around a block 
of topsoil is: 
 
S(t+1) = S(t) + P(t) – AE(t) – Q(t) (5.42) 
 
In which S(t) represents the amount of soil moisture stored at the time t, i.e. at the 
beginning of a month, S(t+1) the storage at the later time t+1, i.e. at the beginning of 
next month, and the flow across the control surface during the interval [t, t+1], i.e. 
during the month considered, consists of precipitation P(t), actual evapotranspiration, 
AE(t), and soil moisture surplus, Q(t), which supplies streamflow and groundwater 
recharge. Solving this equation requires dealing with time series of the four variables: S, 
P, AE, Q, and possibly of other variables related to them. The water balance models 
differ in how AE and Q are conceptually considered and mathematically represented. 
One of the limitations of monthly water balance models is its inability to adequately 
account for possible changes in individual storm runoff characteristics at the time steps 
they are applied.  
 
5.6.3 Conceptual lumped-parameter models 
 
Many conceptual lumped-parameter models have been developed since the 1960s with 
the primary objective of flood forecasting of river basins. They are since then also used 
for simulation purpose for hydrologic design and water resources assessment at 
different scales. A few representative models will be briefly mentioned herewith as 
examples and for details the cited references should be consulted.  
 The remarkable Stanford Watershed Model IV by Crawford and Linsley (1964) 
represents the first great success in combining all the main hydrological processes 
within a computer model. This model is widely known and has been applied to many 
catchments throughout the world. Several models have followed, developing the 
concept further. A frequently used model in this group is the Sacramento Soil Moisture 
Accounting Model (Burnash et al., 1973). This model has been used by many 
researchers as one of the standard tools in the United States in flood forecasting, water 
resources assessment and studies on the impact of climate change. The HBV model 
(Bergström, 1976) is widely used in the Nordic countries as a standard tool to forecast 
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stream floods, to assess surface water resources and to simulate climate change effects. 
Applications of the HBV models have been made in some 30 countries (Bergström, 
1992). In China and other Asian countries, the Xinanjiang model is used as a standard 
tool for a number of hydrologic simulation purposes. The model was developed in 1973 
and published in 1980 (Zhao et al., 1980; Zhao, 1992). It has also been tested in the 
United States, Germany, Belgium, France, and Sweden.  
 Many other models having a similar structure but with different process 
conceptualisations, have been used in many regions of the globe (See also Leaveley, 
1994). Among others, the Institute of Royal Meteorology Belgium model (Bultot and 
Dupriez, 1976) has been applied to basins in Belgium (Bultot et al., 1988) and 
Switzerland (Bultot et al., 1992). The HYDROLOG model (Porter and McMahon, 
1971) was applied to two basins in South Australia (Nathan et al., 1988). The 
Hydrologic Simulation Program - FORTRAN (HSPF) model (U.S.E.P.A., 1984) has 
been applied to a basin in Newfoundland, Canada (Ng and Marsalek, 1992). 
 Compared with monthly water balance models, conceptual lumped-parameter 
models enable a more detailed assessment of the magnitude and timing of process 
response to climate change. However, these capabilities are accompanied by an increase 
in the number of process parameters and in the amount and types of input data needed 
to run the simulations. 
 
5.6.4 Macroscale hydrologic models – a GIS supported modelling system 
 
According to Maidment (1996), a spatial hydrologic model is one which simulates the 
water flow and transport in a specified region of the earth using GIS data structures. 
There are at least four primary motivations for the development of such a system.  
 
• First, for a variety of operational and planning purposes, water resource managers 

responsible for large regions need to estimate the spatial variability of resources 
over large areas, at a spatial resolution finer than can be provided by observed data 
alone.  

• Second, hydrologists and water managers are interested in the effects of land-use 
and climate variability and change over a large geographic domain.  

• Third, there is an increasing need for using hydrologic models as a base to estimate 
point and non-point sources of pollution loading to streams.  

• Fourth, hydrologists and atmospheric modellers have perceived weaknesses in the 
representation of hydrological processes in regional and global atmospheric models. 

 
 Leading models in this category include the one developed by Vörösmarty et al. 
(1989), the VIC model (Wood et al., 1992) and the Macro-PDM (Arnell, 1999). These 
spatial hydrologic models, in the literature named macro-scale hydrologic models 
(MHM), are conceptual water balance accounting models, which can be applied 
repeatedly over a large geographic domain on a regular grid without the need for 
calibration at the catchment scale. This is because what is feasible on the catchment 
scale, where parameters may be derived from careful observations or be calibrated using 
observed data is not feasible over a large area. Compared with the conceptual lumped-
parameter models the macro-scale models have considerably fewer parameters. Their 
parameters can furthermore be estimated from spatial data sets, covering attributes as 
diverse as land cover, soil type and climate. Macro-scale hydrologic models are state-of-
the-art tools in assessing regional and continental scale water resources. 
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5.7 WHEN CAN LUMPED MODELS BE USED, AND WHEN MUST  
DISTRIBUTED MODELS BE USED? 

 
The distinction between lumped and distributed models is not only one of lesser or 
greater sophistication, but also intimately bound up with the purposes for which such 
models are to be used; answers to certain questions can only be attempted by using 
models with spatially distributed parameters. Blackie and Eeles (1985) give a good 
account of the uses of lumped models, under five headings: 
 
(i)  quality control and infilling of missing data; 
(ii)  extensions of historic flow records; 
(iii)  generation of synthetic data runs for civil engineering design work and other 

applications; 
(iv)  water resources assessment; 
(v)  water resources management including real-time forecasting. 
 
 In a paper which appeared in the same collection as Blackie and Eeles (1985), 
Beven (1985) quotes Beven and O'Connel (1982) as defining the role of distributed 
models in hydrology. The four areas offering the greatest potential are given as: 
 
(i)  forecasting the effects of land-use changes; 
(ii)  forecasting the effects of spatially variable inputs and outputs; 
(iii)  forecasting the movements of pollutants and sediments; 
(iv)  forecasting the hydrological response of ungauged catchments where no data are 

available for calibration of a lumped model. 
 
 Distributed-parameter models remain the most objective approach to answering 
questions such as: how the pattern of runoff will be changed in the area above 500 m in 
a catchment is planted to forest; or, if an accidental spillage of toxic chemical occurs at 
the bridge crossing this stream, how far the river channel network will be affected, how 
long its effects will last, and to what extent groundwater will be affected. Lumped-
parameter models have little to offer for such questions. 
 In recent years, however, there has been a stocktaking of what is being, and can be, 
achieved by the use of distributed models, even with the most powerful computer 
support. Grayson et al. (1992) expressed the doubts as follows, in a paper discussing 
future directions for physically-based, distributed-parameter models (that is, those in 
which parameters describing processes are allowed to vary spatially over the river 
basin): 
 

The attraction of these models is their potential to provide information about the 
flow characteristics at points within the catchments, but current representations in 
process-based models are often too crude to enable accurate, a priori application 
to predictive problems. The difficulties relate to both the perception of model 
capabilities and the fundamental assumptions and algorithms used in the models. 
In addition, the scale of measurement for many parameters is often not compatible 
with their use in hydrologic models. The most appropriate uses of process-based, 
distributed-parameter model are to assist in the analysis of data, to test hypotheses 
in conjunction with field studies, to improve our understanding of processes and 
their interactions and to identify areas of poor understanding in our process 
descriptions. The misperception that model complexity is positively correlated 
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with confidence in the results is exacerbated by the lack of full and frank 
discussion of a model's capability/limitations and reticence to publish poor 
results... Model development is often not carried out in conjunction with field 
programs designed to test complex models, so the link with reality is lost. 

 
5.8 A CALL FOR NEW GENERATION DISTRIBUTED MODELS 
 
5.8.1 The present situation of hydrological modelling 
 
As is shown in figure 5.8, successful analyses have been performed using physically-
based distributed models with fine resolution data and using conceptual hydrologic 
models with coarse-scale data. One of the challenging fields in the hydrological 
modelling exercises is the application of physically-based distributed models to the 
meso or regional scale. There are at least four motivations for developing new 
generation distributed models that can be used in meso or regional scale (in the 
literature they are also referring as macro-scale hydrological modeling and spatial 
hydrology modelling):  
• Water balance assessment of ungauged sites and large geographical regions, 
• Assessment of the effects of land-use and climate variability, 
• Estimating point and non-point sources of pollution loading to streams, and 
• Improve the representation of hydrological processes in regional and global 

atmospheric models. 
 
 The traditional physically-based distributed models cannot be directly applied to 
large scales with coarse resolutions because: (1) The physically-based partial 
differential equations used in most distributed models are defined based on the fine 
resolution data and may not valid in large scale with coarse resolution due to the spatial 
heterogeneity and nonlinear nature of soil-vegetation-atmosphere transfer processes. (2) 
Large amount of data used to estimate the parameters of those models may not be 
available in large geographical regions. (3) Calibration of the large number of 
parameters of such models might not be feasible in large geographical regions. 
 The new generation distributed models should, therefore, have the following key 
characteristics:  
• The model should be transferable from one geographical location to another. Model 

parameters should therefore be physically relevant.  
• The model should be applied either to every sub-basin in the spatial domain or on a 

regular grid. 
• Runoff must be routed from the point of generation (the fundamental unit) through 

the spatial domain along the river network. 
 
As to the first characteristics, it requires, on the one hand the equations and parameters 
should be physically relevant, and on the other hands, the models should not be too 
specific with respect to local conditions. It requires some kind of generality and 
averaging. The number of model parameters should be fewer than the traditional 
distributed models. Refer to the second characteristics; the question arises as to how 
these area elements can be defined. One option is to subdivide the catchment into so-
called "hydrological response units (HRUs)" which are similar with regard to selected 
characteristics and which are modelled separately. Another option is to subdivide the 
catchment into equally-spaced square grid elements. The problems related to the first 
subdivision method include which characteristics should be considered relevant to the 
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hydrological processes. If too many, the partitioning will be very detailed resulting in 
too much data need to be handled. If too few, we neglect the heterogeneity of the others. 
The problems related to the second subdivision method include that the physical 
characteristics within each grid cell that considered being homogeneous may be highly 
heterogeneous, reducing the size of grid cells reduces the heterogeneity, but increases 
computation time. Considering the coupling with atmospheric models (GCMs), the 
second sub-division method, i.e. regular grid cells are used. Finally, considering the 
large scale that the new generation distribution models are applied, flow routing both 
within the grid cells and between the cells constitute the important part of the models.  
The general structure of a new generation distribution model includes three parts: 
• Runoff generation at each grid cell, 
• Routing within the cells using Time-area method, 
• Routing between cells using river flow routing methods. 
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Fig.5.8 Conceptual matrix for hydrologic modelling and scale. Successful analyses have 
been performed using physically-based distributed models with fine resolution data and 
using conceptual hydrologic models with coarse-scale data. (Modified from Vörösmarty 
et al., 1993). 
 
5.8.2 State-of-the-art of the new generation models 
 
State-of-the-art new distributed model is an intergraded modeling system that combines 
SVAT model, groundwater model, snow model and hydrodynamic routing model and 
couples with GIS, DEM/DTM and GCMs. 
 
What is a GCM? 
GCM is a General Circulation Model of global atmospheric process. The outputs of 
such models include wind direction/speed, temperature, humidity, air pressure, 
precipitation, evaporation, streamflow, etc. The main inputs include CO2 and other 
gases. Typical spatial resolution of a GCM is 300×300 km. 
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With the original purpose of weather forecasting, the GCMs nowadays are used in 
predicting future climate scenarios (Loaiciga et al., 1996; Xu, 1999c).  
What is a RCM? 
RCM is a Regional scale atmospheric model, being similar to GCM in principle but 
with finer spatial resolution of 30×30 km. In the literature it is also referred as limited-
area atmospheric model and regional climate model. It is the result of dynamic 
downscaling of a GCM (e.g. Giorgi et al., 1990).  
What is a SVAT? 
SVAT is a Soil-Vegetation-Atmosphere-Transfer scheme/model with the aim of 
simulating at higher performance in terms of hydrological, biogeochemical and 
vegetation dynamic processes. The general structure of a SVAT is shown in figure 5.9. 
 

