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Preface

Two related questions had to be considered in the preparation of this text:
the need for it and the required level.

There are many good books and research papers dealing with some
aspects of hydraulic modelling, but – as far as we are aware – there is
no single text available combining the various approaches to the subject.
Furthermore, our experience from teaching and consulting is that many
students and even practitioners tend to use the various computer packages
and results from hydraulic models without being sufficiently aware of their
background and limitations; hence the decision to prepare this volume.

As various aspects of hydraulic modelling are the subject of ongoing
research and publications, it would be presumptuous to attempt a book
of this type at anything but an introductory level. This text is thus not a
research monograph, but a textbook aimed at final-year undergraduate and
postgraduate students; at the same time, we hope that practitioners in the
field will find it a useful source of reference, and that for all of them it can
serve as a basis for further study and development.

One notable omission in the text is groundwater modelling, although it
is superficially alluded to in Chapters 2, 4 and 5. The reason for this is
twofold: first, groundwater modelling, particularly of flow through compli-
cated ground conditions and fissured rocks, is beyond the scope of this text;
and, second, its inclusion would have made the book too long.

Professor V. Guinot of Université Montpellier is the author of Chapters 7,
8, 9 and 10; Professor A. Jeffrey of the University of Newcastle upon Tyne
wrote Chapters 2 and 3 and Section 6.4; Professor D. E. Reeve of the Uni-
versity of Plymouth is the author of Chapters 11 and 12; Professor P. Novak
of the University of Newcastle upon Tyne wrote Chapters 1, 4, 5, 6 and 13,
the sections on physical modelling in Chapters 7, 8, 9, 11 and 12, and also
edited the whole text.

P. Novak, V. Guinot, A. Jeffrey, D. E. Reeve
April 2009
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Chapter 1

Introduction

The hydraulic engineer’s concerns are liquids, their motion and their
interaction with conveyances and structures. Usually, but not exclusively,
the liquid in question is water – a viscous, slightly compressible fluid. The
science of hydraulics thus works with the real liquids of engineering interest,
although it owes much to the laws derived in theoretical hydromechanics for
ideal (homogeneous, incompressible, non-viscous) liquids.

It is almost impossible in hydraulic research to draw a clear dividing line
between basic and applied research, as both intermingle in the solution of
hydraulic problems connected with engineering design. An extraordinary
development in experimental methods and the application of computational
techniques have also been of great importance.

There are three ways to approach the solution of a problem in hydraulics
and hydraulic engineering design: by theory and reasoning; by experience
(e.g. derived from similar structures); or by investigating the problem and
testing the design on a model. However, our past experience may be inade-
quate due to the uniqueness of the design and circumstance; the complexity
of many cases of liquid flow and our still limited analytical abilities permit
the strict application of theory and basic flow equations only in certain,
often schematized, situations and thus methods using models are needed
to achieve a solution or to test the effect of simplifications. It must be
emphasized, however, that a purely experimental approach to the solu-
tion of a problem without any theoretical analysis, even if restricted only
to a dimensional analysis, is likely to be a waste of effort. Systematic
experiments require theoretical guidelines, and in the absence of such they
show, at best, only a certain relationship of observed hydraulic parameters
within the range of the experiments undertaken. If the physical principles
depicted by an empirical function are not elucidated, then the function
can neither be safely extrapolated nor generalized for other similar cases
of flow.

The term model is used in hydraulics to describe a physical or mathe-
matical simulation of a ‘prototype’, or field-size situation. The hydraulic
engineer’s models are tools for predicting the effect of a proposed design and
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to producing technically and economically optimal solutions to engineering
problems. In other words, a model is a system that will convert a given
input (geometry, boundary conditions, force, etc.) into an output (flow
rates, levels, pressures, etc.) to be used in civil engineering design and
operation.

Simulation may be direct by the use of hydraulic models, semi-direct using
analogues or indirect by making use of theoretical and computer-based anal-
ysis, including mathematical, computational and numerical models. The
basic distinction is between physical and mathematical models. Physical
models then comprise hydraulic and analogue models; analogue models
include also aerodynamic models (which really form a transition between
hydraulic and other analogue models), and both hydraulic and aerody-
namic models can be grouped as scale models. Analogue models had their
main application in groundwater flow simulation, but have now mainly
been replaced by mathematical models. As the application of aerodynamic
models also is being confined to special cases, the terms physical, scale and
hydraulic models have gradually almost become synonymous. (The term
‘hydraulic model’ is also sometimes used loosely to denote all models –
including mathematical ones – instead of the correct overall term ‘hydraulic
modelling’ or ‘models in hydraulic engineering’.)

As we are primarily concerned with the reproduction of present or future
full-size behaviour, obtaining relevant field data is an important and integral
part of the modelling process.

It is obviously the basic requirement of any scale model to reproduce
correctly the behaviour of the situation to be modelled. The success of
the solution depends on the accurate formulation of the problem and on
the correct identification of the main parameters influencing the phenom-
ena under investigation. This may lead to an intentional suppression of
forces and influences, the role of which in the prototype is, in the light
of experience, only of secondary importance. It is a possible pitfall that the
magnitude of forces neglected in the analysis may assume a disproportion-
ately large significance in the model, a discrepancy that is usually referred
to as scale effect. The appreciation of similarity laws and of the limits of
their validity is, therefore, particularly important if this is to be avoided.
All these considerations influence the selection of appropriate methods and
techniques of simulation (Novak and Čábelka (1981)).

One of the first to use hydraulic models was Osborne Reynolds, who
in 1885 designed and operated a tidal model of the Upper Mersey at
Manchester University. In 1898, Hubert Engels established the first River
Hydraulics Laboratory at Dresden. Then followed a gradual and, after
1920, an accelerating expansion of laboratories for the study of hydraulic
engineering problems using scale models.

The widespread use and role of hydraulic models may have changed
somewhat in recent years, mainly due to the advances in computational
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modelling, but they remain an important modelling tool, especially in the
design of hydraulic structures, river and coastal engineering applications,
environmental protection and in providing the physical input to mathemat-
ical modelling.

An analogue model is a system reproducing a prototype situation in a
physically different medium. This technique depends on the equations rep-
resenting the prototype and model being mathematically identical. Thus
torsional vibrations of a bar may represent the water-level oscillations of
a simple surge tank, and both can be simulated by the voltage changes in an
electric circuit, i.e. by an electrical analogue.

Although engineers use the terms mathematical model, numerical model
and computational model as synonyms, there is a clear distinction between
them (Samuels (1993)). A mathematical model is a set of algebraic and
differential equations that represents the interaction between the flow and
process variables in space and time. It is based on a certain set of assump-
tions about the physics of the prototype flow and associated environmental
processes. These assumptions will set clear limits to the domain of appli-
cability of the mathematical model and any numerical and computational
model that may be derived from it. A prerequisite for the development of
a mathematical model is an understanding of the key physical processes
involved, leading either to fundamental principles such as Newton’s laws
of motion or to well-attested empirical relationships such as the Chezy and
Manning resistance laws.

It is extremely rare for a mathematical model to be amenable to an exact
closed-form solution except for the simplest geometries. Hence, the power
of mathematical models was only realized with the availability of cheap,
reliable computing from about 1960 onwards. Mathematical models of
most physical phenomena are non-linear, necessitating the use of numerical
methods when developing approximate solutions with the aid of a digital
computer. This leads to the definition of a numerical model.

A numerical model is an approximation of a mathematical model of some
prototype situation, giving a computable set of parameters that describes the
flow at a set of discrete points. Many numerical models can be formulated
from the same underlying mathematical model by employing alternative
numerical methods and mathematical manipulations. The performance of
the numerical models will be determined by the properties of the numerical
methods employed, and for the same geometric and boundary data may give
significantly different results. These differences are often masked, in part, by
the calibration procedure.

A numerical model, like a mathematical model, is not specific to any
particular site, and the strength of both these types of model lies in their
generality. A specific application will require data from the prototype site
and a computer with a program to organize the data and execute the
calculations.
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A computational model is an implementation of a numerical model
on a computer system with the relevant data from a specific site. The
results of the computational model depend on a variety of factors, includ-
ing the quality of the prototype data, the details of data processing,
possibly the internal organization of the calculations and the type of
computer used.

Many computational modelling systems and packages are available for a
variety of hydraulic engineering problems. The end user may have to choose
which model to use, and certainly will have to be able to interpret the model
results critically and responsibly. It is hoped that this book will provide at
least some guidance on how to distinguish between models that are appro-
priate for a particular application and those that are not. It is important
that the results of a computational model should not be accepted as defini-
tive just because the numbers were produced by a computer – the results
must also make physical sense. Past (field) results should be used to gain
a better understanding of what is happening physically and why a given
model does not reproduce observations accurately, and to assess impreci-
sions and/or uncertainty intervals in the results, and always to calibrate
the model.

From data handling the discipline of computational hydraulics has grown
to hydroinformatics, which uses simulation modelling and information and
communication technologies (ICT) to help to solve problems in hydraulics,
hydrology and environmental engineering for better management of water-
based systems. In a further development, artificial neural networks attempt
to simulate – in a crude way – the working of a human brain by passing
on information from one ‘neuron’ to all other ‘neurons’ connected with
it. The output of the model is related to the input through a set of func-
tions with constants determined during the ‘training’ of the network; a large
set of wide-ranging data is required to train a network to achieve good
results.

In conclusion, it may be helpful to identify the principal differences
between the types of modelling discussed in this chapter. Physical (scale)
models (hydraulic and aerodynamic) are based on full fluid physics but at a
reduced geometric scale, whereas a computational model is at full prototype
scale but embodies only approximate physics. A physical model provides
a continuous representation of the prototype but a computational model
offers only a finite dimensional approximation; if a model does not repro-
duce observations accurately, it is necessary to assess the uncertainty in the
results. Physical and computational modelling should not be viewed as con-
flicting methods of investigation; rather, they have complementary strengths
and weaknesses. Often a hydraulic engineering problem will require a com-
bination of these methods, i.e. hybrid modelling, to achieve a cost-effective
solution.
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Chapter 2

Theoretical background –
mathematics

2.1 Ordinary differential equations

2.1.1 Definitions

Physical situations described by quantities that vary continuously with
respect to their position in space and possibly with time can usually be
described in terms of systems of partial differential equations (PDEs). These
are equations that relate the quantities involved to some of their deriva-
tives with respect to space variables and time. In the simplest case, when
only a single quantity u(t) depending on a variable t is involved, the varia-
tion of u(t) with respect to t is described by an ordinary differential equation
(ODE) that relates u(t) to some of its derivatives. If the highest order deriva-
tive involved in an ODE is dnu/dtn, the ODE is said to be of the nth order.
The variable t is called the independent variable, and in physical situations
t is often the time, while the quantity u(t) is called the dependent variable
because its value depends on t. A general nth-order ODE can be written
symbolically as

F(t,u,u′,u′′, . . .u(n)) = 0, (2.1)

where u′ = du
dt
, u′′ = d2u

dt2
, . . . ,u(n) = dnu

dtn
, and F is an arbitrary function of its

n + 1 arguments t,u,u′,u′′, . . . ,u(n). The form of equation (2.1) is too gen-
eral to be of use when discussing ODEs, so in practice it is necessary to
restrict study to some of the most frequently occurring types of ODE that
arise in applications. This involves considering special forms that may be
taken by the function F, although only the most important of these will be
mentioned here.

The simplest type of ODE is of the form dy
/

dt = g(y)h(t), where g(y) and
h(t) are functions of their respective arguments. An ODE of this type is said
to have separable variables, because it can be written as

∫
( 1

g(y)
)dy= ∫ h(t)dt,

in which the variables y and t have been separated, after which the gen-
eral solution follows by integration. Here, the solution of an ODE is a
relationship between y and t that does not contain derivatives which, when
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substituted into the ODE, satisfies it identically. For ways of solving other
special types of ODE, such as solution by substitution, solution by elimina-
tion and the use of integrating factors, we refer readers to any standard text
on ODEs such as those by Birkhoff and Rota (1989), Boyce and DiPrima
(2005), Edwards and Penney (2001) and Krusemeyer (1999).

An important type of differential equation is that where the function F
contains only a sum of terms of the form u,u′,u′′, · · · ,u(n), each of which
occurs linearly (raised to the power one), although u and each of its deriva-
tives may be multiplied by a function of t, and the sum of such terms may
be equal to a given function f (t). An equation of this type is said to be a
linear variable coefficient nth-order ODE, and its general form is

a0(t)u(n)(t) + a1(t)u(n−1)(t) + · · ·+ an−1(t)u′(t) + an(t)u(t) = f (t), (2.2)

where coefficients a0(t),a1(t), . . . ,an(t) are known functions of t. The func-
tion f (t) is called the forcing function because, after the start of the
solution of equation (2.2), its subsequent behaviour is determined (forced)
by the nature of the function f (t) that represents some external influence.
In the case of equation (2.2), the equation F(t,u,u′,u′′, . . . ,u(n)) = 0 in
equation (2.1) takes on the simple form

a0(t)u(n)(t) + a1(t)u(n−1)(t) + · · ·+ an−1(t)u′(t) + an(t)u(t) − f (t) = 0.

The simplest ODE of this type is the nth-order constant-coefficient ODE
where the coefficients ai, for i = 0, 1, . . . , n, are all constants. When the
forcing function f (t) in ODE equation (2.2) is equal to zero the equation is
said to be homogeneous, otherwise the ODE is said to be non-homogeneous.