 
 

Figure 5.9 Generalized structure of a SVAT model. 
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There are two directions for further developments of SVATs: 
• To design more comprehensive ecohydrological SVAT models capable of 

describing the various complex interrelationships and interdependencies between the 
different process variables, parameters and influencing characteristics. 

• To derive simplified SVAT models, especially for use in larger scales, which are 
capable of simulating main processes based on a small set of key parameters, to be 
linked up to quantities used in the description of land-surface processes at the larger 
scales.  

 
5.8.3 Approaches in developing the new generation distributed models 
 
In principle, there are two approaches: 
• “Bottom-up” approach: identifies representative hydrological areas and applies 

highly-detailed physically-based hydrological models, then aggregates upwards to 
all catchments or fundamental units in a large area (e.g. the Institute of Hydrology 
macromodel, Arnell, 1993; Kite et al., 1994). 

• “Top-down” approach: treats each of the fundamental units as a single lumped 
catchment, and applies to each of them a simple conceptual hydrological model 
(Vörösmarty et al., 1989; Liston et al., 1994; Wood et al., 1992).  

 
In practice, there are also two approaches: 
 
• One is improving the energy balance processes within an existing hydrological 

model and enabling it to couple with an atmospheric model (e.g. Xu et al., 1994). 
• Another approach is the improvement of the hydrological processes in land surface 

models developed for atmospheric models (Kim et al, 2001). 
 
5.8.4 Approaches of coupling hydrologic models with atmospheric models (GCMs) 
 
As mentioned before, one of the important motivations of the development of the new 
generation distributed models is to improve the representation of hydrological processes 
in regional and global atmospheric models. Coupling the hydrological models with the 
GCMs is perhaps the best way of doing so.   
 The traditional hydrological models cannot be coupled directly with the GCMs 
because of a number of gaps between them (see Table 5.3).  The approaches that have 
been used to link GCM and hydrological models are presented in figure 5.10.  
 Global atmospheric GCMs have been used directly to simulate streamflow under 
present climate and to predict the impact of future climatic change in macroscale 
catchments. The analysis of GCM-predicted runoff showed that a simplistic 
representation of the hydrologic cycle within a global model of general atmospheric 
circulation leads to poor hydrologic predictive skill (e.g. Kuhl and Miller, 1992). The 
problem from a hydrologic point of view is that the most GCMs contain no lateral 
transfer of water within the land phase. 
 The results of literature survey showed that coupling the macroscale hydrological 
model with the GCM produces a better representation of the recorded flow regime than 
GCMs predictions of runoff for very large river basins. However, GCMs cannot ‘see’ 
smaller scale river basins because of their coarse grid resolution. Subgrid-scale 
hydrologic models and nesting schemes are needed to resolve the large-scale GCM 
predictions and predict smaller scale hydrologic phenomena (Hostetler and Giorgi, 
1993). 
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Table 5.3: Some existing gaps between GCMs’ ability and hydrology need 

______________________________________________________________________ 

 Better simulated Less-well simulated Not well simulated 
______________________________________________________________________

 
 Spatial scales Global Regional Local 
 Mismatch 300×300 km 30×30 km 0 – 50 km 
 
 Temporal scales Mean annual Mean monthly Mean daily 
 Mismatch & seasonal  
 
 Vertical scale 500 hPa 800 hPa Earth surface 
 Mismatch  
 
 Working variables Wind Cloudiness Evapotranspiration 
 Mismatch Temperature Precipitation Runoff 
   Air pressure Humidity Soil moisture 
______________________________________________________________________ 

GCMs’ ability declines  
Hydrological importance increases  

______________________________________________________________________ 

 
 To circumvent these problems, ‘downscaling’ techniques have subsequently 
emerged as a mean of relating large-scale atmospheric models to regional or even basin 
scale hydrological models (Xu, 1999b). Two broad classes of downscaling approaches 
exist: dynamic methods, involving the explicit solving of the process-based physical 
dynamics of the system (e.g. Giorgi and Mearns, 1991); and statistical methods that use 
identified system relationships derived from observed data (e.g. Wigley et al., 1990; Xu, 
1999c). 
 Due to the reason that the present GCMs and/or RCMs give different values of some 
climate variables and often do not provide a single reliable climate that could be 
advanced as a deterministic forecast for hydrological planning. Accordingly, methods of 
simple alteration of the present conditions are widely used by hydrologists (approach 5 
in figure 5.10). Various hypothetical climate change scenarios have been adopted and 
climate predictions for ‘double CO2’ conditions have become a standard in such 
sensitivity studies (e.g. Loaiciga et al., 1996). The general procedure for estimating the 
impacts of hypothetical climate change on hydrological behavior has the following 
stages: 
 

• Determine the parameters of a CHM model by calibration, 
• Perturb the historical time series of observed climatic data according to some 

climate change scenarios by:  
o estimating average annual changes (%) in precipitation and temperature 

using 
� GCM result or 
� historical measurements of change or 
� personal estimates 
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o adjusting historic time series by multiplying the historic precipitation by 
a percentage change and adding an absolute change to the historic 
temperature. 

• Simulate the hydrological characteristics of the catchment under the perturbed 
climate using the calibrated hydrological model. 

• Compare the model simulations of the current and possible future hydrological 
characteristics. 

 
In the recent studies, approaches 3 and 4 have received more efforts than others. 

This is because, statistical downscaling approaches linking GCMs to meteorologic and 
hydrologic models resolved at finer scales provide the possibility of bridging the gaps 
between the coarse-resolution GCMs and hydroclimatic modelling at the river-basin 
scale, while dynamic downscaling approach and nesting schemes provide the possibility 
of double-way coupling between atmospheric and hydrologic modeling. This double-
way coupling is important not only because it provides better simulations of regional 
hydrologic scenarios, but also because it provides a feed back to meteorological 
modelers which in its turn is important for improving the skills of GCMs and RCMs.  
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Figure 5.10 Schematic representation of the methods for assessing water resources 
under changing climate 
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CHAPTER 6 
THE METHODOLOGY OF MODEL EVALUATION 
_____________________________________________________________________________________ 
 
 
 
 
6.1 PHASES OF MODEL EVALUATION 
 
 In general several levels of evaluation are necessary before the model should be 
applied to estimate the output from a catchment (See Fig.6.1). These are: 
 
 (i) model selection – choice of working hypotheses 
 (ii) model calibration - estimation of the parameter values 
 (iii) model validation - testing the fitted model to verify its accuracy; and  
 (iv) estimation of its range of applicability 
 
 Conceptually, these evaluations are distinct and follow in sequence. In practice, the 
boundaries for many types of models are often blurred. Of the four types of evaluation, 
estimation of the parameter values generally receives most attention. Nevertheless, it is 
important to recognise that all four evaluations are of equal fundamental importance, 
and neglect of any one can lead to serious error. 
  

 
 

Fig. 6.1 Phases of model analysis 
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6.2 MODEL SELECTION 
 
6.2.1 Problems to be considered 
 
 Hydrological practice would be improved if models were objectively chosen on 
the basis of making the best use of the information available and following some 
systematic procedure of selection and verification (Dooge, 1984). The choice of the best 
model depends to a large extent on the problem. Generally speaking, items that should 
be considered in the selection process include (Haan et al. 1982):  

(a) The nature of the physical processes involved,  
(b) The use to be made of the model,  
(c) The quality of the data available and  
(d) The decisions that rest on the outcome of the model's use. 

 In examining the nature of the physical processes involved, one should ask and 
attempt to answer such questions as: what are the processes that interact to produce the 
phenomenon under investigation? Are they amenable to solution by stochastic 
processes? Are they independent processes? Are they independent of time? Are values 
of the parameters likely to change with time, i.e., are they seasonal? Is the process 
stationary? Must future man-induced changes to be represented? If so, how? 
 In studying the use to be made of the model, one needs to answer: How much 
information is needed concerning the process being modelled? Do the data need to be 
presented in short time intervals or is monthly or annual data sufficient? 
 The quality of hydrological data describing a phenomenon affects the problem of 
fitting useful information from complex processes that produced the phenomenon. 
Several models may be capable of describing the same process, and, to a great extent, 
selection of the one to be used depends on a comparison of sampled data and model 
output. 
 Finally, in model selection, decisions that may rest upon the outcome of the 
model’s use must be considered. To a great extent, these decisions will dictate the 
criteria that should be used to judge the quality of the model’s performance. As an 
example, suppose that streamflow sequences will be used to determine the size of a dam 
to be used for water supply. In this case, the model is selected and its parameters 
estimated in such a way as to minimise the costs of uncertainty inherent in decisions 
regarding the size of the dam. Alternatively, suppose aerial rainfall data were used to 
study the spatial variability of soil moisture in assessing crop conditions. In this case, 
the model and its parameters must be selected to minimize the costs inherent in either 
overirrigation or losses in productivity brought on by drought induced growth stress. 
These are rather simplistic examples, but they serve to show the needs of the decision-
maker, who may not know how to judge the quality of a model’s response. 
 
6.2.2 Criteria of selection  
 
 Thus far the problems to be considered in choosing a suitable model in general 
have been discussed. In most situations, however, absolute objective methods of 
choosing the best model for a particular problem have not yet been developed, so this 
choice remains a part of the art of hydrological modelling. Dawdy and Lichty (1968) 
suggested four criteria that can be used to choose between alternative models: 
 
 1). Accuracy of prediction 
 2). Simplicity of the model 
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 3). Consistency of parameter estimates 
 4). Sensitivity of results to changes in parameter values 
 
 Accuracy of prediction of system output is obviously very important; it is desired 
when all other factors being equal, the model with minimum error variance would be 
superior. Simplicity refers to the number of parameters that must be estimated and the 
ease with which the model can be explained to clients or public bodies. When all other 
factors are being equal, one should choose the simplest model. Consistency of 
parameter estimation is an important consideration in developing hydrological models 
using parameters estimated by optimization techniques. If the optimum values of the 
parameters are very sensitive to the particular period of the record used, or if they vary 
widely between similar catchments, the model will probably be unreliable. Finally, 
models should not be extremely sensitive to input variables that are difficult to measure. 
 
6.3 ISSUES IN MODEL CALIBRATION - PARAMETER ESTIMATION 
 
6.3.1. Introduction to model calibration 
 
 Whatever the model form is chosen, there are some unknown constants used to 
represent the physical process. These so called parameters of the model must be 
assigned fixed numerical values before the model may be used to predict the runoff, in 
other words one needs to estimate these parameters such that the best agreement 
between modelled and observed runoff can be obtained. The process by which the 
parameters are selected is called model “calibration”. The emphasis here is directed 
towards the calibration of “conceptual” hydrologic model of streamflow. 
 
6.3.1.1 Model parameters 
 
 Many hydrologic models are based on conceptual representations of the physical 
processes that govern the flow of water through and over the soil. Such models usually 
have two types of parameters: “physical” parameters and “process” parameters 
(Sorooshian and Gupta, 1995). 
 

(a) Physical parameters: physical parameters represent physically measurable 
properties of the watershed. Examples are: the area of the watershed, the fraction 
of the watershed area that is impervious, the surface area of the streams and 
open water bodies, surface slopes, and so on. 

(b) Process parameters: process parameters represent watershed properties that are 
not directly measurable. Examples include: the average or “effective” depth of 
surface soil moisture storage, the effective lateral interflow rate, the coefficient 
of nonlinearity controlling rate of percolation to the groundwater storage, and so 
on.  

 
6.3.1.2 Methods of parameter determination 
 
 There are two parts of parameter determination process: parameter specification 
and parameter estimation. 
 