To understand the meaning and importance of the term linear when
used to describe ODE equation (2.2) it is necessary to introduce the
concept of the linear independence of functions. A set of n functions
u1(t), u2(t), . . . , un(t) defined for t in some interval I, say a ≤ t ≤ b, that
may be finite, semi-infinite or infinite, are said to be linearly independent if
the linear combination of terms

c1u1(t) + c2u2(t) + · · ·+ cnun(t) = 0, (2.3)

where the constants ci are arbitrary, is only true for all t in I when c1 =
c2 = . . .= cn = 0. When the n functions are not linearly independent, they
are said to be linearly dependent, and in that case not all the constants ci

are zero. In the simplest case, when only two functions are involved, linear
independence means that the functions are not proportional, whereas lin-
ear dependence implies their proportionality. So, for example, the functions
u1(t)= et and u2(t)= e2t are linearly independent for all −∞< t<∞ because
they are not proportional, but the functions u1(t) = ln t and u2(t) = ln t2
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for 0< t<∞ are linearly dependent because ln t2 = 2 ln t, so u2(t) = 2u1(t),
showing that the functions are in fact proportional.

It is a standard result in the study of ODEs that the homogeneous form
of equation (2.2) (i.e. when f (t)≡0) always has n linearly independent solu-
tions. The significance of this result can be understood by considering the
fact that if u1(t), u2(t), . . . , un(t) is any set of n suitably differentiable func-
tions, and b1, b2, . . . , bn is any set of n arbitrary constants, it follows from
the linearity of the operation of differentiation that

dr

dtr

(
b1u1(t) + b2u2(t) + · · ·+ bnun(t)

)= b1
dru1(t)

dtr

+ b2
dru2(t)

dtr
+ · · ·+ bn

drun(t)
dtr

,

for r = 1, 2, . . . , n. This has the effect that if the n functions
u1(t), u2(t), . . . , un(t) are the n linearly independent solutions of equa-
tion (2.2), the general solution of the homogeneous form of equation (2.2)
can always be expressed as a sum of its n linearly independent solutions,
each of which can be multiplied by an arbitrary constant. The prop-
erty that a solution of a linear homogeneous equation can always be
expressed as a sum of multiples of its n linearly independent solutions
u1(t), u2(t), . . . , un(t) is described by saying that the solutions of the
equation possess linear superposition property.

A test for the linear independence of n solutions u1, u2, . . . , un of a homo-
geneous linear nth-order ODE defined over an interval a ≤ t ≤ b is provided
by the Wronskian test. This test requires that for the linear independence
of the n solutions the determinant W(u1,u2, . . . ,un) �= 0 over the interval
a ≤ t ≤ b, where

W(u1,u2, · · · ,un) =

∣∣∣∣∣∣∣∣∣
u1 u2 · · · un

u′
1 u′

2 · · · u′
n

...
...

...
...

u(n)
1 u(n)

2 · · · u(n)
n

∣∣∣∣∣∣∣∣∣ .

For example, it is easily checked by substitution that the ODE u′′′ + 4u′′ +
5u′ + 2u = 0 has the three solutions: u1 = e−t, u2 = te−t and u3 = e−2t. The
linear independence of these three solutions can be proved by the Wronskian
test, because

W(u1,u2,u3) =
∣∣∣∣∣∣

e−t te−t e−2t

−e−t (1 − t)e−t −2e−2t

e−t (t − 2)e−t 4e−t

∣∣∣∣∣∣= e−4t,
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and as e−4t �= 0 for −∞< t <∞, it follows that the solutions are linearly
independent for all finite t. Thus, the general solution of this homogeneous
ODE can be written as u(t) = a1e−t + a2te−t + a3e−2t, where a1, a2 and a3 are
arbitrary constants.

Clearly, when the functions ui(t), i = 1, 2, . . . , n are solutions of the
homogeneous form of ODE (2.2), an expression such as

uc(t) = a1u1(t) + a2u2(t) + · · ·+ anun(t) (2.4)

cannot represent the solution of the non-homogeneous equation (2.2),
because the result of substituting u(t) = uc(t) into equation (2.2) leads to
the contradictory result 0 = f (t). Consequently, when f (t) �= 0, because of
the linearity property of the ODE the general solution must be of the form

u(t) = uc(t) + up(t) (2.5)

in which case the function up(t) must be such that

a0(t)u(n)
p + a1(t)u(n−1)

p + · · ·+ an(t)up = f (t). (2.6)

The function uc(t) is called the complementary function of ODE equa-
tion (2.2) and contains all the arbitrary constants, while the function up(t) is
called a particular integral of the equation. In practical terms, a particular
integral up(t) is a function that when substituted into the ODE generates the
non-homogeneous term f (t). A particular integral is not necessarily unique,
because if terms from the complementary function are added to it then equa-
tion (2.6) will still be satisfied. However, up(t) will become unique once any
terms belonging to the complementary function have been deleted. Ways of
finding the complementary function uc(t) and the particular integral up(t)
for any specific equation are discussed at length in the standard texts on
ODEs already mentioned. Further useful references are Farlow et al. (2002)
and Peterson and Sochacki (2002).

2.1.2 Initial conditions

In specific applications it is necessary to specify how a particular solution
u(t) of equation (2.2) may be constructed, assuming that the complemen-
tary function uc(t) and the particular integral up(t) are known. This involves
recognizing that the general solution u(t)=uc(t)+up(t) of the ODE contains
the n arbitrary constants a1, a2, . . . , an, so if the solution is to start at a
time t = t0, then in order to determine these constants it is necessary to spec-
ify n conditions that are to be satisfied by the solution when t = t0. This is
accomplished by saying how a particular solution must start at the time t0,
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and this involves specifying the n starting values k0, k1, k2, . . . , kn−1 of the
function u(t) and its first n − 1 derivatives at time t = 0 by setting

u(t0) = k0,u′(t0) = k1,u′′(t0) = k2, . . . ,u(n−1)(t0) = kn−1. (2.7)

This leads to the following system of n linear simultaneous equations
involving the constants a1, a2, . . . , an,

uc(t0) + up(t0) = k0,u′
c(t0) + u′

p(t0) = k1, . . . ,u(n−1)
c (t0) + u(n−1)

p (t0) = kn−1,

the solution of which will yield the n constants a1, a2, . . . , an in uc(t), after
which the required particular solution follows from equation (2.5).

To illustrate this, consider the non-homogeneous ODE u′′′ + 4u′′ + 5u′ +
2u = 1. It has already been shown that the complementary function is
uc(t)=a1e−t +a2te−t +a3e−2t, and it is easily checked by substitution that the
particular integral up(t)=1/2, so the general solution is u(t)=uc(t)+up(t)=
1/2 + a1e−t + a2te−t + a3e−2t. If, for example, this solution is to start when
t = 0 with u(0) = 1, u′(0) = 0 and u′′(0) = 0, then setting t = 0 and substi-
tuting these values into the expression for u(t) gives the following algebraic
equations for a1, a2 and a3

1
2

+ a1 + a3 = 1,−a1 + a2 − 2a3 = 0 and a1 − 2a2 + 4a3 = 0.

The solution of these algebraic equations is a1 =0, a2 =1 and a3 =1/2, and
thus the required solution of the ODE becomes u(t) = 1

2
+ te−t + 1

2
e−2t.

The quantity t0 in equation (2.7) is called the initial time (the time when
the solution starts), and the n constants k0, k1, . . . , kn−1 are called the
initial values (conditions or data) to be satisfied by the solution at the initial
time. Note that the value of u(n)(t0) cannot be specified as part of the initial
data, because once the n initial values have been specified the ODE itself
will determine the value of u(n)(t0).

To illustrate the need for initial conditions, consider the steady radial flow
of water in a discharging well, with r the radial distance from the borehole,
q(r) the total radial discharge as a function of r, w the steady water produc-
tion rate per unit volume, and b the thickness of a confined aquifer. If h0 is
the pre-pumping static water height underground, and h(r) is the hydraulic
head at radius r during pumping, both measured from the bottom of the
aquifer, then h0 − h(r) > 0 is the drawdown at radius r due to pumping.
Assuming that q(r) = −Tdh/dr, with T a transmission constant depend-
ing on the aquifer, then h(r) satisfies the second-order variable coefficient
linear ODE

d2h
dr2

+ 1
r

dh
dr

=−wb
K
, (2.8)
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where the negative sign is necessary because the larger the drawdown, the
less the pressure, with the hydraulic conductivity constant K depending on
the nature of the aquifer. The general solution of this ODE is

h(r) = a1 + a2 ln r − 1
4

wbr2

4K
, (r>0), (2.9)

with two arbitrary constants a1 and a2. Solution (2.9) is not valid when
r=0, because the term ln r becomes infinite when r=0. To find a particular
solution, it is necessary to choose some value r = r0 > 0, and then to specify
the two values k0 and k1 so that h(r0) = k0 and h′(r0) = k1. Even though this
solution is independent of the time t, these starting conditions are still called
the initial conditions for h(r), and once h(r) is known the total radial rate of
discharge q(r) follows by using the result q(r) =−Tdh/dr.

At this point it is appropriate to draw attention to what is probably the
most important first-order ODE, called the first-order linear ODE, and
to give an example of its application. The most general first-order linear
equation is of the form

dy
dt

+ p(t)y = q(t), (2.10)

where p(t) and q(t) are arbitrary functions of t. The equation has an
integrating factor

μ(t) = exp
[∫

p(t)dt
]
, (2.11)

in terms of which the solution can be written

y(t) = A
μ(t)

+ 1
μ(t)

∫
μ(t)q(t)dt, (2.12)

where A is an arbitrary constant.
Let us apply this result to equation (2.8), after first replacing t by r, and

then reducing it to a linear first-order equation for u by setting u = dh/dr,
when it becomes

du
dr

+ 1
r

u =−wb
K

.

This equation is of the form of equation (2.10) with p(r) = 1/r and
q(r) = −wb

/
K. The integrating factor is μ(r) = exp

∫ (
1
r

)
dr = ln r, so from

equation (2.12) u(r) = C1

/
r − wbr

/
(2K). As dh

/
dr = u, integration of

u(r) shows that h(r) = C2 + C1 ln r − wbr2

(4K)
, where, apart from the symbols
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representing the arbitrary constants C1 and C2, this result is the same as
equation (2.9).

2.1.3 Structure of solutions

The solution of an ODE may vary in many different ways, but in general
terms it is said to be stable if, although it changes with time and may never
settle down, the solution remains bounded for all time. The solution is said
to be unstable if the solution becomes unbounded as time increases.

It may happen, independently of the initial conditions, that after a suit-
ably long time all solutions of ODE equation (2.2) approach arbitrarily
close to a function, say u = φ(t). When this happens the solutions of equa-
tion (2.2) are said to converge to the solution φ(t), which is then called the
steady-state solution. This name is somewhat misleading, because it does
not necessarily mean that the steady-state solution is independent of the
time t, and so is an absolute constant. What it really means is that the
steady-state solution (possibly time dependent) is the solution to which all
solutions of initial-value problems converge after sufficient time has elapsed
for the complementary function to decay to zero. Clearly, the complemen-
tary function uc(t) will only decay to zero as t → ∞ if λ < 0 in each of
its exponential terms eλt, so the steady-state solution is determined by the
particular integral.

An ODE or a system of simultaneous ODEs in which the dependent vari-
ables do not appear linearly is said to be non-linear. As a rule, analytical
solutions of non-linear equations are difficult to find, one reason for which
is that solutions of non-linear equations do not possess the valuable linear
superposition property. Non-linearity often occurs in differential equations
describing physical problems, and it can arise in many different ways. For
example, the presence of non-linear terms such as u1/2, u2, (du/dt)2 and
udu/dt in a differential equation will cause it to become non-linear. As
solutions of non-linear equations do not possess the linear superposition
property, the terms homogeneous and non-homogeneous have no meaning
when studying non-linear ODEs.

A simple example of a non-linear ODE is the horizontal-beam equation
that occurs in structural problems, and takes the form

d2

dx2

{
EId2y

/
dx2[

1 + (dy
/

dx)2
]3/2

}
= w(x), (2.13)

where x is the distance along the beam measured from one end, y(x) is the
downward vertical deflection of the beam at a distance x due to a load,
w(x) is the line density of the distributed load along the beam, E is Young’s
modulus of elasticity, and I is the moment of inertia of a cross-section of the
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beam about its central axis. The type of beam to be described is determined
by the conditions imposed at its ends. For example, a beam fastened rigidly
at one end but left free at the other is a cantilevered beam.

This ODE equation (2.13) can be simplified if the expression [1 +
(dy
/

dx)2]3/2 in the denominator that takes account of the curvature of the
beam can be approximated by 1, in which case equation (2.13) becomes the
very simple fourth-order linear equation

EI
d4y
dx4

= w(x), (2.14)

which can be solved by straightforward integration. This type of approxi-
mation replacing a non-linear ODE by an approximate linear ODE is called
linearization, and when it can be justified it allows approximate solutions
of non-linear equations to be obtained.

The process of linearization must be used with care because, even when
it is permissible, the interval over which the approximation is valid is usu-
ally very restricted. In the case of the beam equation, linearization is only
valid when the downward displacement y(x) is very small. However, some
non-linear equations cannot be linearized, because linearization produces
an equation that no longer describes the fundamental physical phenomenon
that was modelled by the full non-linear equation. A case in point is the
non-linear equation

d3y
dx3

+ 1
2

y
d2y
dx2

= 0,

which arises in the study of the boundary layer formed when a viscous fluid
flows past a horizontal plate. In this case, to study boundary layer flow, it
is necessary to use special techniques when working with the full non-linear
equation. In general, apart from the use of special analytical methods when
examining certain important types of non-linear ODEs, such equations must
be solved using numerical methods that will be described in Chapter 3.

Another example of a non-linear equation that cannot be linearized is the
flow of water from an orifice of area a in the bottom of a water tank of area
A, when at time t water flows into the tank at a rate f (t). If the height of
water above the orifice at time t is h(t) and the exit velocity of the water is
ν = cv

√
2gh, where cv is the velocity coefficient, the ODE for h(t) based on

Torricelli’s law of flow is the non-linear first-order equation

dh
dt

+ acd

A

√
2gh

1/2 = f (t)
A

.