(a) Parameter specification: Here, we use prior knowledge about the watershed 
properties and behaviour to specify initial estimates for the parameters of the 
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model. For “physical” parameters, estimates are made using measurements 
obtained from maps in the field. The parameters are then typically fixed at these 
measured values and not adjusted further unless determined to be in error. For 
“process” parameters, estimates of the range (minimum and maximum values) 
of possible values for these parameters are determined based on judgement and 
understanding of the hydrology of the watershed.  This uncertainty in the 
parameter estimates is then reduced by the process of parameter estimation 
described below. 

(b) Parameter estimation: Here, we use various techniques designed to reduce the 
uncertainty in the estimates of the process parameters. A typical approach is to 
first select an initial estimate for the parameters, somewhere inside the ranges 
previously specified. The parameter values are then adjusted to more closely 
match the model behaviour to that of the watershed. The process of adjustment 
can be done “manually” or using computer-based “automatic” methods, as 
discussed below. 

 
6.3.2 Manual calibration 
 
 To calibrate a model, we must select some aspect of watershed behaviour to which 
the model is to be matched: typically, we might select the streamflow hydrograph at one 
or more locations on the river. We then adjust the model parameters to get the simulated 
streamflow hydrograph to resemble the observed hydrograph for some historical data 
period. In manual calibration, we use a trial-and-error process of parameter adjustment; 
after each parameter adjustment is made, the simulated and observed hydrographs are 
visually compared to see if the match is improved. 
 With training and a good deal of experience, it is possible to obtain very good 
calibration using the manual approach. However, for the inexperienced and untrained 
person, manual calibration can be a rather frustrating and time-consuming exercise. This 
is mainly because the logic by which the parameters should be adjusted to improve the 
match is difficult to determine (due to the compensating effects which the model 
parameters usually have on the model output). Recent developments in computer 
graphics have made the process of manual calibration somewhat less tedious by 
enabling the effects of a parameter adjustment to be rapidly observed and compared to 
previous parameter trials (Brazil, 1988). 
 The main weakness of manual calibration is that the absence of generally accepted 
objective measures of comparison makes it difficult to know when the process should 
be terminated – i.e., whether the “best” possible fit has been obtained. Because manual 
calibration involves a great deal of subjective judgement, different persons may obtain 
very different parameter values for the same watershed. This makes it difficult to 
explicitly assign measures of confidence to the calibrated model and to its simulations 
and predictions. 
 
6.3.3 Automatic calibration 
 
6.3.3.1 Introduction 
 
 The development of computer-based methods for “automatic” calibration of 
watershed models has been motivated by: 
 

(a) the need to speed up the process of calibration; 
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(b) the fact that there are few model calibration experts available for each watershed 
model; and  

(c) the need to assign some measure of objectivity and confidence to model 
predictions. 

 
 Early attempts to develop automatic calibration methods were reported by Dawdy 
and O'Donnell (1965), Nash and Sutcliffe (1970), and Ibbitt (1970), among others. 
These researchers set the stage by bringing the vast body of research on statistical 
regression and model fitting techniques to bear on the calibration problem. 
 Since these beginnings, a great deal of progress has been made. However, it is 
important to clearly state that automatic calibration methods have not yet matured to the 
point that they can entirely replace manual methods. Although quick to provide 
“solutions”, automatic methods still require user expertise and are typically used in 
conjunction with a manual procedure.  
 Automatic optimisation procedures are mathematical search algorithms that seek 
to minimize differences between selected features of modelled and observed 
streamflows by systematic trial alterations in the values of the model parameters. These 
trial alterations are called "iterations". The objective function, i.e., the quantitative 
measure of the fit of modelled runoff to the observed runoff, is calculated after each 
parameter iteration. Successful iterations are those which cause a reduction in the value 
of the objective function (for direct search method). During the search only the 
parameter set associated with the current least objective function value is retained, 
which, at the end of a search, is regarded as the optimal parameter set. 
 To illustrate the concept, a one-parameter model and a two-parameter model are 
used as examples. A response surface is formed when the objective function is plotted 
against the parameters. Typical response surfaces for one and two parameter models are 
shown in Fig6.2 for illustrative purpose. This concept can be extended for a model with 
n parameters to a response surface in (n+1) dimensional space and obviously it cannot 
be represented visually. The optimal parameter set is defined by the lowest point on the 
surface in the case of minimization of the objective function. This lowest point is known 
as the global optimum and discovery of the optimum is known as convergence. There 
are may be other points on the surface which are lower than all others in their immediate 
vicinity, but not lower than the global optimum. Such points are known as local optima, 
as shown in Fig.6.2. 
 A typical automatic parameter estimation procedure consists of four major 
elements:  
 

(1) objective function,  
(2) optimisation algorithm (to be discussed in Chapter 7),  
(3) termination criteria, and  
(4) calibration data, as discussed below.  
 
In addition, processes of verification and sensitivity analysis (section 6.4) are 

necessary to establish confidence in the results. 
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Fig.6.2  Response surface. A: one parameter model; B: two-parameter model 
 
6.3.3.2a Objective functions 
 
 An objective function is an equation that is used to compute a numerical measure 
of the difference between the model-simulated output (typically the streamflow 
hydrograph) and the observed (measured) watershed output. The purpose of automatic 
model calibration is, therefore: “to find those values of the model parameters that 
optimise (minimize or maximize, as appropriate) the numerical value of the objective 
function”. 
 

(A) Least squares methods: Drawing from statistical regression and model-fitting 
theory, the most commonly used objective function has been some form of the 
Weighted Least Squares (WLS) function: 
 

[ ]2
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where: 
 
  = observed (measured) streamflow value at time t; obs

tq

 )  = model simulated streamflow value at time t; (θsim
tq

 θ = vector of model parameters; 
  = weight at time t; and  tw
 n = the number of data points to be matched. 
 
 The weights tw  indicate the importance to be given to fitting a particular 
hydrograph value. If the weights are all set equal to 1.0, the WLS function reduces to 
the familiar Simple Least Squares (SLS) function. Notice that the minimum value of the 
objective function F(θ) that can be attained is 0.0 (zero) if the model is able to perfectly 
reproduce the observed streamflow hydrograph. In general, however, a zero value is not 
attainable, and the purpose of automatic calibration is to find the value for θ which 
minimizes the value of the function. 
 For a proper evaluation of the model calibration, it is necessary to translate the 
overall calibration objective into more operational terms. The following objectives are 
usually considered:  
 

1) A good agreement between the average of simulated and observed catchment 
runoff volume (i.e. a good water balance). 

2) A good overall agreement of the shape of the hydrograph. 
3) A good agreement of the peak flows with respect to timing, rate and volume. 
4) A good agreement for low flows. 

 
 In this respect, it is important to note that, in general, trade-offs exist between the 
different objectives. For instance, one may find a set of parameters that provide a very 
good simulation of peak flows but a poor simulation of low flows, and vice versa. The 
following numerical performance statistics that are defined here measure the different 
calibration objectives stated above: 
 

1) Overall volume error 
 

 
[ ]
∑

∑

=

=
−

= N

t
t

N

t

sim
t

obs
tt

w

qqw
F

1

1
1

)(
)(

θ
θ  (6.2) 

 
2) Overall root mean square error (RMSE) 
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3) Average RMSE of peak flow events 
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4) Average RMSE of low flow events 
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In equations (6.2) – (6.5), N is the total number of time steps in the calibration 

period, Mp the number of peak flow events, Ml the number of low flow events, nj is the 
number of time steps in peak/low flow event no. j, θ is the set of model parameters to be 
calibrated, and wt is a weighting function. Peak flow events are defined as periods 
where the observed discharge is above a given threshold level. Similarly, low flow 
events are defined as periods where the observed discharge is below a given threshold 
level. 

Many other objective functions have been proposed or used in the literature; few 
of them are as follows: 
 
∑ − r

simtobst qq )( ,,  r > 2 (6.6) 
 
∑ − 2

,, )/1/1( simtobst qq   (6.7) 
 
(for use when emphasis must be placed upon low flows) 
 

2
,, ))log()(log( simtobst qq −∑   (6.8) 

 
2

,, )( simtobst qq −∑   (6.9) 
 

The coefficient of determination or the Nash-Sutcliffe coefficient (Nash and 
Sutcliffe, 1970) which is commonly adopted for evaluating the goodness-of-fit of the 
simulated hydrograph is a transformed and normalised measure of the overall RMSE 
(normalised with respect to the variance of the observed hydrograph) 
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where obsq  is the average observed discharge. In many applications, the weight, wt is set 

to 1. 
 Use of the SLS function (6.1) and its modified forms is equivalent to making the 
following assumptions concerning the probability distribution of the residuals εt = 

 (Clarke,sim
t

obs
t qq −  1973):  

 
(a) that the εt have zero mean and constant variance  (i.e., E(ε2

εσ t) = 0, 

E( = ); )2
tε 2

εσ
(b) that the εt are mutually uncorrelated ( 0) ( =−kttE εε  for all k ≠ 0).  
 
If it were known that either assumption (a) or (b), or both, were invalid, then eqn. 

(6.1) and it modified forms would not be the most sensible objective function; estimates 
of model parameters would, of course, still be obtained by minimising eqn.(6.1), but 
their interpretation would be fallacious.  

Clarke (1973) also stated that if approximate confidence intervals are to be given 
for the estimated model parameters, a further assumption must be made about the 
probability distribution of the residuals, that is: 

 
(c) that the εt are distributed normally. 
 
The above assumptions need to be tested. The success or otherwise of the fitted 

model as a description of the relation between rainfall and streamflow from the 
catchment is illustrated by the model residuals, which also give evidence of the validity 
or invalidity of the assumptions (such as (a), (b) and (c) above) made in the model 
formulation. The procedure for testing the above assumptions is exemplified in a 
recently study of Xu (2001). 
 

(B) Maximum likelihood methods: The method of maximum likelihood was 
developed by R.A. Fisher (1922). He reasoned that the best value of a parameter of 
probability distribution should be that value which maximizes the likelihood or joint 
probability of occurrence of the observed sample. Suppose that the sample space is 
divided into intervals of length dx and that a sample of independent and identically 
distributed observations x1, x2, …, xn is taken. The value of the probability density for X 
= xi is f(xi), and the probability that the random variable will occur in the interval 
including xi is f(x)dx. Since the observations are independent, their joint probability of 
occurrence is given as the product  

 
[ ] nn
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and since the interval size dx is fixed, maximizing the joint probability of the observed 
sample is equivalent to maximizing the likelihood function 
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Because many probability density functions are exponential, it is sometimes more 
convenient to work with the log-likelihood function 
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Since the logarithmic function is nonotonic, the values of the θ’s that maximize the 

logarithm of the likelihood function also maximize the likelihood function. 
 
Example: Find the maximum likelihood estimator for the parameter λ of the 

distribution  for X > 0. xexf λλ −=)(
Solution: For a given value xi, the exponential probability density is  
 

ix
i exf λλ −=)(  

 
so, from Eq.(6.12), the log-likelihood function is  
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The maximum value of ln  occurs when L ;0/)(ln =∂∂ λL  that is, when  
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1=λ  

i.e., the parameter λ is equal to one over the sample average. 
The method of maximum likelihood is the most theoretically correct method of 

fitting probability distributions to date in the sense that it produces the most efficient 
parameter estimates – those which estimate the population parameters with the least 
average error. But for many probability distributions, there is no analytical solution for 
all the parameters in terms of sample statistics; and the log-likelihood function must 
then be numerically maximized using an iterative procedure, which may be quite 
difficult.  
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Sorooshian and Dracup (1980) developed Maximum Likelihood based objective 
functions to properly account for the presence of either autocorrelation 
(nonindependence) or heteroscedasticity (changing variance) of the streamflow data 
errors. The most successful form of the Maximum Likelihood criteria has been one 
called HMLE (heteroscedastic Maximum Likelihood Estimator) that accounts for 
nonstationary variance in the streamflow measurement errors (Sorooshian, 1978, 1981; 
Sorooshian and Dracup, 1980; Sorooshian and Gupta, 1995). This estimator in 
simplified form is: 
 

1/1

11

2 ),( HMLEmin 

−

== 




























= ∏∑
nn

t
t

n

t
tt wnw ελθ  (6.13) 

 
where  
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and λ, the unknown transformation parameter which stabilizes the variance, is estimated 
by solving the implicit equation 
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where . Details of the derivation of the latter criterion and the two-stage 
optimisation procedure for its implementation are given by Sorooshian (1978, 1981). 

obstt qf ,=

 
6.3.3.2b Multiple objectives 
 
 Calibration based on a single performance measure is often inadequate to measure 
properly the simulation of all the important characteristics of the system that are 
reflected in the observations. This aspect is basically what causes certain scepticism in 
the hydrological profession for applying automatic calibration. Automatic routines that 
use a general multi-objective formulation of the calibration problem have been applied 
in rainfall-runoff modelling (Lindström, 1997; Liong et al., 1996, 1998; Gupta et al., 
1998; Yapo et al., 1998; Madsen, 2000).  
 When using multiple objectives, the calibration problem can be stated as follows: 
 

)},(),...,(),({ 21 θθθ pFFFMin  Θ∈θ  (6.16) 
 
The optimisation problem is said to be constrained in the sense that θ is restricted to the 
feasible parameter space Θ. The parameter space is usually defined as a hypercube by 
specifying lower and upper limits on each parameter. These limits are chosen according 
to physical and mathematical constraints in the model and/or from modelling 
experiences (prior knowledge). 
 The solution of eq.(6.16) will not, in general, be a single unique set of parameters 
but will consist of the so-called Pareto set of solutions (non-dominated solutions), 
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according to various trade-offs between the different objectives. Formally, any member 
jθ  of the Pareto set has the properties (Gupta et al., 1998): 

1) For all non-members jθ  there exists at least one member iθ  where 
)()( jkik FF θθ <  for all k = 1,2,…,p. 

2) It is not possible to find jθ  within the Pareto set such that )()( ikjk FF θθ <  for 
all k = 1,2,…p. 

 
Concerning (1), the parameter space Θ can be divided into “good” (Pareto optimal) and 
“bad” solutions, and concerning (2) none of the “good” solutions can be said to be 
“better” than any of the other “good” solutions. A member of the Pareto set will be 
better than any other member with respect to some of the objectives, but because of the 
trade-off between the different objectives it will not be better with respect to other 
objectives. 
 When solving the multi-objective calibration problem, the problem is usually 
transformed into a single-objective optimisation problem by defining a scalar that 
aggregates the various objective functions. One such aggregate measure is the Euclidean 
distance 
 

[ ] 2/122
22

2
11 ))(())(())(()( ppagg AFAFAFF ++++++= θθθθ L  (6.17) 

 
where  are transformation constants assigned to the different objectives, which allows 
the user to select relative priorities to certain objectives. The selection of transformation 
constants, however, is not straightforward, since the priority also depends on the value 
of  itself. For instance, if all  are set to zero, implicitly larger weights are given to 
objectives with larger F-values. For investigating the entire Pareto front, the aggregated 
distance measure can be adopted by performing several optimisation runs using 
different values of . 

iA

iF iA

iA
 In practical applications, the entire Pareto set may be too expensive to calculate, 
and one is only interested in part of the Pareto optimal solutions. In this case, it is 
proposed to use an aggregated objective function that puts equal weights on the 
different objectives. A balanced measure can be defined by assigning transformation 
constants in eq.(6.17) such that all  have about the same distance to the origin. 
When using a population-based (global search method) optimisation algorithm, an 
initial population within the feasible region is evaluated. The minimum values of 

 are estimated from this initial population, and each of the objective functions 
is transformed to having the same distance to the origin as the objective function with 
the largest minimum value of , i.e. 

)( ii AF +

)( min,ii FF

iF
 

pjFpjFMaxA iji ,...2,1 },...,2,1 ,{ min,,min, =−==  (6.18) 
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6.3.3.3 Optimisation algorithms (to be discussed in Chapter 7) 
 
6.3.3.4 Termination criteria 
 
 The optimisation strategies are all iterative procedures which search for the 
optimal parameter values by means of incremental improvement steps. Therefore, 
criteria are needed to determine when to stop the search. In principle, the solution exists 
at that point in the parameter space where the slope of the function response surface is 
zero and the function value is a minimum. In practice, it is virtually impossible to know 
when this point has been reached; hence, the criteria discussed below are more 
commonly used. 
 
6.3.3.4a Function convergence 
 
 One simple way to terminate the search is to stop when the algorithm is unable to 
appreciably improve the value of the function over one or more iterations. While this 
can indicate arrival at the location of an optimum, it could also mean only that a very 
flat region of the response surface has been reached. If precise detection of an optimum 
is not considered important, then function convergence can be a very useful stopping 
criterion. One typical implementation of this criterion is to stop when: 
 

fiii fff ε<=−− /)( 1   (6.19) 
 
where  are the function values at the (i-1)ii ff  and 1−

th and ith steps, respectively, and fε  
is the function convergence criterion (for example fε = 10-3). 
 
6.3.3.4b Parameter convergence 
 
 Another way to terminate the search is to stop when the algorithm is unable to 
appreciably change the parameter values and simultaneously improve the function value 
over one or more iterations. While this can indicate arrival at an optimum, it could also 
mean only that a region of high parameter interaction (long narrow valley) on the 
response surface has been reached. One typical implementation of this criterion is to 
stop when: 
 

θεθθθθ <=−−− ))()(/())()(( minmax1 jjjj ii    for each θ(j)   (6.20) 
 
where ii jj )( and )( 1 θθ −

θ

 are the values of the jth parameter at the (i-1)th and ith steps, 
respectively, and ε  is the parameter convergence criterion (for example θε = 10-3). 
 
6.3.3.4c Maximum iterations 
 
 If computer time is limited, and to ensure that the algorithm does not somehow 
enter an infinite loop, it is normal to terminate the search if a prespecified maximum 
number of iterations is exceeded, unless the parameter or function convergence criteria 
are met first. For random search methods, this is the normal way to terminate the search. 
It is not really possible to give guidelines on the value for this criterion, because it is 
both algorithm- and problem – dependent. The maximum iterations criterion is used as a 
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backup to prevent waste of computer time; if the algorithm does not terminate within a 
“reasonable” number of iterations, the computer code may need to be examined for 
“bugs”. 
 
6.3.3.4d Limitations 
 
 None of these termination criteria guaranty that the search arrival at the global 
optimum, except in the most trivial cases where the function is convex and well 
behaved. These criteria can be used in the same program, so the search will terminate 
when the first criterion is reached. 
 
6.3.3.5 Calibration data 
 
 It is generally agreed that proper choice of the calibration data can do much to 
reduce the difficulties encountered during calibration of a hydrologic model. However, 
little is known objectively about what constitutes “good” calibration data. The criteria 
issues here are how much data are necessary and sufficient for calibration and what kind 
of data will give the best results (most precisely specified parameter estimates). 
 
6.3.3.5a Quantity of data 
 
 It has been a common practice to use as much data as were available for the 
calibration, after setting aside part of the data set for verification (see section 6.4) of the 
results. However, studies by Sorooshian et al (1983) and Xu and Vandewiele (1994) 
indicated that the use of longer data sets than what is necessary served only to 
marginally improve the parameter estimates. In general, from a statistical point of view, 
the data set used should be at least of length 20 times the number of parameters to be 
estimated (for example, if there are 10 parameters, then at least 200 streamflow data 
points should be used for computing the function). This is of course an approximate rule 
of thumb. Gupta and Sorooshian (1985) showed that the standard error (j) of the 
estimate of parameter (j) decreases with sample size n approximately according to the 
formula: 
 

n
j 1)( ∝σ     (6.21) 

 
Because the marginal improvement in 1/n becomes small after 500 to 1000 data points, 
this suggests that two to three years of calibration data should be sufficient for a daily 
model with not more than 10 parameters, provided the data are of the right kind. This 
brings us to a discussion of data quality. 
 
6.3.3.5b Quality of data 
 
 From the viewpoint of model calibration, the quality of the data is dependent on 
the information (about the parameters) contained in the data and the noise (errors) in the 
data. Clearly, we wish the information content to be as large as possible and the noise to 
be as small as possible. 
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Informativeness 
 Qualitatively, an informative data set is one which contains or represents enough 
variability in watershed behaviour that the different modes of operation of the 
hydrologic processes are properly represented. For example, if the data selected are 
from a relatively dry year, certain runoff processes may not be activated, therefore, the 
model response will be insensitive to some of the model parameters that determine the 
partitioning of moisture between the various subsurface and overland flow components. 
However, if the data selected are from a year that is so wet that the watershed remains 
saturated most of the time, the model response may be insensitive to other subsurface 
flow controlling parameters. The best choice seems to be a data set that contains a lot of 
“hydrologic variability”. Thus, the more often the hydrologic regime switches from 
between dry, medium and wet modes, the more informative the data are likely to be. 
 
Data errors 
 The presence of measurement and logging errors in the data causes the quality to 
deteriorate, thereby resulting in less confidence in the parameter estimates. In selection 
data for model calibration, it is desirable that the data be carefully examined for various 
errors. 
 
6.4 MODEL VERIFICATION (TEST) 
 
6.4.1. Introduction 
 
 Testing or verification or validation of a model after the parameter values are 
estimated is the third level of model analysis. As no model is perfect, verification 
requires both subjective and objective judgements on many aspects to determine 
whether the results provide adequate information for answering the question facing the 
decision-makers, and all models can be expected to fail at least on some occasions. 
Faulty results may stem from a variety of causes, common problems may be: 
 (1) Errors in the data used in calibration. Both the data used as input to the model 
and the data used to check model output should be checked very carefully. Data with 
large errors should not be used for calibration. In addition, the data used to calibrate or 
to test are always only a sample of the possible population of values. Relative to values 
predicted by a model, the actual values contain a probabilistic or stochastic component 
as a result of physical factors that are not modelled at all. 
 (2) Use of a period of record that does not contain enough events of the physical 
processes needed to calibrate key parameters.  
 (3) Inadequate or miss-representation by the model of hydrological processes 
found in the catchment. Model results should be compared visually with the recorded 
data series to look for consistent variations. 
 
 Therefore the model test in some cases is also called "diagnostic checking". If the 
model is good enough, then we can pass on to application. If not, one begins the whole 
process all over again by changing one or more working hypotheses and checking the 
data used. In which direction the model has to be changed mostly appears during model 
test. 
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6.4.2 Methods of model validation 
 

Klemes (1986) proposed a model validation framework for testing the conceptual 
hydrologic models according the modelling tasks. Four major categories, corresponding 
modelling tasks and test methods are summarised in Table 6.1. 

Simple split-sample testing involves dividing the available measured time-series data 
for the test catchment into two sets, each of them should be used in turn for calibration 
and validation, and results from both arrangements compared. For differential split-
sample testing, the same approach is followed, but the data are divided according to 
rainfall rate or some other variable in an attempt to show that the model has general 
validity in that it can predict the values of the output variables for conditions different 
from those for which it was calibrated. For example, if the model is intended to simulate 
streamflow for a wet climate scenario then it should be calibrated on a dry set of the 
historic record and validated on a wet set. If it is intended to simulate flows for a dry 
climate scenario, the opposite should be done. In general, the model should demonstrate 
its ability to perform under the transition required: from drier to wetter conditions or the 
opposite. Proxy-catchment tests use data for two catchments. These tests can be used to 
show the model has even greater general validity as they involve calibrating the model 
against data for one catchment and then running a validation test using data for the other 
catchment. For differential proxy-catchment testing, the available measured time-series 
data for each catchment are divided into two sets according to rainfall rate or some other 
variable. The model is then calibrated against one of the sets (e.g. the dry period data for 
the first catchment) and a validation test run using a contrasting set (e.g. the wet period 
data for the second catchment). Calibration is required in all the four validation methods 
discussed above. 
 Beven et al. (1984) and Loague (1990) used another type of test in which the 
model is not calibrated, and predictions are simply compared against measurements. 
Recently, Ewen and Parkin (1996) proposed a method, namely a ‘blind’ approach. The 
central feature of this method is that it involves making predictions for a test catchment 
as if it were a hypothetical catchment. The modeller is, therefore, not allowed sight of 
the output data for the test catchment (i.e. the method involved ‘blind’ testing), and, as a 
result, cannot calibrate the model for the test catchment. 
 