In this equation the discharge coefficient cd(= cccv) takes account of the fact
that, after the water has passed through the orifice in the bottom of the
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tank, the cross-sectional area of the emerging jet contracts from its initial
area a to a smaller one cca (for water ca ≈ 0.6 for a sharp-edged orifice).

Various physical situations, such as those modelling mixing phenomena,
are too complicated to be described by a single ODE, so they must be
described by a simultaneous system of ODEs. A typical first-order system
in which the dependent variables are y1,y2, . . . ,yn, takes the form

dy1

/
dt = f1(y1,y2, . . . ,yn, t),

dy2

/
dt = f2(y1,y2, . . . ,yn, t),

. . .

dyn

/
dt = fn(y1,y2, . . . ,yn, t),

(2.15)

where, in general, the functions f1, f2, . . . , fn are non-linear functions of the
dependent variables. In such cases, solutions of initial-value problems must
be obtained by numerical methods. Even when the functions f1, f2, . . . , fn are
linear combinations of the dependent variables and the time t, an analytical
solution of equation (2.15) is usually only possible when it simplifies to a
simultaneous system of constant-coefficient equations

dy1

/
dt = a11y1 + a12y2 + · · ·+ a1nyn + h1(t),

dy2

/
dt = a21y1 + a22y2 + · · ·+ a2nyn + h2(t),

. . .

dyn

/
dt = an1y1 + an2y2 + · · ·+ annyn + hn(t),

(2.16)

where the coefficients aij are constants, and the terms hi(t) are given
functions of t.

This system can be written in the matrix form

dy
dt

= Ay + h(t),

with y the column vector with elements y1,y2, . . . ,yn, dy/dt the column vec-
tor with elements dy1/dt,dy2/dt, . . . ,dyn/dt, h(t) the column vector with
elements h1(t), h2(t), . . . ,hn(t), and where A = [

aij

]
is an n × n constant

matrix with elements aij. The system can be solved analytically by diago-
nalizing the matrix A. An outline of how a solution is obtained is given in
the Appendix to this chapter. However, even in this case, when an analyt-
ical solution can be found, if more than three equations are involved it is
usually simpler to solve an initial-value problem for a system by numerical
methods.

One final class of problems involving ODEs that needs to be men-
tioned is what are called two-point boundary-value problems. These are
time-independent problems for which initial conditions are inappropriate;
instead an ODE must be solved on a fixed interval a ≤ × ≤ b with suitable
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conditions being imposed on the solution at each end (on the boundaries)
of the interval. The conditions at the two ends of the interval are called
boundary conditions, and such problems can be difficult to solve. They usu-
ally require numerical solutions. A brief account of how some problems of
this type can be solved numerically is given in Chapter 3. A simple two-
point boundary-value problem that can be solved by ordinary integration
is the linearized beam equation (2.14), although when it was introduced no
mention was made of the boundary conditions to be imposed on the solu-
tion at the ends x = a and x = b of the beam. A cantilevered beam, clamped
rigidly at x = a but free at the end x = b, must satisfy the boundary condi-
tions y(a)= y′(a)=0 at x= a, and the boundary conditions y′′(b)= y′′′(b)=0
at x = b.

2.2 Partial differential equations and their classification

In hydraulics, usually of more concern than ODEs are the cases where one
or more continuously differentiable functions, say u, v and w, depend on
both position in space and also on time t. When these functions and their
partial derivatives can be connected by a system of equations, the equations
become partial differential equations (PDEs). The order of a PDE or sys-
tem is the order of the highest derivative that occurs in the PDE or system.
When only one space variable is involved, say x, and the other indepen-
dent variable is the time t, the equation is said to be one-dimensional and
time-dependent, simply called a 1D time-dependent PDE. Correspondingly,
if two or three space variables and also the time t are involved, the equa-
tions are said to be 2D or 3D time-dependent equations. It may happen that
time does not enter into a PDE as an independent variable. In such cases the
equations are called 1D, 2D or 3D time-independent PDEs or, more simply
still, just 1D, 2D or 3D PDEs.

Unlike the situation with ODEs, where in the linear case a general solu-
tion can be found and then used to solve any given problem, this is not
possible with PDEs, as general solutions are seldom available. Instead, it
becomes necessary to find ways of solving specific problems. It is to be
expected that, as the number of space dimensions increases, so also does
the complexity of finding a solution of a PDE, and this is indeed the case. In
this case, a solution is a relationship free from partial derivatives that relates
all the variables involved, satisfies any auxiliary conditions that are imposed
(such as initial and boundary conditions, to be described later), and is such
that when substituted into the PDE it satisfies it identically.

However, for the moment, let us confine our attention to PDEs involving
two independent variables that may be either two space variables, or one
space variable and the time. As with ODEs, a linear PDE is one in which the
dependent variable and its partial derivatives only occur linearly. When this
is not the case, a PDE is called non-linear, and there is no general theory
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that can be used when seeking a solution of a non-linear PDE. The situation
is somewhat better when in a non-linear PDE or in a system of PDEs the
highest-order partial derivatives of the dependent variables occur linearly.
This can simplify the task of finding solutions, and equations of this type
are called quasilinear PDEs. A simple example of a first-order quasilinear
PDE is

∂u
∂t

+ u
∂u
∂x

+ f (u) = 0.

This equation is non-linear because of the product term u∂u
/
∂x, and pos-

sibly also because of the term f (u), in which u may occur non-linearly. How-
ever, the PDE is quasilinear because its highest-order partial derivatives,
namely ∂u

/
∂x and ∂u

/
∂y, occur linearly.

The simplest of the linear second-order PDEs that occur most frequently
in engineering and physics are of the general type

A(x,y)
∂2u
∂x2

+ 2B(x,y)
∂2u
∂x∂y

+ C(x,y)
∂2u
∂y2

+ a(x,y)
∂u
∂x

+ b(x,y)
∂u
∂y

+c(x,y)u = f (x,y),

(2.17)

where the coefficients A(x,y),B(x,y), . . . ,C(x,y) are given functions of x
and y, and where the independent variables x and y may either both be
space variables, or one space variable and the time variable t. As with ODEs,
if f (x,y) ≡ 0 the linear PDE equation (2.17) is said to be homogeneous,
otherwise it is non-homogeneous. If the equation is homogeneous, and the
terms on the left of equation (2.17) are denoted by L[u], the homogeneous
equation takes the simple form

L[u] = 0, (2.18)

where L[.] is called a linear differential operator. This means that L[.] is, in
effect, an instruction to perform certain differentiation operations on what-
ever function appears in place of the dot that lies between the brackets [ ].
The differential operator only becomes a function when it acts on a suit-
ably differentiable function u. The linearity of the PDE means that, if c is a
constant and u is a solution of the homogeneous PDE equation (2.18), then

L[cu] = cL[u], (2.19)

while if u1 and u2 are any two solutions of equation (2.18), it follows that

L[u1 + u2] = L[u1] + L[u2]. (2.20)
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In terms of the homogeneous equation this means that any solution u
may be multiplied by a constant c to form cu and still remain a solution,
while if u1 and u2 are any two solutions of the homogeneous equation,
then so also is their sum c1u1 + c2 u2 for any arbitrary constants c1 and c2.
This last result extends to the linear combination of any finite number of
solutions and, as in the case of an ODE, this is said to represent the linear
superposition property of the solutions of the linear homogeneous PDE in
equation (2.18). It is this property that forms the basis of the method of sep-
aration of variables that in especially simple cases can be used to construct
analytical solutions of linear PDEs. We will not discuss this method here as
it is seldom of use when practical problems in hydraulics need to be solved,
so instead we refer the interested reader to the books on advanced engineer-
ing mathematics by Jeffrey (2002), Kreyszig (2005) and O’Neil (1999) and
to the more advanced books by Garabedian (1999), Keener (1994), Logan
(2006) O’Neil (2006 a, b) and Zauderer (2006).

The second-order equation (2.17) with two independent variables, either
(x,y) or (x, t), belongs to one of three quite different types of PDE. The
three types describe very different physical phenomena, where each PDE
has its own quite separate mathematical properties. The classification of
PDE equation (2.17) is determined algebraically by considering the expres-
sion �= B2 − AC, which is called the discriminant of the PDE. The name
discriminant is given to � because it discriminates (distinguishes) between
the three types of PDE that equation (2.17) can be. Equation (2.17) is said
to be hyperbolic when �> 0, parabolic when �= 0 and elliptical when
�< 0. Note that in equation (2.17) the coefficients A, B and C depend on
x and y, so the classification of such an equation as hyperbolic, parabolic
or elliptical may vary from point to point in the (x,y) plane, depending on
the nature of the coefficients A, B and C, although when the coefficients are
constants the classification will, of course, remain unchanged throughout
the entire (x,y) plane.

The names hyperbolic, parabolic and elliptical used in this classifica-
tion arise as a result of the introduction of two new independent variables
ξ = ξ (x,y) and η = η(x,y) in equation (2.17), chosen in such a way that
at a given point of the (x,y) plane the coefficients of second-order terms
simplify. It is because this simplification involves algebra similar to that
of the equations describing a hyperbola, a parabola or an ellipse that the
PDEs are given these names. It should be clearly understood that the names
hyperbolic, parabolic and elliptical are only convenient names used when
classifying PDEs, and that the names have no geometrical implications for
the solutions of the associated PDEs.

The result of applying such changes of independent variable to PDE equa-
tion (2.17) at a given point in the (x,y) plane is that the simplified forms of
the different types of equation are produced. These are called the canonical
forms or standard forms of the PDEs.
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In the hyperbolic case the canonical form is found to be

∂2u
∂ξ 2

− ∂2u
∂η2

= F1(ξ, η,u, ∂u/∂ξ, ∂u/∂η), (2.21)

or, equivalently,

∂2u
∂ξ∂η

= F2(ξ, η,u, ∂u/∂ξ, ∂u/∂η). (2.22)

For the parabolic case the canonical form is

∂2u
∂η2

= F3(ξ, η,u, ∂u/∂ξ, ∂u/∂η), (2.23)

and for the elliptical case the canonical form is

∂2u
∂ξ 2

+ ∂2u
∂η2

= F4(ξ, η,u, ∂u/∂ξ, ∂u/∂η), (2.24)

where F1 to F4 represent functions whose arguments may contain terms in
ξ, η, u, uξ and uη.

The way the variables ξ and η are introduced to bring about such a sim-
plification will not be described here, as the process is lengthy and can be
found in standard texts such as those mentioned previously.

In applications it is often useful to write ODEs and PDEs in what is called
a non-dimensional form (see also Chapter 5). This is accomplished by intro-
ducing convenient length, mass and time reference units L0, M0 and T0

appropriate to an application, and then, if the equivalent physical quanti-
ties involved are x, m and t, the equations are rewritten in terms of the
new dimensionless variables x′ = x/L0,m′ = m/M0 and t′ = t/T0. Thereafter,
for convenience, the prime is often dropped, it being understood that dimen-
sionless variables are involved. This approach allows the easy interpretation
of solutions when they are applied to similar situations, but with different
length, mass and time scales.

Familiar examples of constant-coefficient equations that are already in
their canonical form when expressed in terms of the Cartesian coordinates
x and y are as follows.

The hyperbolic equation

∂2u
∂x2

− ∂2u
∂t2

= 0 (2.25)
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also called the wave equation, that with the change of variable ξ =x+ t, η=
x − t can be transformed into the equivalent form

∂2u
∂ξ∂η

= 0; (2.26)

the parabolic equation

∂u
∂t

= ∂2u
∂x2

, (2.27)

called the heat equation, also known as the diffusion equation, because it
describes both the temperature distribution in a solid and also diffusion
phenomena, each of which behave in a similar fashion;

the elliptical equation

∂2u
∂x2

+ ∂2u
∂y2

= 0, (2.28)

called the two-dimensional Laplace equation.

2.3 Dispersion and dissipation in hyperbolic linear
equations

The hyperbolic equation (2.25) describes the propagation of disturbances
(waves) in the positive and negative x-directions with respect to the time t.
All linear hyperbolic equations describe some form of wave propagation,
although, unlike the equation in (2.25), in general they describe waves that
distort and may decay as they propagate due to effects called dispersion
and dissipation. To understand these effects it is necessary to generalize the
hyperbolic equation (2.25) to

∂2u
∂x2

= 1
c2

{
∂2u
∂t2

+ p
∂u
∂t

+ qu
}
, (2.29)

where p and q are constants. The linearity of this equation allows us to con-
sider the way in which this equation propagates a sinusoidal wave, because
in the linear case any wave can be constructed by the linear superposition of
suitable multiples of such waves, as with Fourier series. It will simplify the
analysis if the sinusoidal wave is represented in terms of complex variables,
because a physical wave can always be considered to be the real part of such
a representation. Accordingly, we will consider the sinusoidal wave (see also
Section 4.5)
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u(x, t) = a exp
{
i
[
(kx −ωt) + ε

]}
,

where a is a complex number, i is the square root of −1, and the real num-
ber |a| is called the amplitude of the wave. The wavelength L of the wave is
the smallest length by which x can be increased while leaving u unchanged.
Thus, because the complex exponential function is periodic with period 2π ,
it follows that kL=2π , where the number k=2π/L is called the wavenum-
ber and L is called the wavelength of the wave. Similarly, if T is the smallest
value by which the time t may be increased while leaving u unchanged, it
follows that ωT = 2π , where T is called the period of the wave, while the
number ω=2π/T is called the frequency of the wave. The constant quantity
ε in the expression for u(x, t) is arbitrary and is called a phase shift. It will
be convenient to rewrite u(x, t) as

u(x, t) = A exp
{
i(kx −ωt)

}
, with A = exp ( − iε). (2.30)

Substituting this result into equation (2.29) and factoring out the non-zero
complex exponential function leads to the equation

ω2 + ipω− c2k2 − q = 0. (2.31)

This equation provides useful physical information about the wave propa-
gation process, because it shows that the frequency ω, the wavenumber k
and n are not independent. In physical wave propagation k must be real, so
it follows directly that ω may be complex, in which case

ω=− ip
2

± 1
2

{
4c2k2 + 4q − p2

}1/2
. (2.32)

Substitution of equation (2.32) into equation (2.30) gives the result

u(x, t) = A exp
(− 1

2
pt
)
exp

{
i
[
kx ± 1

2

√
4c2k2 + 4q − p2

]}
. (2.33)

Inspection of equation (2.33) shows that if p> 0 the wave will decay as
it propagates, and this process is called dissipation. However, the wave fre-
quency depends on the wavelength through the wavenumber k, so the speed
of the wave will also depend on the frequency, and this process is called
dispersion. When dispersion is present different frequencies propagate with
different speeds; as the initial wave is the superposition of waves with differ-
ent frequencies, as it propagates the dependence of wave speed on frequency
will cause the wave to change shape. Note that the generalized wave equa-
tion (2.29) reduces to the wave equation (2.25) if the constants p = q = 0,
and from equation (2.33) it then follows that waves propagated by the ordi-
nary wave equation do so without the effects of dissipation and dispersion.
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For an example of this situation involving ocean gravity waves see Holly
(1985), and for the effects of dispersion in rivers see Sauvaget (1985).