Table 6.1 Hierarchical scheme for operational testing of hydrologic simulation models 
______________________________________________________________________ 
 Stationary conditions Transient conditions 

 
___________________________

 
___________________________________

 
 Basin A Basin B Basin A Basin B 
______________________________________________________________________ 
Basin A Split-sample test Proxy-basin test Differential split-sample Proxy-basin differential 
   test split-sample test 
 
Basin B Proxy-basin test Split-sample test Proxy-basin differential Differential split-sample 
   split-sample test test 
_____________________________________________________________________  
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6.4.3. Items to be tested in model validation 
 
 The models may be tested on the following aspects. 
 
Parameter analysis: 
The evaluation of the parameter values during the optimization. The stabilization of the 
parameter values can be studied on the graphs of the parameter values versus number of 
iterations. An example of such graphs is given in Fig.6.3  
 

 
 

Fig.6.3  Stabilization of the parameter values during iteration process 
 
Detailed analysis of the variance-covariance matrix. The correlation matrix of the 
parameters has to be checked. If the correlation coefficient between two parameters is 
very near to +1 or -1, this means that perhaps a model can be found with a smaller 
number of parameters and with the same explanatory power, or that perhaps the 
parameters have to be built into the model in a different way, so that their explanatory 
effects are more dissociated, and optimization is easier.  
 For answering the question whether all parameters are really necessary, one can 
test the hypotheses that parameters a1, a2, ... are significantly different from zero. This 
can be done by checking whether the zero value belongs to the 95% confidence interval 
(Xu, 2001). 
  
Residuals analysis: 
 The basic issue in model testing is to determine if the hydrologic estimates 
(residual error) achieved by the calibration are acceptable. Residual analysis is checking 
whether the residuals ut behave as is required by the model hypotheses, especially 
whether they are independent, homoscedastic and normally distributed with zero 
expectation. 
 
Check on independence 
 The hypothesis that the residuals are mutually uncorrelated can be checked by 
computing the autocorrelations of the residuals, kρ , with time lag k and the 
corresponding confidence interval. In general, the autocorrelations kρ  with time lag k is  
 

6-17 



Ch6. The methodology of model evaluation 

[ ] 2/))(( σµµρ −−= +kttk xxE   (6.22) 
 
where µ and σ2 are the mean and variance of the residuals, respectively. 
An estimate of kρ  is  
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when n is large and k is small, n/(n-k) → 1, a simpler estimator of autocorrelation 
coefficient is  
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The confidence interval for the autocorrelation coefficient of an independent series is 
given by the limits (Haan, 1977) 
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If the calculated  falls outside these confidence limits, the hypothesis that kr kρ  is zero 
(Ho: kρ = 0 versus Ha: kρ  ≠ 0) is rejected. Examples of the tests are shown in Figure 
6.4. 
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Figure 6.4. Autocorrelation of residuals. (Left) Correlated case. (Right) Uncorrelated 
case. 
 
Check on trend and homoscedasticity 
 The residual’s homoscedasticity can be checked using both the graphic method 
and the Kruskal-Wallis test method. In the graphic method, the general behaviour of the 
residuals is judged by graphs of the residuals versus important variables such as time 
itself, the input variables precipitation pt and evaporation et, and computed runoff dt.  
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 The residuals versus time diagram is used for checking the absence of trend and 
also homoscedasticity. It could also reflect what kinds of violations are involved in the 
residual time series. The hypotheses of homoscedasticity and uncorrelatedness then 
result in a diagram such as in Fig.6.5(a). The other diagrams in Fig6.5 show violations 
of these hypotheses. Combinations of these violations are possible, and other 
possibilities exist. 
 The residual versus expected response diagram. Conditional expectations of the 
residuals have to be zero for all dt, and conditional variances have to be equal. This 
appears not to be the case in Fig 6.6 where the expected residual appears to increase 
with dt and the variance decreases. Both aspects lead to serious doubt on the validity of 
the model-hypotheses.  
 The residual versus observed factor diagrams. Considering all residuals at the 
same time leads to a marginal diagram. When only residuals are considered where all or 
part of the other observed factors are held constant approximately, a conditional 
diagram is obtained. Again violations are at the origin of reformulating the model. 
Fig6.7 and Fig6.8 are examples of marginal scatter-grams, which appear to satisfy 
model-hypotheses. 

The Kruskal-Wallis test, or H test enables us to test the null hypothesis that k 
independent random samples come from identical populations. It is a nonparametric 
test. The method assumes that the variable has a continuous distribution, but nothing is 
said about the form of the population distribution or distributions from which the 
samples were drawn. The test is based on the statistic 
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 In the test, all observations are ranked jointly, and Ri is the sum of the ranks 
occupied by the ni observations of the ith sample, and . When 

for all i and the null hypothesis is true, the sampling distribution of the H statistic 
is well approximated by the chi-square distribution with k-1 degrees of freedom. The 
null hypothesis of homoscedasticity will be rejected for a given significance level, α, if 
computed H is bigger than . Detailed examples of the test can be found in Xu 
(2001). 
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Check on the normality 
 The hypothesis that residuals are distributed normally is needed if the estimated 
confidence regions for the parameters are required. The normality can be tested using 
different methods. The Kolmogorov-Smirnov test method is discussed here. The test has 
several advantages. It is easy to use and the procedure is graphic; a large number of 
samples can be tested on the same plot; the test is nonparametric and is not subject to 
the very small sample limitation. The test is conducted as follows:  

1) Let F(x) be the completely specified theoretical cumulative distribution function 
under the null hypothesis. 

2) Let F  be the sample cumulative density function based on n observations. 

For any observed x, = k/n where k is the number of observations less than 
or equal to x. 

)(xe

)(xF e

3) Determine the maximum deviation, D, defined by 
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)()(max xFxFD e−=  (6.26) 

 
4) If, for the chosen significance level, the observed value of D is greater than or 

equal to the critical tabulated value of the Kolmogorov-Smirnov statistic, the 
hypothesis is rejected. The deviation between F(x) and is graphically 
shown in Fig.6.9.  

)(xF e

  

 
 
Fig.6.5 Residuals versus time diagrams. A: shows the residuals are homoscedastic 

and uncorrelated; B: shows the residuals are autocorrelated; C: shows a 
periodic component in the residuals. 
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Fig.6.5 Residuals versus time diagram. D: shows the variance is time-dependent 
(heteroscedasticity); E and F: show the mean is time-dependent (trend) 
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Fig.6.6 Residual versus expected response diagram. (The expected residual appears 

to increase with dt and the variance decreases) 
 

 
 

Fig.6.7  Residuals versus precipitation. 
 

 
 

Fig.6.8  Residuals versus evaporation. 
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Fig.6.9  Deviation between experimental Fe(x) and the theoretical F(x) distribution  
function values 
 
6.4.4 Comparing modelled and observed runoff time series 
 
 Since the main aim of a rainfall-runoff model is to simulate the runoff series on 
the basis of rainfall record, perhaps the first and most striking comparison that can be 
made on the performance of a model can be seen from the plot of the observed and 
computed runoff series. 
 
6.5 REGIONAL PARAMETERIZATION OF HYDROLOGICAL MODELS 
 
6.5.1 The aims and principles of regionalization 
 
The use of hydrological models in ungauged sites and in large geographical regions 
becomes a more and more important issue in hydrological study. The aim of 
regionalization study is to estimate parameter values of the hydrological models for 
any/every grid cell, sub-catchment or large geographic region without a need of 
calibration or “tune” the model to get the best fit. Regionalization methods aim to relate 
the model parameters to catchment characteristics and/or geographical location. 

To be successful in the regionalisation study, the following principle is important:  
• The parameter classes (soil types, vegetation types, climatological zones, 

geological layers, etc.) should be selected so that it becomes easy, in an 
objective way, to associate parameter values.  

• It should explicitly be evaluated which parameters can be assessed from field 
data alone and which need some kind of calibration.  

• The number of real calibration parameters should be kept low, both from 
practical and methodological points of view. 

 
6.5.2 The methods of regional parameterization 
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A number of regionalization methods have been reported in the hydrological literature, 
which might be classified into two categories: point estimation methods and interval 
estimation methods. 
  
6.5.2.1 Point estimation methods  
 
The point estimation methods intend to provide unique value of each parameter for the 
ungauged catchment in case of lumped models or for each regular grid cell in case of 
distributed models. The point estimation methods usually do not take into consideration 
of parameter uncertainty.  
 It is noted here that in order to have better chance of success in the regionalization 
study it is important to list some basic requirements on the model, the model parameters 
and the catchments.  
• First, to have meaningful statistical regression analysis, the number of gauged 

catchments used to optimized model parameters and establish regression equations 
should be more than 20, in any case not less than 10.  

• Second, the number of parameters that needs to be regionalized should be kept to 
minima, i.e. the principle of parsimony is important in the analysis.  

• Third, the automatic optimization technique should be used in order to get unique 
and repeatable value for each parameter in each gauged catchment. With manual 
calibration, every person who calibrates the model will get different values for the 
same parameter on the same catchment and one never knows which value should be 
used in the regression analysis.  

• Four, most regionalisation methods assume that model parameters are independent 
and identically distributed for all catchments. Methods of statistical analysis of 
parameter values, as discussed in section 6.4.3 and more details in Xu (2001) should 
be performed in order to test the hypothesis, i.e., whether they are uncorrelated, 
identically distributed and statistically significant. 

 
The proxy basin method 
The proxy basin method for testing the geographic transferability of the hydrological 
models is used for any model that is assumed to be geographically transferable within a 
region hydrologically and climatically homogeneous. If the goal is to simulate 
streamflow for an ungauged basin C, then the model to be used should be calibrated on 
basin A and validated on basin B and vice versa. Only if both proxy-basin tests are 
acceptable should one consider the model as geographically transferable (Klemes, 
1986). The proxy basin test has been the most common regionalization method. The 
main problems of the method include: (1) it is not possible to have any idea on the error 
of estimation on both parameter values and streamflow simulations, (2) it is not easy if 
not impossible to determine the degree of similarity between the ungauged catchment 
and the reference catchments, (3) last but not least, if there do not exist gauged 
catchments at the region the method is not useful. Examples of such tests include Xu 
(1999), Motovilov et al., (1999) and Refsgaard (1997). 
 

Spatial interpolation methods 
Spatial interpolation of model parameters is also a common method for hydrological 
regionalization. In order to get regional parameter values, the model parameters are 
firstly calibrated on all gauged catchments at the region, parameter values for the 
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ungauged catchments are interpolated by considering the soil type, vegetation 
distribution map, etc. using one of the following two techniques: 
 
1) Direct interpolation: with the help of GIS and other computer tools, parameter 

values for the interested site or the whole region are interpolated. Examples of such 
a study include: Vandewiele and Elias (1995) interpolated parameters of a monthly 
water balance model to ungauged catchments using parameter values from 
neighbouring catchments, 75 in all, in Belgium. Bergström (1990) used the 
technique to make the map of parameter values of the HBV model for Sweden. 
Abdulla and Lettenmaier (1997) compared the interpolation technique with the 
multiple regression method. Guo (2001) used the interpolation technique to get the 
parameter values for the grid cells in ungauged sub-catchments and applied the 
macro-scale water balance model in a number of big catchments in China. 

2) Geostatistical method – Kriging: Vandewiele and Elias (1995) compared the kriging 
method with the interpolation method in their geographical regionalization study 
and concluded that kriging method was better.  

 

Multiple regression methods 
Many attempts have been tried in the hydrological regionalization study to relate 
optimized parameter values (dependent variables) to catchment characteristics 
(independent variables) using the multiple regression technique (e.g., Jaboe and Haan, 
1974; Magette et al., 1976; Andersen et al., 1983; Abdulla and Lettenmaier, 1997; Xu, 
1999). Different forms of regression equations have been tried, among others, the 
common equations include: 

• The linear method 
Y = β1X1+β2X2+... 

• The square root method 1 
√Y = β1√X1+β2√X2+... 

• The square root method 2 
Y = β1√X1+β2√X2+... 

• The logarithmic method 1 
Log(Y) = βo+β1log(X1)+β2log (X2)+... 

• The logarithmic method 2 
Y = βo+β1log(X1)+β2log (X2)+... 

 
Where Y is a dependent variable (model parameters in our case), X1, X2, ... are 
independent variables (catchment attributes), and β1, β2, ... are unknown regression 
parameters. 

The dependent and independent variables might be transformed to account for 
nonlinear relationships as showed in some of the above equations. A multiple regression 
analysis is performed for each model parameter and which catchment characteristics to 
include for each parameter is an essential point. Sefton and Howarth (1998) presented a 
guide of how to carry out the analysis including exploratory correlation analysis, 
principal component analysis, stepwise regression and multiple regression.  
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 An alternative to the univariate multiple regression is the multivariate regression 
(see Tung et al., 1997 and Engeland, 2002), which is not discussed in details in this 
section.  
 
Regional calibration method 
The above discussed regionalisation methods require at-site calibrations on each gauged 
site. This traditional at-site approach treats each site independently in an effort to obtain 
the best possible calibration at each site. The regional calibration approach, as described 
in Fernandez et al. (2000) attempts to get the best possible calibration at each site while 
simultaneously obtaining the best possible regional relationships between model 
parameters and basin characteristics. In this case the objective is to: 
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where there are m = number of sites in the region,  represents the coefficient of 
determination for site i which measures the goodness of fit of the logarithms of the 
modelled flows at site i and , , , … represent the coefficient of determination 
associated with each of the regression models for the model parameters a, b, c, …, on 
basin characteristics, respectively. For example, is the coefficient of determination 
for parameter a regressed on basin characteristics. The idea of the objective function in 
equation (6.27) is to maximize the average goodness of fit of the model across all sites 
as well as to maximize the average goodness of fit of the regression equations that relate 
model parameters to basin characteristics. The results of the study showed that using the 
regional calibration approach improved the regional relationships between model 
parameters and basin characteristics significantly as compared with the traditional two-
step regionalization approach, i.e. the multiple regression approach. 
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6.5.2.2 Interval estimation methods  
 
Unlike in the point estimation methods, the interval estimation method intends to 
provide not a unique value for each parameter, they rather provide for each parameter 
with the most possible (maximum likelihood) value together with a probability 
distribution of the parameter values on the catchments. In other words, the methods 
provide a description of parameter uncertainty (Engeland, 2002).  
  
The Bayesian method 
The methodology, procedure and results of application are described in details in 
Engeland et al. (2001).  
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CHAPTER 7 
SOME TOPICS IN OPTIMIZATION 
_____________________________________________________________________________ 
 
 
 
 
7.1 GENERALITIES  
 
 In operational research one mostly reduces a decision problem to the choice of the 
values of real variables, the so-called decision variables. Therefore for all possible 
values one assesses the cost or the expected cost, or the profit or another value-criterion. 
One thus constructs a so-called objective function or criterion function or economic 
function. As a consequence the resulting problem is the optimization of a real function 
of a number of real variables, of which all real values are not necessarily admissible for 
all kinds of reasons. One thus imposes constraints in advance. 
 Also in statistics optimization problems appear when unknown model parameters 
have to be estimated. For example for finding the maximum likelihood estimates one 
has to maximize the likelihood function with respect to unknown parameters, of which 
the set of admissible values is given in advance (for example one knows that an 
unknown standard deviation is positive). Another example is the minimization of the 
sum of squared deviations (the so-called least squares method). 
 Also in other branches optimization problems appear. 
 These are examples of so-called mathematical programs. 
 A mathematical program is a problem of optimization of a real function f(X), the 
objective/criterion function, with respect to a number of real variables x1, x2, ..., xn, put 
together in the vector  
 
 X = (x1, x2, ..., xn) 
 
and where constraints on X are imposed in advance. These constraints imply that the 
vector X only takes values in a subset , the set of admissible values of X. In 
short a mathematical program has the form  

χ  of Rn

 
optimum f(X) 

X ∈ χ  
 
 An optimization can be a maximization or a minimization. If we have a method for 
maximizing f(X), then we have at the same time a method for minimizing it by 
maximizing - f(X). 
 In this context we are talking about global optimization, as opposed to the search 
for local optima, which are only in a neighbourhood, see Fig.7.1. 
In some cases we have that 
 , χ = Rn

and then the problem is said to be a problem of unconstrained optimization, but mostly 
χ  is a proper subset of Rn , and then it is said to be a problem of constrained 
optimization. 
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Fig.7.1. Global and local minima of a function f(x) of a scalar variable x 
 
 Nevertheless the case of unconstrained optimization is very important, either 
because the constraints are inactive practically or because the algorithms for constrained 
optimization often are reduced to a series of unconstrained optimizations. 
 The algorithm strongly depends on the form of f(X) and of χ . 
 
7.2 OPTIMIZATION ALGORITHMS 
 
7.2.1 Local search methods 
 
 Many different optimisation algorithms and computer codes are available, which 
can be categorized as “local search” methods and “global search” methods. Local search 
methods are designed to efficiently find the minimum of unimodal functions – functions 
for which any strategy that seeks to continuously proceed downhill (a direction of 
improving function value) must eventually arrive at the location of the function 
minimum, irrespective of where in the parameter space the search procedure is started. 
To understand this process, it is helpful to imagine that you are a blind person standing 
on the side of a mountain and must find a way from your present location to the lowest 
point of the valley. You would have to: 
 

a) select a direction in which to move; 
b) move some distance in that direction; and then 
c) repeat the procedure over and over again until you are satisfied that no further 

improvement can be achieved. 
 
Therefore, the procedure involves three main decisions:  

(a) which direction to move,  
(b) how far to move in that direction, and  
(c) how to decide that no further improvement is possible.  

 
Different local search strategies differ in the methods by which these decisions are 
made. Based on such differences, local search methods can be further classified as 
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“direct search” methods and “gradient” methods. We discuss these methods in more 
details below. 
 
7.2.1.1 Direct search methods 
 
 A direct search optimisation strategy uses only (objective) function value 
information in the decision process described above. A typical method is the following. 
Starting at the initial point, the strategy selects some direction and step size and 
evaluates the function at the new point. It may do this for more than one new point. 
Then, based on the differences in function values between the initial and new point(s), a 
prediction is made of which is the best direction to move to improve the function and 
how large a step should be taken in that direction. Each direct search strategy has its 
own “idea” about how this should be done in order to quickly solve the problem. A step 
is taken in the trial direction, and if the new point has a lower function value than the 
previous point, it replaces the old one, and the procedure is repeated. If the new point 
turns out to be worse than the previous point, the step size is reduced and another try is 
made at a new location. The search stops when the strategy is unable to find a direction 
in which improvement is possible. In this section we discuss a number of simple 
methods, most of which are used as a base for more complicated methods, which try to 
compensate the disadvantages. 
 
7.2.1.1a Linear search algorithms 
 
 With many search algorithms the following problem arises: starting in a point X0 
and with a given straight line through this point, find a new point on this line with 
smaller f(X) (supposing we have a minimization problem). A method solving this 
problem is called a linear search algorithm. 
 Let D be a set of direction numbers of the given line through X0; the vector D thus 
has n components: all points X on the line then have the form  
 
 X X D= +0 λ  
 
where λ  is a real number. We are looking for a value of λ  such that  
 
 f X D f X( ) (0 0+ < )λ  
 
we even can try to find a value of λ  such that f X D( 0 + )λ  is as small as possible. This 
is a problem of so-called "linear minimization". 
 There are many linear search algorithms. We discuss one of them, the "doubling 
and halving algorithm" for illustrating purposes; it is not necessarily an efficient 
algorithm. For n = 2 it is illustrated in Figs.7.2 to 7.4. 
 Suppose it is known in which of both directions starting from X0 the criterion 
function decreases; e.g. for λ > 0. Starting with a value λ λ0 0( )> of , we compare  
 
f X D( )0 0 and  f ( )X0 + λ  

 
If 
  
 f ( X0 + <λ 0 0D f X) ( ) 
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we try the point  X0 + 2 0λ D  
 
If 
 
  f ( X f ( X0 0+ < +2 0 0λ λD D) ) 
 

we redouble the value of λ  and compare f (X and  f (X0 0+ +2 40 0λ λD D) ). We 
continue redoubling until the new function value is greater than the preceding. The new 
(better) point is the penultimate value of λ . If on the contrary (9) is not true: 
 
  f (X0 + >λ 0 0D f X) ( )  
 

then we try  X0 + λ 0
2

D  

If 

  f (X0 + ≥λ 0
02

D f X) ( ), 
 
we halve λ  again, until the new function value is smaller than f(X0). The new (better) 
point then is the last value of λ . 
 This algorithm computes function values excluding computations of the 
derivatives. This algorithm can be ameliorated easily by quadratic or higher order 
interpolations. We do not insist further on this point. 
 

 
 
Fig.7.2. The linear minimization problem for n=2. The curves are contours of f(X). 
 

 
 

Fig.7.3. The algorithm of the text with f X D f X( ) (0 0+ < )λ  
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Fig.7.4. The algorithm of the text with f (X0 + >λ 0 0D f X) ( )  

 
 
7.2.1.1b Optimization along the directions of the axes 
 
 We now return to our original optimization problem. Starting in a first point X0 we 
apply a linear search algorithm along the straight line through X0 and parallel to the x1-
axis. In this way we find a second point X1, where we apply a linear search algorithm 
along the straight line through X1 and parallel to the x2-axis, etc. This is illustrated in 
Fig.7.5 for n = 2. 
 For most functions f(X) an infinite number of steps are necessary for reaching the 
optimum. Therefore we have to use a rule for stopping the search; e.g. the search is 
stopped when the difference of two consecutive function values is smaller than a given 
quantity. 
 This method, like all methods discussed hereafter, leads to a local minimum, which 
is not necessarily the required global minimum. Therefore the choice of the initial point 
X0 is important; it has to be chosen in the neighbourhood of the global minimum. This 
can be done taking account of the interpretation of the variables. It is recommended to 
repeat the optimization procedure for several initial points X0; see Fig.7.6. Certainty is 
seldom achieved. 
 When a suitable linear search algorithm is used, the whole algorithm needs not to 
compute derivatives of f(X). 
 This algorithm makes very slow progress in narrow valleys of the f-hypersurface. 
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Fig.7.5. Minimization along the directions of the axes. The curves are contours of f(X). 

 

 
 

Fig.7.6. Criterion function with several minima. 
 
 
7.2.1.1c An algorithm with "conjugated" directions 
 
 Methods based on the principle of conjugated directions try to bypass low progress 
in narrow valleys as mentioned in sections 7.2.1.1a and 7.2.1.1b.  
 The procedure of the algorithm with conjugated directions is illustrated 
schematically in Fig. 7.7 and with contours in Fig.7.8.  
 
 For n = 2 the simplest such method goes as follows.  

• Along two neighbouring parallel lines with arbitrary direction D we search for 
the optima .  X1

1 and X1
2

• Along the line  we search for the optimum X . Let D1 be the direction of 
this line: 

X1
1X1

2
1
3

 
  D =  X1 1

2 − X1
1

 
• Repeat step one and two. In general the i-th iteration optimizes along 

neighbouring lines with direction D, of which one line goes through X . These 
two optima define a line with direction 

i-1
3
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  D =  Xi i
2 − Xi

1

 
along which we find by linear optimization the initial point  of the (i+1)-th 
iteration.  

Xi
3

 The conjugated directions algorithm can be generalized to n variables. 
 