As any linear wave can be constructed by linear superposition of waves
like that in equation (2.30), it follows that, in general, waves satisfying the
PDE in equation (2.29) will decay and change shape as they propagate. The
name dispersion is used with wave propagation because the different speeds
with which waves of different frequencies propagate cause waves to ‘spread
out’ and so to ‘disperse’. It is for this reason that equation (2.31) is called
the dispersion relation for PDE equation (2.29).

It will be shown later that hyperbolic equations possess special curves
called characteristic curves in the plane of their independent variables, and
that these have the property that each transmits a disturbance (a point on a
wave) at a finite speed. Apart from describing general linear wave prop-
agation, one way in which a hyperbolic equation arises in hydraulics is
when the Saint Venant equations are included in the equations describing
open-channel flow (see also Section 4.4.3).

2.4 Parabolic and elliptical equations, diffusion,
quasilinearity and systems of equations

The heat equation (equation 2.27), also called the diffusion equation,
describes the propagation of heat in a heat-conducting body. It also
describes the diffusion of a physical quantity, such as an impurity in water
into still water or into the ground, in the x-direction (downward) with the
passage of time t. In general, parabolic equations arise when modelling vis-
cous or other diffusive processes. A typical parabolic equation occurs when
studying unsteady groundwater flow. There, for an aquifier of constant
thickness in which the flow is uniform, the groundwater flow is modelled
by the parabolic equation

∂h
∂t

= D
∂2h
∂x2

+ S,

where h is the head of the aquifier (the height of the water above the lower
boundary of a confined aquifier), D is a diffusion constant, and the source
term S is the inflow of water. See, for example, Chadwick et al. (2004), Sen
(1995) and Walton (1991).

In the Laplace equation, which is elliptical, time does not enter and the
variables x and y are space variables. This important equation arises in a
variety of different ways, one of which is in the study of fluid flow governed
by a velocity potential φ that is a solution of the Laplace equation. The
velocity potential has the property that the component of the fluid velocity u
in the x-direction is given by ∂φ/∂x, and the component ν in the y-direction
is given by ∂φ/∂y. This result will be encountered later in terms of the stream
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function ψ of a fluid flow that is related to the velocity and the velocity
potential by u=∂ψ/∂y=∂φ/∂x and ν=−∂ψ/∂x=∂φ/∂y. The stream func-
tion is so named because in incompressible inviscid (non-viscous) fluids the
curves ψ = constant are the fluid-flow lines (see also Section 4.2.5).

We mention here that the complex potential for a fluid flow is the complex
analytical function w = φ + iψ , so in the context of complex analysis the
functions φ and ψ are conjugate harmonic functions, where a harmonic
function is one that satisfies Laplace’s equation. See, for example, Jeffrey
(2002), Kreyszig (2005) and O’Neil (1995).

Linear second-order equations such as equation (2.17) are important for
the following reason. Typically, in the derivation of the PDEs governing
many physical situations, two coupled (simultaneous) first-order PDEs arise,
each of which describes a fundamental physical property represented by the
dependent variables u and v, say. In many cases the structure of these equa-
tions is such that one of the dependent variables v, say, can be eliminated
by differentiation, leading to a single second-order equation such as equa-
tion (2.17), which is satisfied by the other dependent variable u. Once the
second-order equation for u has been solved, its solution can be used with
the original first-order equations to determine the other dependent variable
v, thereby leading to the solution of the original system.

The classification of PDEs can be extended to second-order equations in n
independent variables, but a discussion of how this may be achieved will not
be appropriate here. This matter is discussed in, for example, Garabedian
(1999). We mention in passing that when the multi-independent variable
situation arises, although some types of equation can be classified as being
of purely hyperbolic, parabolic or elliptical type, still more classifications
become possible, so that, for example, equations can arise that are of mixed
hyperbolic and elliptical type. This can also happen with coupled first-order
systems of PDEs in more than two dependent variables.

Let us now return to the fact that a special type of non-linear PDE or
system is said to be quasilinear if, although it is linear in the highest-order
derivatives, it contains non-linear terms of lower order. An example of a
quasilinear second-order PDE for u(x, y) is the equation

A(x,y,u,ux,uy)
∂2u
∂x2

+ 2B(x,y,u,ux,uy)
∂2u
∂x∂y

+ C(x,y,u,ux,uy)
∂2u
∂y2

+F(x,y,u,ux,uy) = 0, (2.34)

where ux = ∂u/∂x,uy = ∂u/∂y, and A, B, C and F are functions that may
contain terms such as x, y, u, u2, uux and uxuy. As with linear second-
order PDEs, the classification of quasilinear PDEs like equation (2.34) is
determined by the discriminant �= B2 − AC.

More general than this single quasilinear second-order equation are sys-
tems of coupled quasilinear first-order PDEs in two or more dependent
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variables. Only in special cases can a system of quasilinear equations be
solved for one dependent variable in terms of a single higher-order PDE, so
when this is not possible the dependent variables must be found by solving
the complete coupled system of equations.

The typical example of a first-order quasilinear equation for the variable
u(x, t) given earlier was

ut + f (u)ux = h(x, t,u), (2.35)

where ut = ∂u
/
∂t and ux = ∂u

/
∂x. The quasilinear equation (2.35) is some-

times called the advection equation. This is the simplest example of an
equation that describes how a quantity of interest, such as the vorticity in
fluid mechanics, is transported through a medium. The functions f (u) and
h(x, t, u) are usually continuous functions of their arguments. This equa-
tion simplifies to a linear equation when f (u) = c = constant, and h(x, t, u)
depends linearly on u. As a special case of equation (2.35) we mention the
situation when the function f depends only on x and t, while the function h,
which may or may not depend on x and t, depends non-linearly on u. An
equation of this form, where the non-linearity in u occurs only in the undif-
ferentiated function h(x, t, u) on the right of equation (2.35), is said to be
semilinear. A typical first-order semilinear equation is ut + cux = sinu. More
will be said later about the quasilinear equation (2.35), as it will be used
to introduce what is called the method of characteristics that leads to both
analytical and numerical solutions of hyperbolic equations. This equation
will also be used to illustrate how non-linearity in a quasilinear hyperbolic
equation can, as time increases, cause a solution that starts in a smooth
manner but evolves into a discontinuous solution. In hydraulics this effect
leads to the occurrence of hydraulic jumps.

An important example of a coupled quasilinear first-order system of PDEs
is provided by the one-dimensional form of the so-called shallow water
equations (see also Section 4.6.2):

ut + uux + gηx = 0 (2.36)

ηt +
[
u(η+ h)

]
x
= 0. (2.37)

In these equations the x-axis lies in the surface of the equilibrium level
of the water, the y-axis is vertically upward, u(x, t) is the x-component of
the water velocity, η(x, t) is the elevation of the surface of the water above
the equilibrium level, and y + h(x) = 0 is the equation of the river bed or
seabed, while g is the acceleration due to gravity. The general geometrical
configuration of these equations is shown in Figure 2.1.

Here, as usual, suffixes have been used to denote partial derivatives,
so that ut = ∂u/∂t, ux = ∂u/∂x, ηt = ∂η/∂t and ηx = ∂η/∂x, although
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y

0

u(x, t)

x

y + h (x) = 0

h(x, t)

h(x)

Figure 2.1 The geometry of the shallow-water model

hx = dh/dx, because h(x) describes the shape of the river bed or seabed
and so only depends on x. It will be seen later that the speed of propagation
of this surface wave is c=√g(h + η), although for historical reasons in fluid
mechanics the speed c is often called the wave celerity (derived from the
Latin celeritat meaning swiftness).

The quasilinearity in this system is caused by the product terms uux, uxη

and uηx, and the equations form a first-order system of PDEs because the
highest-order derivatives ut, ux, ηt and ηx that occur only appear linearly.
Systems of equations can be classified as hyperbolic, parabolic or ellipti-
cal, although the method of classification is more complicated than the one
used for a single second-order equation. However, when a second-order
PDE such as equation (2.17) is expressed in the form of a system, the classi-
fication can be shown to be compatible with the results obtained using the
discriminant�. It will be shown later that the system of shallow-water equa-
tions (2.36) and (2.37) is unconditionally hyperbolic (the hyperbolic nature
does not change throughout the (x, t) plane), and that the system describes
the propagation of surface waves on water with speed c =√g(h + η). For
more about the shallow-water equations see, for example, Abbott (1979),
Abbott and Cunge (1982), Abbott and Minns (1998), Cunge et al. (1980),
Mader (2004), Verboom et al. (1982) and Verwey (1983).

2.5 Initial and boundary conditions for partial
differential equations: existence and uniqueness

2.5.1 General

In the study of PDEs, general solutions are hardly ever known, so instead
it is necessary to seek the solution of a PDE in the context of a specific
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application. When doing this, certain auxiliary conditions must be specified
that serve to identify the precise nature of the problem. If the solution
depends on the time (hyperbolic and parabolic equations), these auxiliary
conditions amount to saying how the solution is to start (initial conditions),
although there may also be conditions that must be satisfied on some fixed
boundaries (boundary conditions). However, when only space variables are
involved so that time is absent, as in the Laplace equation, the auxiliary
conditions must describe how the solution is to behave on the boundary
of some region D of interest in the (x, y) plane, which then involves the
specification of boundary conditions. It is through the properties of solu-
tions, and their dependence on the auxiliary conditions, that equations or
systems of hyperbolic, parabolic and elliptical type exhibit fundamental
differences.

The types of initial conditions and the boundary-value data that are
appropriate for the different types of second-order equations (either linear
or quasilinear), in one dependent variable and two independent variables,
are shown in the table on page 27. First, though, the most important and
frequently occurring types of auxiliary condition that arise in applications
must be named.

In each of the following cases (Sections 2.5.2 to 2.5.4) the boundary of
a region is specified parametrically. The advantage of a parametric repre-
sentation is that it enables a simple representation of curves to be given,
because were Cartesian coordinates to be used, they often involve many-
valued functions. For example, if a circular boundary occurs with radius a,
it has the algebraic equation x2 + y2 = a2, and to express y in terms of x it
is necessary to introduce the two-valued square-root function and to write
y = ±(a2 − x2)1/2. However, in terms of plane polar coordinates (r, θ ), the
equation of the circle has the very convenient parametric representation in
terms of θ such that x = a cos θ, y = a sin θ , with 0 ≤ θ < 2π , so now each
point on the perimeter of the circle has a unique representation.

2.5.2 Cauchy conditions

Cauchy conditions are used to specify what is called a Cauchy problem for
a PDE in some open region (area) D in the (x, t) plane, part of which is
bounded by a given curve � defined parametrically by x = g(s), t = h(s).
Often the parameter s is taken to be the distance measured along � from
some reference point on �. Using the arc length s along � as a parameter,
the Cauchy conditions, or initial conditions, for a PDE involve requiring the
solution u(x, t) to be equal to a given function f (s) at each point of �, and in
addition that the directional derivative of u normal to � is equal to a given
function n(s) at each point of �. To explain the terminology used here, a
region (area) D is said to be open if all, or part of it, has no boundary. A
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typical open region in the (x, t) plane is the area t> 0 that lies above, but
excludes, the x-axis. A Cauchy problem is often called a pure initial-value
problem when the only conditions to be imposed on a PDE are Cauchy
conditions on the initial line t = 0.

2.5.3 Dirichlet conditions

Dirichlet conditions require the solution u to be equal to a given function
f (s) on part or all of a boundary � defined parametrically by x = g(s), y =
h(s), where s can be taken to be the distance measured along � from some
convenient reference point on �. A region (area) D is said to be closed if it is
enclosed by a boundary curve, and each point of the boundary curve belongs
to D. If area D is closed, then the specification of Dirichlet conditions on
all of its boundary defines a pure boundary-value problem for the PDE.
A typical closed region is the interior and boundary points of a rectangle in
the (x, y) plane.

2.5.4 Neumann conditions

Neumann conditions involve first specifying part or all of a boundary curve
� enclosing a region D in which a PDE for a function u(x, y) is given. As
before, it will be assumed that � is defined parametrically in terms of s by
x = g(s), y = h(s). Then Neumann conditions require that on � the direc-
tional derivative of u normal to � is equal to a given function n(s). If region
D is closed then, as with Dirichlet conditions, the specification of Neumann
conditions on all the boundary defines a pure boundary-value problem for
the PDE. In many boundary-value problems Dirichlet and Neumann condi-
tions are prescribed on different parts of the boundary, and sometimes in the
combined form

(
αu +β ∂u

∂n

)= 0 on another part of the boundary �, where α
and β are constants.