 
Fig.7.7. Scheme of a simple algorithm with conjugated directions. 

 

 
Fig.7.8. A simple algorithm with conjugated directions. 
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7.2.1.1d The Simplex search method 
 
 The Simplex search strategy is presented below and is illustrated in Fig.7.9 (after 
Sorooshian and Gupta, 1995). 
 

(0) Select n+1 points (n = dimension) in the feasible parameter space and compute 
the function value at each point. This set of n+1 points is called a “simplex” 
(Fig.7.9). 

(1) Identify the point with the worst (largest) function value. 
(2) Compute the centroid of the best n points of the simplex (i.e., exclude the worst 

point). 
(3) Locate a new point by reflecting the worst point through the centroid (see 

Fig.7.9a). If the function value at the reflection point is better than the worst 
point, go to Step 4; otherwise, go to Step 5. 

(4) Locate a new point by expanding the reflection step by a factor of 2 (see 
Fig.7.9b). If the function value at the expansion point is better than the reflection 
point, replace the worst point by the expansion point. If not, replace the worst 
point by the reflection point. Go to step 7. 

(5) Locate a new (contraction) point halfway between the worst point and the 
centroid (see Fig.7.9c). If the function value at the contraction point is better 
than the worst point, replace the worst point by the contraction point, and go to 
step 7. If not, go to Step 6. 

(6) Shrink the simplex by moving each point (except the best point) to a location 
halfway between its current location and the best point (Fig.7.9d). 

(7) Repeat Steps 1-6 until the size of the simplex becomes smaller than some 
convergence criterion. The point with the best function value is selected as an 
estimate of the optimum. 
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Fig.7.9 The Simplex direct search algorithm 
 
7.2.1.2 Gradient methods 
 
 A gradient search optimisation strategy uses information about both the function 
value and the function gradient in the decision processes listed above. Most gradient 
methods are based on the following equation: 
 
 III A Θ∇⋅⋅−Θ=Θ + ρ1  
 
where IΘ  is the present (initial) point (parameter vector), IΘ∇  is the function gradient 
matrix at the present point, ρ is a step size parameter, A is a specially chosen square 
matrix, and 1+ΘI  is the new point. It can be mathematically shown that, if the matrix A 
is any positive definite matrix, the vector in the direction from IΘ  to Θ 1+I  will be a 
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local improvement direction. Each gradient method uses different methods for selecting 
ρ and A. For example, the “steepest descent” approach uses the identity matrix (all 
diagonal values are one and off-diagonal values are zero). In general, most gradient 
methods use some approximation to the “Hessian” matrix (matrix of second partial 
derivatives of the function with respect to the parameters). If the exact Hessian matrix 
were to be used, the optimisation method would be the well-know “Newton method” 
which is the fastest way to solve a quadratic problem.  
 As with the direct search methods, if the new point has a lower function value than 
the previous point, the new point replaces the old one, and the procedure is repeated. If 
the new point turns out to be worse than the previous point, then the step size is reduced 
and another try is made at a new location. The search stops when the strategy is unable 
to find a direction in which improvement is possible. At this point, the gradient value 
will be numerically very close to zero.  
 
7.2.1.2a Method of steepest descent or ascent 
 
 Here successive linear minimizations are applied along straight lines in the 
direction opposite to the local gradient (see Fig.7.10) 
 For n = 2 we know that G is the direction of the steepest line in the tangent plane of 
the f-surface. Therefore this algorithm is called the method of steepest descent 
(minimization problem) or of steepest ascent (maximization problem); it is called also 
the Cauchy-method. The efficiency of the method depends strongly on scale-
transformations on the axes, since the concept of right angle is Euclidic. The method 
progresses very slowly in narrow valleys of the f-hypersurface. 
 

 
 

Fig.7.10. Method of steepest descent or ascent 
  
7.2.1.2b Newton-Raphson algorithm 
 
General aspect: 
 If the criterion function f(X) is differentiable, the vector of first derivatives is called 
the gradient 
 

 G X f X
x

f X
x

f X
xn

( ) ( ( ) , ( ) ,..., ( ) )= ∂
∂

∂
∂

∂
∂1 2
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If the criterion function is differentiable twice, the matrix of second derivatives is called 
the Hessian 
 

 

H X

f X
x

f X
x x

f X
x x

f X
x x

f X
x

f X
x x

f X
x x

f X
x x

f X
x
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Under very general conditions the Hessian is symmetrical: 
 

 ∂
∂ ∂

∂
∂ ∂

2 2f X
x x

f X
x xi j j i

( ) ( )=  

 
 If the Taylor expansion of f(X) exists for a value X0 of X, it is written 
 

 f X f X G X X X X X H X X XT T( ) ( ) ( ) ( ) ( ) ( ) ( ) .= + ⋅ − + − ⋅ ⋅ −0 0 0 0 0 0
1
2

.+ . 

 
or for short 
 

 f X f G X X X X H X XT T( ) ( ) ( ) ( )= + ⋅ − + − ⋅ ⋅ − +0 0 0 0 0 0
1
2

... 

 
where T indicates transposition and where 
 
 f f X G G X H H X0 0 0 0 0= = =( ), ( ) (  ,   0 ) 
 
The Taylor expansion of the gradient is 
 
  G X G X X X H X( ) ( ) ( ) ( ) .= + − ⋅0 0 0 .+ . 
 
or 
 
  G X G X X H( ) ( ) .= + − ⋅ +0 0 ..0  
 
 If the second derivatives of f(X) are continuous for all X, then a necessary 
condition for X~  being a local or global minimum is that 0)~( =XG , and that )~(XH  is 
positive semidefinite. A sufficient condition is that 0)~( =XG , and that )~(XH  is 
positive definite. 
 An obvious solution method of the optimization problem is to solve the vector 
equation 0)~( =XG .  
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Newton-Raphson method: 
 When f(X) is a quadratic function, its Taylor expansion is a quadratic polynome in 
X. The Hessian H(X) does not depend then on X (second derivatives of a quadratic 
function!). This quadratic function has a minimum X~  if H(X) is positive definite, and 
we have  
 
 0)~( =XG  
 
The Taylor expansion of the gradient then is  
 

 
1)()(~

0)()~()()~(

−⋅−=

=⋅−+=

XHXGXX

or
XHXXXGXG

 

 
As a consequence, starting with an arbitrary point X, we can find the minimum X~  by 
computing gradient G(X) and H(X). 
 The Newton algorithm (also called the Newton-Raphson algorithm) is based on the 
idea that f(X) can be approximated by its Taylor expansion truncated after the quadratic 
terms in X; consequently f(X) would be a quadratic function approximately. With an 
arbitrary point X we then associate the direction 
 
  − ⋅ −G X H X( ) ( ) 1

 
along which we perform a linear optimization. In the new point obtained, we repeat this 
operation, etc., until a stopping rule stops the algorithm. 
 This method requires the computation of first and second derivatives of f and also 
function values of f in view of the line minimizations. An important disadvantage in 
many circumstances is to have to compute second derivatives and to inverse the 
Hessians. The Hessian can even be singular, so that iteration is impossible. Locally, far 
from the minimum searched for, the Hessian can even be non-positive definite, which 
renders the methods much less attractive. 
 
7.2.1.3 Choice of local search methods 
 
 In case the derivatives of f(X) are not available (e.g. f(X) is not differentiable), one 
has to use direct search algorithms. A first criterion thus is the availability of the 
elements, necessary for the algorithm. 
 Remark that gradient methods can be transformed into direct search algorithms, by 
approximating differentials by differences. 
 A second criterion is the amount of computation, which is necessary for sufficiently 
approaching the optimum. Computer time depends on the number of function values, 
first and second derivatives to be computed and on other computations (inversion of 
matrices, etc.) It is often difficult to estimate the convergence speed of an algorithm, 
especially the number of iterations necessary. Therefore the algorithms are tried out on 
so-called "test-functions". A theoretical criterion is the number of linear optimizations 
taken for reaching the optimum of a quadratic function. 
 The main weak-point of the local search methods is that most practical problems 
involving calibration of nonlinear hydrologic models have response surfaces that are 
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multi-modal – that is, there are several locations of the parameter space where the value 
of the function is a “local minimum”. In such cases, the point where a local search 
algorithm terminates will depend on the location where it is started. As a result, it is 
difficult, if not impossible, to know with certainty if the procedure has located the actual 
“global” minimum of the function.  
 
7.2.2 Global search methods 
 
 Global search strategies are designed to efficiently discover the minimum of multi-
modal functions. Such strategies fall into three categories: deterministic, stochastic, or a 
combination of deterministic and stochastic. Deterministic strategies require that certain 
criteria related to the continuity of the function and its derivatives be satisfied to 
guarantee convergence to the global solution. These conditions are usually not met in 
the calibration of nonlinear hydrologic models. Only stochastic (random) and 
combination methods have been applied to the calibration of hydrologic models. 
 
7.2.2.1 Random search methods 
 
 Random (stochastic) search methods use the random number generators built into 
modern digital computers to randomly sample the parameter space in search of points 
with improved function values. The samples are generated according to some 
probability distribution applied to feasible parameter space. In “pure” random search, 
the sampling is done using a uniform distribution. This assumes no prior knowledge of 
where in the feasible space the best parameter set exists. However, because pure random 
search does not make use of the function value information obtained during the search 
to guide the search, it is not very efficient, especially for problems with many 
parameters. Other random search methods have been developed which adaptively adjust 
the probability distribution used for sampling based on the function value information 
obtained during the search. One such method is the adaptive Random Search (ARS) 
proposed by Masri et al. (1978) and modified by Pronzato et al. (1984). 
 The ARS strategy is as follows (see also Sorooshian and Gupta, 1995): 
 

(0) Choose a focal point (for example, this can be the “best” point obtained in the 
preliminary process of defining the parameter space, or it can be some arbitrary 
point such as the centroid of the feasible space); 

(1) Generate a set of N points randomly distributed in the entire feasible space (for 
example, according to a uniform or normal distribution) and centered on the 
focal point. Store the location of the point with the best function value; 

(2) Repeat Step (1) a pre-specified number of times, on the ith time using the initial 
parameter range divided by 10i and centered on the focal point (Fig.7.11) to 
restrict the search space. Each time, store the location of the point with the best 
function value; 

(3) Compare all the stored points and determine the point with the best function 
value. Re-define this point to be the new focal point. Record in which range 
level this point was found; and 

(4) Repeat Steps (1 – 3) until the best point is found in the smallest range level a 
user-specified successive number of times (say three). This point is chosen as 
the optimal parameter set. 
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 Reports in the optimisation literature indicate that the ARS strategy works well in 
practice. However, Duan et al. (1992) found that the algorithm was neither effective nor 
efficient on a simple hydrologic model calibration problem. The best result they were 
able to obtain was a 30% success rate (30 out of 100 trials located the known region of 
the global optimum) after sampling the space 250 000 times. 
 

 
 

Fig.7.11 The adaptive random search algorithm 
 
7.2.2.2 Multi-start algorithms 
 
 A simple combination method for dealing with multiple optima has been suggested 
in the hydrologic literature (e.g., Johnston and Pilgrim, 1976). In this method, one runs 
several trials of a local search optimisation method from randomly selected starting 
points in the feasible space. The validity of this “multi-start” approach can be 
demonstrated by the following arguments. To have confidence in the results of any 
stochastic optimisation procedure, we require that it has a relatively small failure 
probability on the problem of interest. Let us suppose that the failure probability of a 
local search optimisation method is F (i.e., if we were to run 100 independent randomly 
initiated tests of the method, we would find that 100 × F of them would fail to locate the 
global optimum). Then, if we run the procedure r times from r independent randomly 
selected locations, the overall failure probability will decrease according to the equation 

 and tend to zero as r becomes large. For example, if F is 0.65 (65 failures 
out of 100), then r equal to 12 will give a failure rate of less than 1 in 100.  

rFrF )1()( =

 The efficiency of any multi-start procedure varies nonlinearly with F, so that the 
number of restarts r required to achieve an overall failure probability of F(r) is given by 

 the curve of r versus F(1) is plotted in Fig.7.12 for the case of 
F(r) equal to 0.01 (1 failure in 100) and 0.05 (5 failure in 100). Clearly, for single-start 
failure probabilities F(1) that are less than 0.8, we do not require a very large number of 
restarts. However, as F(1) increases above 0.8 towards 1.0, the number of restarts 
required rapidly increases towards infinity, making the procedure impractical. 