2.6 Well-posed problems

A PDE in a region D is said to be well-posed if the imposition of initial
and boundary values on the boundary of region D leads to a unique stable
solution. Here, a unique solution means there is only one solution that sat-
isfies the PDE and its associated auxiliary conditions. A stable solution is a
solution that does not depend critically on the choice of the auxiliary con-
ditions, in the sense that a very small change in the auxiliary conditions
produces a disproportionately large change in the solution. It is possible to
formulate a very precise definition of stability, but the intuitive definition
given here will suffice for our purposes.

To illustrate how unique and non-unique solutions can occur it is only
necessary to consider the Laplace equation (2.28) in a rectangle. It is not
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difficult to see that if the Dirichlet condition u = k = constant is imposed
on the entire boundary, then u = k satisfies both the Laplace equation and
the Dirichlet condition on the boundary, and so u = k is, indeed, the unique
solution. If, however, a homogeneous Neumann condition is imposed on
the boundary, then u = k is still a solution of the Laplace equation, because
it satisfies the homogeneous Neumann condition on the boundary, but the
solution is not unique because the constant k may assume any value.

The commonly occurring types of second-order equation and the type of
auxiliary conditions that are appropriate, together with the nature of the
region (area) D to which the conditions apply, are listed below.

Type of PDE Nature of the auxiliary conditions Type of region D

Hyperbolic Cauchy Open
Parabolic Dirichlet, Neumann or a mixture Open
Elliptical Dirichlet, Neumann or a mixture Closed

A typical Cauchy problem for the wave equation (2.25) takes region D to
be the upper-half plane y> 0, where y is a time-like independent variable,
the x-axis is the boundary � of D, and u is required to satisfy the conditions
u(x, 0) = f (x) and uy(x, 0) = n(x) for −∞<x<∞, where f (x) and n(x) are
given functions. In the case of the heat equation (2.27), a typical problem
takes D to be the open rectangular (strip) 0<x<L, y>0, and its boundary
comprising the two sides of the strip and part of the x-axis to be �. The
solution u is then required to satisfy a condition u(x, 0) = f (x) for 0<x<L
on the base of the semi-infinite strip, while on the sides of the strip the
conditions ux(0, y) = n1(y) and ux(L, y) = n2(y) must be satisfied for y> 0,
where f (x), n1(y) and n2(y) are given functions. In this example, Dirichlet
conditions are specified on the base of the boundary 0< x<L, y = 0, and
Neumann conditions on the sides x = 0, y>0 and x = L, y>0 of the semi-
infinite strip. Finally, a typical problem for the Laplace equation could take
region D to be the rectangle 0<x<a, 0<y<b, and its finite boundary � to
be the boundary of D (the sides of the rectangle). Then Dirichlet conditions
could be prescribed on three sides of D, and a Neumann condition on the
fourth side.

In certain cases analytical solutions can be found for all three types of
PDE by the method of separation of variables, which is described in detail
in standard texts on partial differential equations (see Garabedian (1999),
Jeffrey (2003), Lamb (1995), O’Neil (1995), (1999), Zauderer (2006)).
However, in practical applications the equations and the shape of the
regions involved are usually too complicated for an analytical solution to
be found, so a numerical solution becomes necessary.
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2.7 The influence of initial and boundary conditions on
a solution: characteristics, domains of dependence and
determinacy, and the d’Alembert solution

The auxiliary conditions applied to the boundary � of the region D through-
out which a parabolic or elliptical equation is valid can be shown to
influence the solution u at every point of region D. The situation is, however,
very different when hyperbolic equations are involved, and to understand
how initial conditions on the initial line � influence the solution u in D
it will suffice if we consider the following standard problem for the wave
equation.

Identify y with the time t, let x be a space variable, and consider the wave
equation in the slightly more general form

∂2u
∂t2

= c2 ∂
2u
∂x2

, (2.38)

where c> 0 is a constant. It is easily checked by direct substitution that the
general solution of equation (2.38) may be written as

u(x, t) = f (x − ct) + g(x + ct), (2.39)

where f and g are any two arbitrary twice differentiable functions of their
respective arguments x − ct and x + ct. Inspection of equation (2.39) shows
that the function f is constant along any straight line x − ct = ξ = constant,
while the function g is constant along any straight line x+ ct =η= constant.
Now let t> 0, and consider a region D in which the initial line � is taken
to be the x-axis on which, of course, t = 0. Recalling that x is a distance
and t is a time, and the expressions x and ct occurring in equation (2.39)
must both have the same dimensions, it follows that the dimensions of c
must be those of a speed – the speed with which a disturbance (a wave) is
propagated.

If the function f is specified, setting t = 0 is equivalent to determining
the initial profile (shape) of this disturbance or wave as a function of x.
As f (ξ ) = constant along any line x − ct = ξ = constant, it follows that the
initial profile of f will be transported to the right with speed c without
change of shape or attenuation, because the slope of each of the parallel
lines x − ct = ξ = constant is simply c. In similar fashion, if the function g
is specified, it follows that the initial profile of g is another wave, which
this time will be transported to the left with speed c, again without change
of shape or attenuation. This result is confirmed by the fact that the wave
equation has neither dissipation nor dispersion. Thus, the interpretation of
the solution, equation (2.39), is that, once the initial profiles of f and g have
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been specified, the solution at position x and any time t1 > 0 is given by the
linear superposition

u(x, t1) = f (x − ct1) + g(x + ct1), (2.40)

of the two translated profiles, or waves. It is because of this property that
equation (2.38) is called the wave equation. The straight lines ξ = x − ct
and η = x + ct are called the characteristics curves of the wave equation
(equation 2.38), despite the fact that, in this case, the characteristic ‘curves’
are parallel straight lines. The additive property of solutions comprising
waves propagated in opposite directions that is exhibited in equation (2.40)
is a direct consequence of the linearity of the wave equation.

To discover another fundamental property of the wave equation, let
us find the solution corresponding to the Cauchy conditions (pure initial
conditions)

u(x,0) = p(x) and
∂u
∂t

(x,0) = q(x), (2.41)

where p(x) and q(x) are given functions, and the solution is required for all
x and t> 0, so that in this case region D in which wave propagation takes
place is the half-plane t>0.

Setting t = 0 in equation (2.39) gives

f (x) + g(x) = p(x), (2.42)

and, after partial differentiation of equation (2.39) with respect to t,
followed by setting t = 0, we have

−cf ′(x) + cg′(x) = q(x). (2.43)

Integration of equation (2.43) from an arbitrary point a to x gives

−f (x) + g(x) = 1
c

∫ x

a

q(s)ds + g(a) − f (a), (2.44)

where, to avoid confusion with the upper limit x, the symbol s has been
used as a dummy variable of integration.

Combining equations (2.42) and (2.44), and using equation (2.39), leads
to the two results

f (x) = 1
2

p(x) − 1
2c

∫ x

a

q(s)ds − 1
2

(
g(a) − f (a)

)
, (2.45)
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and

g(x) = 1
2

p(x) + 1
2c

∫ x

a

q(s)ds + 1
2

(
g(a) − f (a)

)
. (2.46)

Replacing x by x − ct in equation (2.45), and by x + ct in equation (2.46),
addition of the results leads to a solution in the form

u(x, t) = 1
2

[
p(x − ct) + p(x + ct) − 1

c

∫ x−ct

a

q(s)ds + 1
c

∫ x+ct

a

q(s)ds
]

.

This result can be simplified by using the negative sign in the third term on
the right to reverse the order of the limits in that integral, and compensat-
ing by replacing the negative sign by a positive sign, after which the two
integrals can be added to yield the fundamental result

u(x, t) = p(x − ct) + p(x + ct)
2

+ 1
2c

∫ x+ct

x−ct

q(s)ds. (2.47)

This is called the d’Alembert formula for the solution of the Cauchy prob-
lem (equation 2.41) for the wave equation (equation 2.38). This result has
been derived here because of the insight it gives into the nature of the solu-
tion of the wave equation, which in many respects is a typical hyperbolic
equation. The result is illustrated in Figure 2.2(a), where AP and BP are the
two characteristics through P, one with slope c and the other with slope −c.
Equation (2.47) shows how the initial conditions influence the solution at a
typical point (x0, t0) in region D. If P is the point (x0, y0), the d’Alembert
solution (equation 2.47) shows that the solution at P is influenced only by
the Dirichlet condition at point A located at (x0 − ct0, 0) and at point B
located at (x0 + ct0, 0) at opposite ends of the interval x0 − ct0 ≤x≤x0 + ct0

on the initial line. However, the solution at P is influenced by the integral of
q over the entire interval AB.

For obvious reasons, in Figure 2.2(a) the interval AB on the initial line is
called the domain of dependence of the solution at P, while the area APB is
called the domain of determinacy of the solution, because it represents all
points in the (x, t) plane at which the solution is determined by the initial
data on AB. The value of the initial condition at point Q in Figure 2.2(b)
will influence (although not completely determine) the value of the solu-
tion in the region t>0 that lies between the two straight-line characteristics
through Q, so this is called the region of influence of Q. When x is a space
variable and t is the time, this result also shows why the wave equation
(equation 2.38) describes the propagation of a wave in space with a finite
speed c. This is because, at any given time t0, a point on a disturbance
located at x0 on the initial line has only travelled as far as x0 − ct0 to the
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Figure 2.2 (a) The domains of dependence and determinacy of point P. (b) The region of
influence of point Q

left and as far as x0 + ct0 to the right on that line. Later, an understanding
of the domain of dependence will turn out to be of fundamental impor-
tance when a numerical solution of a hyperbolic or parabolic equation is
required.

It is helpful to illustrate the geometrical significance of the superposition
of solutions in the d’Alembert formula (equation 2.47). Accordingly, we
will consider the wave equation (equation 2.38) subject to artificial and
rather simple initial conditions. Specifically, we will set u(x, 0) = F(x) and
ut(x, 0) = 0 and, to make the resulting development of the initial wave-
form easily identifiable geometrically as t increases, the initial waveform is
localized by defining F(x) as

F(x) =

⎧⎪⎪⎨⎪⎪⎩
0, x<−1

−1 − x,−1 ≤ x<0
1 − x, 0 ≤ x<1

0, x ≥ 1.

For a time scale it is convenient to use multiples of the wave speed c. The
result at t = 0, illustrated in Figure 2.3(a), shows as dashed lines the wave f
that will move to the right with speed c, and the wave g that will move to
the left with speed c, each in their initial position. The initial waveform F(x),
shown as the solid line, is then the average of the two dashed waveforms.
The result at time t = 1/(2c), illustrated in Figure 2.3(b), shows the trans-
lated waves represented by dashed lines, and the actual waveform given
by their sum as a solid line, with the interaction between the two waves
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u

t = 0

(a)

x

(b)
u

t = 1/2c

x

(c)
u

t = 1/c

x

(d)
u

t = 3/2c

x

Figure 2.3 (a) t = 0, (b) t = 1/(2c), (c) t = 1/c and (d) t = 3/2c

restricted to the interval −1/2 < x < 1/2. The corresponding situation at
time t = 1/c is shown in Figure 2.3(c), where the two translated waveforms,
now shown as solid lines, are seen to have just separated, while at time
t = 3/(2c) Figure 2.3(d) shows the situation when the two translated waves
are well separated, each travelling in opposite directions, and having ceased
to interact.
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2.8 The method of characteristics and a
non-linear first-order equation

To discover how an analytical solution can be obtained for the quasilinear
equation

ut + f (u)ux = h(x, t,u), (2.48)

(a particular case of equation (2.35)) subject to the continuous initial
condition

u(x,0) = g(x) (2.49)

we proceed as follows: the rate of change of a function u(x, t) with respect
to t is

du
dt

= ∂u
∂t

+ ∂u
∂x

dx
dt
, (2.50)

so if u is constrained to lie on a curve C in the (x, t) plane, then at
a point P on C it follows directly that dx/dt is the gradient of curve C
at P. Comparison of equations (2.48) and (2.50) shows that the quasilinear
equation (2.48) can be interpreted as the solution of the ODE

du
dt

= h(x, t,u) (2.51)

along any member of the family of curves C defined by the solution of
the ODE

dx
dt

= f (u), (2.52)

where the solution u must satisfy the initial condition in equation (2.49)
on the initial line t = 0. This representation of PDE equation (2.48) as two
coupled ODEs is said to be its characteristic form, and the family of curves
C defined by equation (2.52) determines what are then called the character-
istic curves of equation (2.48), usually abbreviated to the characteristics of
the PDE. The fact that the curves C are real, and dx/dt has the dimensions
of velocity, justifies the classification of equation (2.48) as hyperbolic. In
general, ODEs (2.47) and (2.48), subject to the initial condition (2.49),
are sufficiently complicated that they have to be solved using a numeri-
cal method of solution, which when generalized to hyperbolic systems of
equations is called the method of characteristics.
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2.9 Discontinuous solutions and conservation laws

Examination of a simple case of equation (2.48) will be useful because,
although it is a special case of a hyperbolic equation, the fact that it propa-
gates a wave can be used to demonstrate a fundamental property possessed
by all quasilinear hyperbolic equations and systems. This property is that,
unlike linear systems, such equations may allow a solution that starts as a
smooth and differentiable solution to evolve to the point where it becomes
a discontinuous solution. So, even though a solution may start in a com-
pletely smooth manner, it is possible for it to develop to the point where an
abrupt jump occurs in the solution u itself.

Consider the case where the function f depends only on u, while the
function h ≡ 0, and apply the method of characteristics to the equation

ut + f (u)ux = 0, (2.53)

subject to the initial condition (equation 2.49) where u(x, 0) = g(x), where
g(x) is continuous and smooth.

Equations (2.51) and (2.52) now reduce to

du
dt

= 0 along the characteristic curves C defined by
dx
dt

= f (u), (2.54)

with u satisfying the initial condition u(x, 0) = g(x) on the initial line
t = 0. Inspection of the first of these equations shows that u = constant on a
characteristic C, while the second equation shows that because u= constant
the corresponding characteristic curve C must be a straight line. As the slope
dx/dt of C depends on u, the straight-line characteristics originating from
points on the initial line will, in general, each have a different slope. On the
straight-line characteristic Cξ through a point (ξ, 0) on the initial line the
constant solution is equal to g(ξ ), so on Cξ we have dx/dt = f (g(ξ )), and so
the equation of this straight-line characteristic Cξ is given by

x = ξ + f (g(ξ )) t for t>0. (2.55)

It is because equation (2.53) describes wave propagation that it is classi-
fied as being hyperbolic, although there are other good reasons why this is
so. As the result will be needed in Chapter 3 when considering the numer-
ical solution of hyperbolic equations, we draw attention to the fact that
equation (2.48) has a domain of dependence, and in this case it is the single
point (ξ,0) on the initial line from which the characteristic Cξ originates,
while the domain of determinacy is just the characteristic Cξ itself.

Two completely different situations now arise, according to whether the
characteristics emanating from all points on a segment AB of the initial
line diverge in the (x, t)-plane, or whether they converge. The characteristic
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equations show that this behaviour of the characteristics depends only on
the specification of the continuous initial condition g(x) over interval AB,
independently of whether or not g(x) is continuously differentiable.

These two situations are illustrated in Figure 2.4(a,b), where examination
of Figure 2.4(a) shows that, because g(x) is such that the characteristics
diverge, the solution is defined uniquely throughout the region D bounded
by the characteristics originating from its end points A and B.

The situation illustrated in Figure 2.4(b) is different, because there the
characteristics converge and so will intersect after a finite time. Where
characteristics intersect the solution cannot be unique, because a differ-
ent value of u is transported along each characteristic, showing that at
some stage a continuous initial condition must evolve to the point where
it becomes discontinuous. Figure 2.4(b) illustrates a typical situation where
the characteristics form an envelope with its cusp at the point (xc, tc) in the
(x, t) plane, corresponding to the place and time at which a discontinuous

C1 C2 C3 C4

A B

D

0

(a)

x

C1 C4

Discontinuity
forms at cusp

Envelope of
characteristics

C2 C3

tc

xc xA B

(b)

0

t

Figure 2.4 (a) The characteristics C diverge. (b) The characteristics C converge
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solution first forms. Thus, for the time interval 0 ≤ t< tc, because the char-
acteristics have not yet intersected, the solution of the initial-value problem
that gives rise to this envelope of characteristics is well defined and unique,
but for times t> tc the intersection of characteristics means that a discon-
tinuous solution has been formed, so the unique differentiable solution that
exists prior to t = tc cannot be extended beyond the time t = tc.

An analytical way of demonstrating this last result is by eliminating the
parameter ξ between the initial condition u = g(ξ ) and equation (2.52),
leading to the implicit solution for u given by

u = g(x − tf (u)). (2.56)

It is a well-known result from the calculus that, when an implicit equa-
tion has a solution, the solution is not necessarily unique. So, in the case of
Figure 2.4(a) the implicit equation (2.51) has a unique solution, whereas in
the case of Figure 2.4(b), at some time t = T the continuous initial solution
must evolve to the point where it becomes non-unique due to the forma-
tion of a discontinuous solution. In the case of the shallow water equations
where this phenomenon can also occur, this non-uniqueness can be shown
to correspond to the development of an hydraulic jump.

Further evidence that a jump solution can occur can be seen by differen-
tiation of equation (2.56) partially with respect to x to obtain

∂u
∂x

= g
(
x − tf (u)

)
1 + tg′ (x − tf (u)

)
f ′(u)

, (2.57)

from which it follows that ux becomes infinite whenever t is such that the
denominator 1 + tg′(x − tf (u))f ′(u) = 0.

Unlike elliptical and parabolic equations, hyperbolic equations can
describe the propagation of jump discontinuities and, as already remarked,
in the case of the shallow-water equations these discontinuous solutions
represent idealized hydraulic jumps. In reality, dissipative effects convert
a discontinuous jump into a continuous but very localized solution that
changes rapidly from a constant value u− to the immediate left of a narrow
transition region to a constant value u+ to the immediate right. To illustrate
the basic idea of a discontinuous-jump solution it is necessary to introduce
the idea of a conservation law.

Let u(r, t) be the density of a physical material Q of interest at a point
with position vector r in space at time t. Typically, such a physical material
Q could be a compressible fluid, in which case u(r, t) could be its density.
Then, if M is the amount of material Q present in a volume V at time t

M =
∫

V

u(r, t)dV,
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so the rate of change of the amount of material Q with respect to time is

dM
dt

= d
dt

∫
V

u(r, t)dV. (2.58)

Now let F be a vector function depending on u(r, t) that is defined at each
point of V. Then, from elementary vector calculus, the flow dq of F through
an element of area dA of the surface S that bounds V at position r and time
t is dq = F.ndA, where n is the outward-drawn normal to S at position r,
and the dot signifies a vector scalar product. Defining the vector element
of area on the surface S as dS = ndA, the amount dq of material Q leaving
volume V through the vector element of area dS is dq = F · dS, and so after
integration over the surface S this becomes

q =
∫

S

F · dS. (2.59)

Combining equations (2.58) and (2.59), and assuming there is no mecha-
nism by which material Q can be added to or removed from V, we arrive at
the result

d
dt

∫
V

u(r, t)dV =−
∫

S

F · dS, (2.60)

where the negative sign is necessary because material Q is leaving the
surface S.

Taking the differentiation with respect to t under the integral sign on
the left of equation (2.60) and applying the Gauss divergence theorem to
the term on the right (see Jeffrey (2002), Kreyszig (2005), O’Neil (1995))
permits this conservation law to be written as the single integral∫

V

(
ut + div [F(u)]

)
dV = 0. (2.61)

This balance law, which relates the rate of change in the amount of mate-
rial Q inside V to its loss due to outflow from V, is called an integral
conservation law for the material Q.

If the quantity under the integral sign is continuous and differentiable
then, because V is arbitrary, the result can only be true if the integrand
vanishes, in which case

ut + div [F(u)] = 0, (2.62)

and this is the differential equation form of the integral conservation law in
equation (2.61).
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Let us now consider the one-dimensional case in the (x, t) plane, when
div [F(u)] = (F(u))x = f (u)ux, with f (u) = dF/du. This causes equation (2.62)
to reduce to

ut + f (u)ux = 0, (2.63)

which is simply equation (2.53), showing that it is, in fact, a differential
form of a conservation law.

If u(x, t) is not continuous, the result of equation (2.63) is no longer true,
and to examine the consequence of this we must work with the integral
form of the conservation law. This becomes necessary because, although the
derivative of a discontinuous function is not defined, the definite integral of
a discontinuous function is always well defined. So we must now work with
the one-dimensional form of equation (2.60), which becomes

d
dt

∫ b

a

u(x, t)dx +
∫ b

a

[F(u)]xdx = 0, (2.64)

where the interval a ≤ x ≤ b is arbitrary. When F(u) is continuous and
differentiable, it follows from the fundamental theorem of calculus that

d
dt

∫ b

a

u(x, t)dx + F
[
u(b, t)

]− F [u(a, t)] = 0.

Now let us suppose the interval contains a moving point x = s(t) across
which u and hence F(u) is discontinuous. The result of equation (2.64) then
becomes

d
dt

∫ s(t)−

a

udx + d
dt

∫ b

s(t)+
udx + F

[
u(b, t)

]− F [u(a, t)] = 0,

where s(t)− and s(t)+ represent the left and right sides of the discontinuity at
s(t). We now apply the Leibniz theorem from the calculus for differentiation
under an integral sign to this last result, where the theorem takes the form

d
dt

∫
a

s(t)−
utdx + ds

dt
u(s(t)−, t) +

∫ b

s(t)+
utdx − ds

dt
u(s(t)+, t)) + F(u(s(t)−)

−F(u(s(t)+).

After letting a → s(t)− and b → s(t)+, and using the result from the previous
integral, the following result is found to be valid across the discontinuity
in u:

ds
dt
(u− − u+)= F(u)− − F(u)+,
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where ds/dt = U is the speed of propagation of the discontinuity in u. This
last result can be written more concisely as

U[[u]] = [[F(u)]], (2.65)

where the double bracket [[.]] signifies the jump in its argument across the
discontinuity.

When this result is generalized and applied to the shallow-water equa-
tions, the discontinuity in u corresponds to a hydraulic jump, and U
corresponds to the speed of propagation of the discontinuity. A corre-
sponding result when applied to supercritical flow describes pressure surges
(waterhammer).

2.10 The classification of quasilinear and semilinear
systems, hyperbolic systems and characteristics

We now show how the classification of a quasilinear first-order system of
equations can be defined, and why a system like the shallow-water equations
(equations 2.36 and 2.37) that describe wave propagation is classified as
hyperbolic. To classify a linear or quasilinear first-order system of PDEs it
will be necessary to work with matrices. We will consider the quasilinear
first-order system

∂U
∂t

+ A(U)
∂U
∂x

+ B(U) = 0, (2.66)

where U is an n-element column vector with the continuous components
u1(x, t), u2(x, t), . . . ,un(x, t), A(U) = A[aij(U)] with i, j = 1,2, . . . ,n is an
n × n matrix with continuous real elements aij that may depend on U,
and B(U) is an n-element column vector with the continuous elements
b1(U),b2(U), . . . ,bn(U) that may or may not depend on U. Here we use
the notation ∂U/∂t to denote the column matrix obtained by partial dif-
ferentiation of each of the elements of U with respect to t, and ∂U/∂x to
denote the column matrix obtained by partial differentiation of each of the
elements of U with respect to x. When A(U) is only a function of x and t,
and B(U) depends linearly on U, and possibly also on x and t, system (2.66)
becomes linear, while if A(U) depends only on x and t, but B(U) depends
non-linearly on U, system (2.66) becomes semilinear.

Although the space variable x and the time t are natural variables to
choose when deriving a system of equations that describe some physical phe-
nomenon, they are not always the most convenient ones to use when seeking
to understand the mathematical properties of such a system. Accordingly, as
we wish to study the way in which a solution vector U evolves with time,
we will leave the variable t essentially unchanged, but examine the effect of



40 Theoretical background – mathematics

replacing the space variable x by a new curvilinear coordinate ξ = ξ (x, t),
the nature of which is to be determined. Thus, the starting point will be to
change from the coordinates (x, t) to the new coordinates (ξ, t′) where

ξ = ξ (x, t), t′ = t. (2.67)

Later we will see that there is an important difference between the old and
new coordinate systems that will be significant in what is to follow. Provided
the transformation between points in the (x, t) plane and the (ξ, t′)-plane is
unique, an application of the chain rule shows that the differential operators
∂/∂t and ∂/∂x become

∂

∂t
≡ ∂ξ

∂t
∂

∂ξ
+ ∂t′

∂t
∂

∂t′ ≡
∂ξ

∂t
∂

∂ξ
+ ∂

∂t′ , and
∂

∂x
≡ ∂ξ

∂x
∂

∂ξ
+ ∂t′

∂x
∂

∂t′ ≡
∂ξ

∂x
∂

∂ξ

where, of course, ∂ξ/∂t and ∂ξ/∂x are scalar quantities. It is here that the
difference between the old and new coordinate systems becomes important.
To appreciate this, note that Ux is the partial derivative of U with respect
to x when t = constant, so it is the partial derivative of U normal to the
straight line t= constant in the (x, t) plane, and Ut is the partial derivative of
U along a line x= constant. However, the partial derivative Ut′ is the partial
derivative of U along the curved line ξ = constant, while the derivative Uξ is
the partial derivative of U normal to this curved line. When system (2.66) is
transformed in this way it becomes

∂U
∂t′ +

(
∂ξ

∂t
I + ∂ξ

∂x
A
)
∂U
∂ξ

+ B = 0 , (2.68)

where I is the n × n unit matrix.
To proceed further, and to arrive at definitions of hyperbolicity, parabol-

icity and ellipticity that can be applied to quasilinear first-order systems of
PDEs, it will be necessary to make use of the concept of the eigenvalues and
eigenvectors of an n × n matrix A. A reader who needs to refresh their ideas
about these matters is referred to the Appendix to this chapter.

If we now consider equation (2.68) as an algebraic system for which the
vector ∂U/∂t′ is specified on an initial line (an initial condition), it is clear
that this information can only be used to determine ∂U/∂ξ if the inverse of
the matrix premultiplying ∂U/∂ξ exists, because only then can ∂U/∂ξ be
found from ∂U/∂t′. For this to be true it is necessary that the determinant

det
∣∣∣∣∂ξ∂t

I + ∂ξ

∂x
A
∣∣∣∣

must be non-singular (it must not vanish) in order to ensure that the matrix
multiplier of ∂U/∂ξ has an inverse. So far the choice of ξ has been arbitrary,
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but now suppose ξ is identified with a variable ϕ with the property that the
determinant really does vanish, so that

det
∣∣∣∣∂ϕ∂t

I + ∂ϕ

∂x
A
∣∣∣∣= 0. (2.69)

This means that the matrix vector ∂U/∂ϕ in equation (2.68) will become
indeterminate across the curves ϕ(x, t) = constant, while along these curves
∂ϕ/∂xdx + ∂ϕ/∂tdt = 0. Combining this result with equation (2.69) gives

det
∣∣∣∣A − dx

dt
I
∣∣∣∣= 0. (2.70)

Setting dx/dt = λ, equation (2.70) becomes

det |A − λI| = 0. (2.71)

However, the dimensions of λ are those of a speed, and equation (2.71) is
the condition that determines the eigenvalues λ1, λ2, . . . , λn of matrix A(U)
(see the Appendix to this chapter). So, if A is such that these eigenvalues
are all real, this equation will determine n speeds, called the characteristic
speeds of the system. When this occurs, provided A has a corresponding full
set of right eigenvectors r1, r2, . . . , rn satisfying the defining matrix equation

[A − λiI] ri = 0, i= 1,2, . . . ,n, (2.72)

equation (2.66) will be classified as hyperbolic. In this case there will
be n families of real characteristic curves Ci, i = 1,2, . . . ,n determined by
integration of the n equations

Ci:
dx
dt

= λi, i = 1,2, . . . ,n, (2.73)

where it will be remembered that λ=λ(U), so in general these characteristic
curves can only be determined when U is known and λ(U) is integrable.
When U is not known, which is generally the case, the solution U and the
characteristic curves must be found simultaneously by means of numerical
methods.