)).1(ln(/))(( FrFlhr =
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 In Duan et al. (1992), it was demonstrated that a multi-start procedure based on the 
nonlinear simplex method (described earlier) worked well on simple hydrologic 
watershed model. 
 

 
 

Fig.7.12 Theoretical performance of any multi-start algorithm 
 
7.2.2.3 Shuffled complex algorithms 
 
 The Shuffled Complex Evaluation (SCE-UA) method, developed by Duan et al. 
(1993), is a global optimisation strategy designed to be effective and efficient for a 
broad class of problems. The SCE-UA strategy is presented below (see also Sorooshian 
and Gupta, 1995):  
 

(0) Initialize: Select  where p = number of complexes, m = 
number of points in each complex, and n = dimension of the problem. Compute 
the sample size 

,1 and 1 +≥≥ nmp

.mps ×=  
(1) Generate sample: Sample s points x1,…,xs in the feasible space Ω = Rn. 

Compute the function value fi at each point xi. In the absence of prior 
information, use a uniform sampling distribution. 

(2) Rank points: Sort the s points in order of increasing function value. Store them 
in an array , so that i = 1 represents the point with the 
smallest function value. 

},...,1  ,,{ sifxD ii ==

(3) Partition into complexes: Partition D into p complexes  each 
containing m points, such that  

,,...,1 pAA

  },...,1,,,{ )1()1( mjffxxfxA jpk
k
jjpk

k
j

k
j

k
j

k ==== −+−+ . 
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(4) Evolve each complex: Evolve each complex  according to the 
Competitive Complex Evolution (CCE) algorithm outlined separately. 

,,...,1, pkAk =

(5) Shuffle complexes: Replace  into D, such that D = {  
Sort D in order of increasing function value. 

pAA ,...,1 }.,...,1, pkAk =

(6) Check convergence: If the convergence criteria are satisfied, stop; otherwise, 
return to Step (3). 

 
 The Competitive Complex Evolution (CCE) algorithm required for the evolution of 
each complex in Step (4) of the Shuffled Complex Evolution method is represented 
below: 
 

(0) Initialize: Select q, α and β where 1. and ,1  ,2 ≥≥≤≤ βαmq  

(1) Assign weights: Assign a trapezoidal probability distribution to , i.e., kA
 

mi
mm

im
i ,...,1  ,

)1(
)1(2 =

+
−+=ρ  

 
The point  has the highest probability kx ).1/(21 += mρ  The point  has the 
lowest probability 

k
mx

).1(/2 += mmmρ  

(2) Select parents: Randomly choose q distinct points u1,…,uq from  according 
to the probability distribution specified above (the q points define a 
“subcomplex”). Store them in array  where v

kA

kA

},,...,1  ,,{ qivuB ii == i is the 

function value associated with point ui. Store in L the locations of  which are 
used to construct B. 

 
(3) Generate offspring: 

a. Sort B and L so that the q points are arranged in order of increasing 
function value. Compute the centroid g using the expression: 

∑
−

=−
=

1

11
1 q

j
ju

q
g  

b. Compute the new point r = 2g-uq (reflection step). 
c. If r is within the feasible space Ω, compute the function value fr, and go 

to step (d); otherwise, compute the smallest hypercube H⊂ Rn that 
contains , randomly generate a point z within H, compute fkA z, set r = z 
and set fr = fz (mutation step). 

d. If fr < fq , replace uq by r, go to step (f); otherwise, compute c = (g + uq)/2 
and fc (contraction step). 

e. If fc < fq, replace uq by c, go to step (f); otherwise, randomly generate a 
point z within H and compute fz (mutation step). Replace uq by z. 

f. Repeat Steps (a) through (e) α times, where α ≥ 1 is a user-specified 
parameter. 

 
(4) Replace parents by offspring: Replace B into  using the original locations 

stored in L. Sort  in order of increasing function value. 

kA
kA

7-16 



Hydrologic Models 

(5) Iterate: Repeat Steps (1) through (4) β times, where β ≥ 1 is a user-specified 
parameter which determines how many offspring should be generated (how far 
each complex should evolve). 

 
 The version of SCE-UA used by Duan et al. (1993) used the values m = (2n+1), q = 
(n+1), α = 1, and β = (2n+1). Hence, the only variable to be specified by the user is the 
number of complexes p. In Duan et al. (1992) and Sorooshian et al. (1993), it was 
demonstrated that the performance of the SCE-UA method is far superior to that of the 
multi-start simplex (MSX) procedure. He claimed that the SCE-UA method appears to 
be the best method currently available for parameter estimation of conceptual watershed 
models. 
 
7.3 DIFFICULTIES IN OPTIMIZATION 
 
 The successful application of a hydrologic watershed model depends on how well 
the model is calibrated. In recent years, automated approaches to calibration, such as 
those discussed in this chapter, have received much attention, and several difficulties in 
the application of such methods are (see also Ibbitt, 1970; Johnston and Pilgrim, 1976; 
Picup, 1977; Sorooshian and Gupta, 1983; Gan and Burges, 1990a,b): 
 

(i) Interdependence between model parameters, by which a large number of 
combinations of parameter values will give similarly low values of the objective 
function - a change in the value of one parameter may be compensated by changes 
in one or more of the other parameters. For a two parameters model, a long flat-
bottomed valley results in the response surface, as shown in Fig 7.13. A large 
number of combinations of parameter values will give similar low values of the 
objective function. Optimization methods make little or no progress along the 
floor of such valley towards its lowest point. It could be argued, of course, that 
this interdependence is not a problem, since any of the pairs of values in the valley 
is almost an optimum and the resulting output sequence is none the worse for the 
interdependence. However, if any meaning is to be attached to individual 
parameter values - if, say, parameter values are to be correlated with catchment 
characteristics - the values obtained from such an optimization would be 
meaningless (Gorgens, 1983a,b).  

(ii) Indifference of the objective function to the value of a parameter, the calculated 
model output, and thus the value of the objective function, is not affected by 
changes in the value of a parameter because either the parameter is redundant or it 
is not active in the particular set of input data and even worse in a particular region 
of parameter space. Indifference causes zero gradients in some areas of the 
response surface, and optimization methods are not able to make further progress 
from such areas, as shown in Fig.7.13 for high values of X1.  

(iii)Discontinuities, or points on the response surface at which the objective function, 
while still continuous, is non-differentiable.  

(iv) Local optima, these are points on the response surface that have lower values of 
the objective function than any surrounding point but have greater values than 
another point or points in another region of the response surface. As is shown in 
Fig.6.2 for a two dimensional response surface on which there is more than one 
closed contour for a given value of F. The 'peak' P1 inside the contour F = 3 is the 
global optimum. If a local search method starts its search at point A in Fig.6.2 it 
would, in all probability, find a nearby local optimum such as P2. Once at the local 
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optimum, the technique would be able to satisfy its built-in tests for convergence. 
For example, it would find that for small perturbations about P2 only worse points 
could be found. Search methods have no tactics for moving to a higher peak from 
a lower one since they assume that only one peak exists. Local optima have all the 
properties of the global optimum except the value of the objective criterion F.   

(v) Scaling of parameters. Different scaling of parameters changes the configuration 
of the response surface, affecting the difficulty of optimization, as is illustrated in 
Fig.7.14. Progress may be greatly improved by rescaling of parameters with the 
aim of producing near-circular contours of the objective function. However, the 
form of the response surface, particularly in multidimensional space, and the best 
selection of transformations are not known. Experimentation with scaling 
parameters is therefore desirable and may lead to more rapid progress. 

 

 
 

Fig.7.13  A two-dimensional response surface (hypothetical) 
 

 
Fig.7.14  The influence of scaling on steepest descent searches 
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 Moreover, deficiencies in model structure can also cause problems in 
optimization, since even the most complex models are imperfect representations of 
physical processes and this imperfection may lead to difficulties in optimization. 
 The choice and the role of the objective function are aspects of optimization that 
also offer serious difficulties to the modeller. It is axiomatic that the optimal set of 
parameters arrived at by optimization is in fact optimal only in the context of the 
objective function used during the process. A substantially different objective function 
may converge on substantially different optimum parameter set, though other conditions 
of optimization remain unchanged (Diskin and Simon, 1977; Pilgrim, 1975). 
 Studies of some effects of these difficulties have been reported by O'Connell, 
Nash and Farrell (1970), Mandeville, et al. (1970), Ibbitt and O'Donnell (1971), Plinston 
(1971), Johnson and Pilgrim (1973, 1976); Pilgrim (1975) and Gorgens (1983a). 
Strategies for overcoming some of these problems are suggested, although not all the 
problems can be solved. Possible solutions to these problems include the following 
measures (Gorgens, 1983a). Problem (i) can be partially redressed by optimizing 
interdependent parameters individually in separate searches. Problem (ii) can be 
avoided by setting indifferent parameters to constant values. Problem (iii) affects only 
steepest descent algorithms and cannot be solved except by multiple searches from 
different points on the response surface. Problem (iv) can often be overcome by 
changing initial points. Point (v) is less a problem in direct search than in steepest 
descent methods and can be redressed by either scaling parameters to the same order of 
magnitude or weighting the search steps for individual parameters according to 
parameter scale. 
 A measure that is often used to cope with more than one of the above difficulties 
is to constrain the values of certain parameter to a "likely range" during optimization, 
i.e., to prevent 'impossible' values from being chosen by the search routine or for the 
routine to wander into one of the difficulty-prone areas of the response surface. 
However, Pilgrim (1975) argues that this procedure is unjustifiable because a parameter 
value might pass through an impossible region during the search but then return to a 
realistic level. Imposition of limits also implies that the model structure and the 
parameters are indeed physically realistic and that the data contain no serious errors. 
Chapman (1975) argues conversely, i.e., that modellers should consciously strive to 
make their models more physically-based; then crucial parameters must be constrained 
to known physical limits commensurate with each catchment situation. 
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CHAPTER 8 
SOME PARTICULAR CATCHMENT MODELS 
______________________________________________________________________ 
 
 
 
 

The following hydrological models will be discussed in details during the lecture. 
Documents about the listed models will be distributed to the students before the 
course starts. Other hydrological models, which are not listed below might also be 
discussed. 

 
8.1 WASMOD – A conceptual, stochastic, lumped water balance model.  
 Reference: Xu, C-Y, 2002. WASMOD – The Water And Snow Balance Modeling 

system. In: Mathematical Models of Small Watershed Hydrology and Applications 
(Chapter 17), V.P. Singh and D.K. Frevert (eds), Water Resources Publications, 
LLC, Highlands Ranch, Colorado, USA. 

8.2 HBV-model – A conceptual, deterministic, lumped (semi-distributed) daily rainfall-
runoff model. 
Reference: Bergström, S., 1995. The HBV Model. In: Computer Models of 
Watershed Hydrology (Chapter 13), V.P. Singh (ed.), Water Resources 
Publications, Highlands Ranch, Colorado, USA. 
 

8.3 TOPMODEL – A physically-based, semi-distributed model. 
Reference: Beven, K. et al., 1995. TOPMODEL. In: Computer Models of Watershed 
Hydrology (Chapter 18), V.P. Singh (ed.), Water Resources Publications, Highlands 
Ranch, Colorado, USA. 

 
8.4 SHE model – A physically-based, deterministic, distributed model. 

Reference: Abbott, M.B., et al., 1986. An introduction to the European Hydrological 
System – Systeme Hydrologique Europeen, “SHE”, 2: Structure of a physically-
based, distributed modelling system. Journal of Hydrology 87: 61-77. 
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