We have seen that across each characteristic curve ϕ = constant the vec-
tor ∂U/∂ϕ may be discontinuous. So each family of characteristic curves
is capable of transporting a discontinuity in the slope of U (but not a
discontinuity in U itself), and we will call this type of disturbance a prop-
agating wavefront. This situation is shown in Figure 2.5 for the solution
surface S for the element uj of U, which at t = 0 satisfies an initial condition
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Figure 2.5 The propagation of an initial discontinuity in ∂uj/∂ϕ with time

uj(x,0) =ψj(x), while the characteristic curve ϕ= k transports an initial dis-
continuity in the derivative ∂uj/∂x that exists across the solution surface S
along PQ as time t increases, forming a propagating wavefront. It is conve-
nient to describe the characteristic through the point (a,0) in Figure 2.5 as
the wavefront trace, because it is the projection of the wavefront PQ onto
the (x, t) plane.

Let us now show that the shallow-water equations (equations 2.36 and
2.37) are hyperbolic, and to do this we need to write the equations in
the form

∂U
∂t

+ A(U)
∂U
∂x

+ B(U) = 0, (2.74)

with

U =
[

u
η

]
, A(U) =

[
u g

η+ h u

]
, and B(U) =

[
0

uhx

]
. (2.75)

A routine calculation shows that the eigenvalues of A and its right
eigenvectors that satisfy the equation [A − λiI] ri = 0 are

λ1 = u −
√

g(η+ h), λ2 = u +
√

g(η+ h), (2.76)
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and

r1 =
[

1
−√(η+ h)/g

]
, r2 =

[
1√

(η+ h)/g

]
. (2.77)

The eigenvalues are always real, and because they have the dimensions of
speed they represent wave speeds. The right eigenvectors are linearly inde-
pendent so, by our definition of hyperbolicity, this requires the system to
have n real eigenvalues and a full set of n linearly independent eigenvectors,
and the system is thus seen to be unconditionally hyperbolic. Thus, in the
shallow-water equations the speed of a point on the surface of a surface
wave is

√
g(η+ h). This result provides a simple explanation of why waves

‘break’ – because, depending on the change of depth, the crest of a smooth
wave may advance faster than a trough, the waves steepen and finally break
when the crest overtakes the trough.

The quasilinear system (equation 2.74) will be elliptical when all the
eigenvectors of A are complex, so in this case, as the characteristics are
not real curves, the method of characteristics does not apply. The parabolic
case corresponds to the situation where the eigenvalues and eigenvectors are
all real, but the structure of A(U) is such that one of its eigenvectors may be
assigned arbitrarily. So, in the case of a parabolic system, there is a degen-
eracy in the families of characteristic curves. More complicated situations
can also arise as, for example, in the case when A(U) has both real and
complex eigenvalues, which corresponds to a mixed hyperbolic–elliptical
system. The considerable difficulties that arise when seeking a solution to a
system of this type will not be discussed here.

Any second-order PDE can always be written as a first-order system by
introducing its first-order partial derivatives as new dependent variables. We
now use this result to show that the classification described above is compat-
ible with the classification of the wave equation based on the discriminant
�= B2 − AC. Let us show the wave equation

∂2u
∂t2

= c2 ∂
2u
∂x2

(2.78)

is hyperbolic, while the Laplace equation

∂2u
∂x2

+ ∂2u
∂y2

= 0 (2.79)

is elliptical.
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Introducing the new variables v = ∂u/∂t and w = ∂u/∂x, the wave
equation (2.78) takes the form

∂ν

∂t
= c2 ∂w

∂x
, (2.80)

and to connect v and w we use the fact that, as the partial derivatives are
continuous, there must be equality of the mixed partial derivatives, so that

∂ν

∂x
= ∂w

∂t
. (2.81)

When this first-order system is written in matrix form it becomes

∂U
∂t

+ A
∂U
∂x

= 0 , (2.82)

where

U =
[
ν

w

]
and A=

[
0 −c2

−1 0

]
, (2.83)

from which the eigenvalues λ1 and λ2 and the corresponding right eigenvec-
tors r1 and r2 of A are found to be

λ1 =−c, λ2 = c, r1 =
[

c
1

]
and r2 =

[ −c
1

]
. (2.84)

The eigenvalues representing the wave speeds are ±c, in agreement with
the general solution u(x, t) = f (x − ct) + g(x + ct), and the right eigenvectors
are linearly independent, so by the criterion introduced for the classification
of systems of first-order PDEs, the wave equation (2.78) is unconditionally
hyperbolic.

To show that the Laplace equation is elliptical, we again introduce the
new variables ν= ∂u/∂x and w = ∂u/∂y, when equation (2.75) becomes

∂ν

∂x
+ ∂w
∂y

= 0, (2.85)

and once again we connect u and ν by the equality of mixed derivatives

∂ν

∂y
= ∂w
∂x

. (2.86)
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When written in matrix form, equations (2.85) and (2.86) become

∂U
∂x

+ A
∂U
∂y

= 0 , (2.87)

where

U =
[
ν

w

]
and A=

[
0 1

−1 0

]
. (2.88)

The eigenvalues of A are found to be the complex conjugates λ1 = −i
and λ2 = i, confirming that the Laplace equation is elliptical, as already
determined by the discriminant test, because �=−1 is negative.

2.11 A fundamental difference between elliptical
and hyperbolic equations

This is a suitable place to demonstrate the fundamental difference between
the solutions of hyperbolic and elliptical equations, and to do so it will be
necessary to make use of two results that will only be quoted. The first is
the Poisson integral formula for the solution of the Laplace equation in a
circular disc of radius r0 centred on the origin. This result asserts that, in
terms of the plane polar coordinates (r, θ ), the solution u(r, θ ) of the two-
dimensional Laplace equation inside a circle of radius r0, on the boundary of
which the continuous Dirichlet condition u(r0, θ ) = f (θ ) is imposed, where
f (θ ) is periodic with period 2π , is given by

u(r, θ ) = 1
2π

∫ 2π

0

(r2
0 − r2)f (ψ)dψ

r2
0 − 2rr0 cos (ψ − θ ) + r2

, (2.89)

where ψ is a dummy variable of integration (introduced to avoid confusion
with θ ).

The second result is taken from complex analysis where it is shown
that a special type of transformation, called a conformal transformation,
can always be found. This transforms any simple region D, in which u is
the solution of the Laplace equation subject to Dirichlet conditions on its
boundary, onto the interior of a circle of radius r0 centred on the origin.
The transformed solution thus obtained is again a solution of the Laplace
equation subject to the same Dirichlet conditions. Note that the transforma-
tion is such that the boundary conditions for the solution in region D are the
same as those for the solution inside the circle. (See, for example, Brown and
Churchill (2007).) This means that the fundamental properties of the solu-
tions of the Laplace equation are mirrored by those of the solution described
by equation (2.89). The property to be stressed here can be seen immediately
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from equation (2.89), because the Dirichlet boundary condition enters into
the numerator of the integral in equation (2.89), so the boundary condi-
tion over any arc of the perimeter of the circle, or indeed over the complete
perimeter, will influence the solution of the Laplace equation at every point
inside the circle. Contrast this with the wave equation, where the solution
at any point P only depends on the initial conditions over a finite segment
of the initial line that forms the domain of dependence for that point. So, in
the hyperbolic case, changes in the initial conditions outside the domain of
dependence of point P will not affect the solution at P, or at points in the
range of influence of P.

A qualitative property of elliptical equations that is often useful is that, if
u is a continuous solution of the Laplace equation in some finite region D
with boundary �, then provided u is not constant (when the result is trivial)
the maximum and minimum values of u must occur on the boundary �. This
result can be found in Garabedian (1999), Zauderer (2006) and elsewhere.

2.12 The derivation of a mathematical model
involving partial differential equations – the
shallow-water equations

To give an example of how a mathematical model can be constructed,
we now derive the shallow-water equations in one space dimension and
time. This quasilinear hyperbolic system of equations provides a sim-
ple description of the way surface waves on water behave in rivers and
when approaching beaches. First, we introduce some definitions (see also
Chapter 1). A mathematical model of a physical situation is a set of equa-
tions representing physical laws that can be considered to describe a real
situation. In the construction of a mathematical model it is usually nec-
essary to make certain approximations, and in the case of surface waves
on water the approximations may involve ignoring viscosity and assum-
ing the length of a surface wave is large relative to the depth of the water.
A numerical model is an approximation of a mathematical model based
on a grid of points in the (x, t) plane, at each point of which derivatives
and partial derivatives in the mathematical model are replaced by finite-
difference equations. The numerical model obtained in this way is then a
set of algebraic equations that connect the solution at each of the discrete
points of the grid to the initial and boundary conditions. A computational
model is an application of a numerical model to a specific situation in which
numerical values for the unknown functions are obtained at each of the
grid points. We now illustrate one of the ways in which a mathematical
model can be derived from the fundamental equations that govern a physical
situation.

For our illustration we choose the derivation of the shallow-water equa-
tions (equations 2.36 and 2.37), starting from the basic fluid-mechanics
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equations and using reasoning similar to that used by Lamb (1993) in
the reprint of his classical account of hydrodynamics, and repeated in the
reprint of the book by Stoker (1992). Here u(x, t) and ν(x, t) are the respec-
tive horizontal and vertical components of the water velocity, y = −h(x) is
the equation of the variable depth of the river or sea bed relative to the
horizontal x-axis and the vertical axis y, with the x-axis taken to lie in the
equilibrium level of the water, while y = η(x, t) is the vertical displacement
of the free surface. For convenience, this situation shown first in Figure 2.1
is repeated in Figure 2.6.

The fundamental equations involved are:

the equation of continuity

ux + vy = 0, (2.90)

and

the free surface kinematical condition

(ηt + uηx − ν)
∣∣
y=η = 0. (2.91)

The free surface dynamical condition on the pressure p is

p
∣∣
y=η = 0, (2.92)

y

0

u(x, t)

x

y + h(x) = 0

ut + uux + g ηx = 0
[u(η+h)]x + ηt = 0

η(x, t)

h(x)

Figure 2.6 The geometry of the shallow-water model
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while the condition at the river or sea bed is(
uhx + ν

) ∣∣
y=−h = 0. (2.93)

Integration of the continuity condition from the bed to the free surface with
respect to y gives∫ η

−h

uxdy + ν
∣∣η−h = 0. (2.94)

Using the conditions at the free surface y = η, and at the bed y = −h, this
becomes∫ μ

−h

uxdy + ηt + u
∣∣
η ηx + u |−h hx = 0. (2.95)

After using the Leibniz theorem for differentiation under the integral sign

∂

∂x

∫ η(x)

−h(x)

udy = u
∣∣
y=η ηx + u

∣∣
y=−h hx +

∫ η

−h

uxdy,

equation (2.95) takes the simple form

∂

∂x

∫ η(x)

−h(x)

udy =−ηt. (2.96)

So far the only approximation to have been made, apart from ignoring
viscosity, has been to restrict the analysis to one-dimensional flow.

Because the water is shallow, the shallow-water equations assume that
the vertical component of acceleration of the water can be neglected, and
so it will have a negligible effect on the pressure p, which from hydrostatic
reasoning is given by

p = gρ(η− y), (2.97)

where g is the acceleration due to gravity and ρ is the density of water.
Thus, px = gρηx, showing that px is independent of y. Consequently, the
x-component of the acceleration of the water velocity must also be indepen-
dent of y, with the result that the x-component of the water velocity is also
independent of y. Under these conditions the equations governing the flow
simplify to

ut + uux + gηx = 0, (2.98)
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which is just the usual Euler form of the equation of motion, and to the
equation[

u
(
η+ h

)]
x
+ ηt = 0, (2.99)

already quoted in equation (2.37), where the result
∫ η

−h udy = u
∫ η

−h dy has
been used, which is permissible because in the shallow-water approximation
u is independent of y.

If the further approximation is made that u and η are small, so that
their products and squares can be neglected relative to the linear terms,
elimination of η leads to the result

[
uh
]

xx
= 1

g
utt.

If now the depth h of the water is constant, we arrive at the result utt =ghuxx,
and by setting c2 = gh, where c is the surface wave speed, this becomes the
familiar wave equation

utt = c2uxx. (2.100)

A numerical model for the shallow-water equations follows when equa-
tions (2.98) and (2.99) are replaced by some form of discrete numerical
approximation, such as, for example, when the finite-difference method
(described later) is used. A variety of applications of this model to different
physical situations can be found in Mader (2004) and Abbott and Minns
(1998).

The conditions under which the shallow-water equations have been
derived are such that they can be used in hydraulics to study open-channel
flows, roll waves, and surges in channels due to a sudden influx of water. In
general, the validation of a mathematical model requires a careful examina-
tion of the approximations that have been made, followed by a comparison
of the numerical results obtained from the equations with experimental data
obtained under conditions for which the above approximations are valid.
For applications of hydraulics to flood routing, see Price (1973), (1975),
(1978), (1985); see also Anderson (1995) and Bürgisson (1999).
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Appendix

Eigenvalues, eigenvectors, and an application of
matrix diagonalization

This appendix reviews the related concepts of the eigenvalues and eigen-
vectors of n × n matrices A, and describes their use when diagonalizing a
matrix. The use of diagonalization mentioned in Section 2.1.1 in connection
with solving linear systems of ODEs is also discussed.

The eigenvalues and eigenvectors of an n × n matrix A arise when finding
the solution of the matrix equation

Ax = b, (A2.1)

where A has real elements aij, x is a column vector with the n elements
x1,x2, . . . ,xn, and b is an n-column element vector that is proportional to
the vector x.

Denoting the scalar constant of proportionality between the vectors x and
b by λ reduces this problem to finding a column vector x such that b = λx,
causing system (A2.1) to simplify to the matrix equation Ax = λx.

When written out in full, the system Ax = λx becomes

a11x1 + a12x2 + · · ·+ a1nxn = λx1

a21x1 + a22x2 + · · ·+ a2nxn = λx2

· · ·
an1x1 + an2x2 + · · ·+ annxn = λxn.

(A2.2)

At first sight this appears to be a non-homogeneous system of algebraic
equations, but in each equation the term on the right can be combined with
a corresponding term in the expression on the left, leading to the follow-
ing homogeneous system of algebraic equations, in which λ appears as a
parameter



Theoretical background – mathematics 53

(a11 − λ)x1 + a12x2 + · · ·+ a1nxn = 0
a21x1 + (a22 − λ)x2 + · · ·+ a2nxn = 0

· · ·
an1x1 + an2x2 + · · ·+ (ann − λ)xn = 0.

(A2.3)

In matrix notation, after introducing the n × n unit identity matrix I,
equation (2.99) becomes

[A − λI]x = 0. (A2.4)

An example of a problem that leads to a matrix equation of this type
occurs when attempting to solve a linear first-order matrix differential equa-
tion of the form dx

/
dt = Ax, where A is an n × n constant matrix and x

is an n-element column vector. Copying the type of solution expected for
the scalar ODE dx

/
dt = ax, by choosing for a trial solution the expres-

sion x = x0eλt., where x0 is a constant column vector, substitution into the
differential equation gives λx0eλt = Ax0eλt. Cancelling the factor eλt pro-
duces the matrix equation [A − λI]x0 = 0, which is precisely of the form
of equation (A2.4).

As the algebraic system (A2.4) is homogeneous, it is known from the
study of matrices that it has two possible types of solution. The obvious
solution is x = 0, in which case x1 = x2 = . . .= xn = 0, and this is called the
trivial solution because it is of no interest. The second solution is non-trivial,
and it follows when a row of elements in matrix A is a sum of multiples of
the elements in the other rows, so there is linear dependence between the
rows of A. When this occurs, not all the elements of vector x can vanish; this
situation can only happen if the determinant of the matrix A − λI vanishes,
because the vanishing of the determinant is the condition that there is linear
dependence between the rows of A. Thus, the condition for a non-trivial
solution to become possible is that

det[A − λI] = 0. (A2.5)

When the determinant in equation (A2.5) is expanded it will give rise to a
polynomial in λ of degree n, called the characteristic polynomial associated
with matrix A, and this polynomial will vanish only when λ is any one
of its n zeros. The polynomial equation in λ defined by equation (A2.5)
is called the characteristic equation associated with matrix A. The n roots
λ1, λ2, . . . , λn of the characteristic polynomial are called the eigenvalues of
A. From equation (A2.4) it follows that to each eigenvalue λi of A there
corresponds a column vector x(i) such that

[A − λiI]x(i)=0. (A2.6)
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The n vectors x(i), with i = 1,2, . . . ,n, are called the eigenvectors of A
corresponding to the eigenvalues λi. In general, an n × n matrix A will have
n different eigenvectors x(1),x(2), . . . ,x(n), in the sense that no one eigenvector
is proportional to any of the others.

It can happen that a matrix has an eigenvalue λj that is repeated r
times, in which case (λ − λj)r is a factor of the characteristic equation.
Such a repeated root of the characteristic equation is said to be an eigen-
value with algebraic multiplicity r. Our concern will be with the case
when A has n distinct eigenvectors, even though some of the eigenval-
ues may be repeated. The more complicated situation that arises when
A has fewer than n distinct eigenvectors will not be considered here,
although it is of importance in the study of parabolic systems of PDEs, and
elsewhere.

Expanding det [A − λI], the eigenvalues λi are seen to be the roots of the
polynomial of degree n in λ given by

det[A − λI] =

∣∣∣∣∣∣∣∣∣∣

a11 − λ a12 · · · a1n

a21 a22 − λ · · · a2n

...
...

...
...

an1 an2

... ann − λ

∣∣∣∣∣∣∣∣∣∣
= 0, (A2.7)

so det [A − λI] can be factored and written as

det(A − λI) =(λ1 − λ)(λ2 − λ) · · · (λn − λ), (A2.8)

For conciseness when displaying eigenvectors in text, as here, the column
eigenvectors x(i) in equation (A2.6) will be written as x(i) = [x(i)

1 ,x
(i)
2 , · · · ,x(i)

n ]T,
for i=1,2, . . . ,n. Here the superscript T signifies the matrix transpose oper-
ation, which when applied to a matrix switches its rows into columns
and its columns into rows. When displayed in full, equation (A2.6)
becomes

⎡⎢⎢⎢⎣
a11 − λi a12 · · · a1n

a21 a22 − λi · · · a2n

...
...

...
...

an1 an2 · · · ann − λi

⎤⎥⎥⎥⎦
⎡⎢⎢⎢⎣

x(i)
1

x(i)
2
...

x(i)
n

⎤⎥⎥⎥⎦=

⎡⎢⎢⎢⎣
0
0
...
0

⎤⎥⎥⎥⎦, i=1,2, . . . ,n.

(A2.9)

The algebraic homogeneity of equations (A2.9) (the vector on the right
is 0) means the values of the n quantities x(i)

1 ,x
(i)
2 , . . . ,x

(i)
n cannot be deter-

mined uniquely, because one of the equations in (A2.9) must be linearly
dependent on the others. This has the result that n − 1 of the elements of
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an eigenvector can only be expressed in terms of multiples of the remain-
ing element, say x(i)

r , the value of which may be assigned arbitrarily. So
equation (A2.9) only determines the ratios of the elements of the eigen-
vector x(i) relative to an arbitrary value for x(i)

r as a parameter. This has the
important consequence that once an eigenvector has been found it can be
multiplied by an arbitrary constant k �= 0 (scaled by k) and still remain an
eigenvector.

Finding the characteristic polynomial and its roots (the eigenvalues) of an
n × n matrix when n is large requires the use of a computer and numerical
methods (see Press et al. (2007) in Chapter 3).

To illustrate matters, in the example that follows, the 3 × 3 matrix

A =
⎡⎣ 1 0 −1

−2 −1 2
−1 2 1

⎤⎦ . (A2.10)

has been constructed so that its characteristic polynomial is easily obtained
and its eigenvalues (the roots of the characteristic equation) can be found
by inspection. When the characteristic determinant is expanded it yields the
characteristic polynomial

det [A−λI]=
∣∣∣∣∣∣

1 − λ 0 −1
−2 −1 − λ 2
−1 2 1 − λ

∣∣∣∣∣∣=6λ+λ2 −λ3 =λ(λ+2)(3−λ),

so the eigenvalues of A, that is, the roots of det [A − λI] = 0, are seen
to be

λ1 =−2, λ2 = 0 and λ3 = 3, (A2.11)

and no eigenvalue is repeated, so each has multiplicity of 1.
To find the eigenvector x(1) corresponding to λ1 we must solve the

matrix equation [A − λI]x = 0, with λ = λ1 = −2. This matrix equation
becomes⎡⎣ 1 − ( − 2) 0 −1

−2 −1 − ( − 2) 2
−1 2 1 − ( − 2)

⎤⎦⎡⎣ x(1)
1

x(1)
2

x(1)
3

⎤⎦=

⎡⎣ 3 0 −1
−2 1 2
−1 2 3

⎤⎦⎡⎣ x(1)
1

x(1)
2

x(1)
3

⎤⎦=
⎡⎣ 0

0
0

⎤⎦ ,
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and when this is written out in full it leads to the three simultaneous
equations

3x(1)
1 − x(1)

3 = 0,−2x(1)
1 + x(1)

2 + 2x(1)
3 = 0,−x(1)

1 + 2x(1)
2 + 3x(1)

3 = 0. (A2.12)

As the system is homogeneous, any one of these three equations must
be linearly dependent on the other two. So, when using any two of these
equations, it is only possible for two of the three unknowns to be found in
terms of the third unknown, which may be assigned an arbitrary value (it is
a parameter). If we take the third of the above equations to be the redundant
equation (an arbitrary choice), we are left with the first two equations from
which to determine x(1)

1 ,x
(1)
2 and x(1)

3 . This can be done, because these two
equations are linearly independent, and so are not proportional. To proceed
further we will find x(1)

2 and x(1)
3 in terms of x(1)

1 =k1, where k1 �=0 is arbitrary
(it is a parameter). The first equation gives x(1)

3 = 3k1, and using x(1)
1 = k1

and x(1)
3 = 3k1 in the second equation we find that x(1)

2 = −4k1. Of course,
using x(1)

1 = k1, and x(1)
3 = 3k1 in the third equation again yields x(1)

2 = −4k1,
confirming the redundancy of this equation, since it is a linear combination
of the first two equations.

We have shown that the eigenvector x(1) can be taken to be x(1) =[
k1,−4k1,3k1

]T
, where k1 �= 0 is arbitrary. As the scaling of an eigenvec-

tor is arbitrary, it is usual to set the scale factor k1 equal to a convenient
numerical value, such as k1 = 1, and with this choice the above eigenvec-
tor corresponding to λ= λ1 = −2 becomes x(1) = [1,−4,3]T. The remaining
eigenvectors follow in similar fashion, and the set of three eigenvalues and
their corresponding eigenvectors turn out to be

λ1 =−2, x(1) =
⎡⎣ 1

−4
3

⎤⎦ , λ2 = 0,x(2) =
⎡⎣ 1

0
1

⎤⎦ , λ3 = 3,x(3) =
⎡⎣ 1

− 3
2−2

⎤⎦ .

(A2.13)

When necessary, the fact that eigenvectors can be scaled and still
remain eigenvectors is used to normalize them. Typically, an eigenvector
x = [a,b, c]T is normalized by multiplication by the normalizing factor
k = 1/

√
a2 + b2 + c2, when it becomes the normalized eigenvector x̃(1) =

[ka,kb,kc]T. Other normalizations are also used, although when this par-
ticular normalization is applied to the eigenvector x(1) above, it produces

the normalized eigenvector x̃(1) =
[

1√
26
,− 4√

26
, 9√

26

]T

. The need for normal-

ization arises from the fact that certain procedures involve repeated scaling
of eigenvectors, and the effect of normalization is to ensure that after



Theoretical background – mathematics 57

repeated scaling the elements in an eigenvector do not become either
arbitrarily large or vanishingly small, thereby preserving accuracy in the
calculations.

Consideration of the effort involved when finding the eigenvalues and
eigenvectors of the 3 × 3 matrix used above will have convinced the reader
of the need for software when finding the eigenvalues and eigenvectors
of the much larger n × n matrices that often arise in practice. The way
in which numerical procedures work when finding eigenvalues and eigen-
vectors is quite different from the formal method outlined above, and the
details of these computationally efficient procedures will not be given here.
Usually eigenvalues and eigenvectors are found using professional soft-
ware packages such as MAPLE®(2007), MATLAB®(2007) and MathCAD®

(2007), where the software is designed to be self-adaptive, so it chooses
the most appropriate method of calculation to be used at each stage of the
procedure.

A diagonal matrix is an n×n matrix in which the only non-zero elements
occur on the leading diagonal, that is, the diagonal that runs from top left
to bottom right of the matrix. The simplest diagonal matrix is, of course,
the unit matrix I. A convenient notation for a diagonal matrix D with the
elements λ1, λ2, . . . , λn on its leading diagonal is

D = diag {λ1, λ2, . . . , λn} .

An n × n matrix A can always be diagonalized if it has n linearly
independent eigenvectors; that is, if no one of the n eigenvectors is propor-
tional to any other eigenvector. Let the n linearly independent eigenvectors
be v1,v2, . . . ,vn, and their corresponding n eigenvalues be λ1, λ2, . . . , λn,
some of which may be repeated. Let P be a matrix with its columns
being the eigenvectors v1,v2, . . . ,vn, then P is called a diagonalizing matrix
for A. Matrix A is diagonalized by forming the matrix product P−1AP,
where P−1 is the inverse matrix of P. The result of the matrix product
P−1AP is to yield the matrix D = diag{λ1, λ2, . . . , λn}, where the order in
which the eigenvalues appear on the leading diagonal of D is the order in
which their corresponding eigenvectors appear as the columns of A, so we
can write

P−1AP = D, (A2.14)

and, equivalently,

A = PDP−1. (A2.15)
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To diagonalize the matrix A in the above example, we define the
diagonalizing matrix

P =

⎡⎢⎢⎣
1 1 1

−4 0 −3
2

3 1 −2

⎤⎥⎥⎦ , from which it follows that

P−1 =

⎡⎢⎢⎢⎢⎢⎢⎣
− 1

10
−1

5
1

10
5
6

1
3

1
6

4
15

− 2
15

− 4
15

⎤⎥⎥⎥⎥⎥⎥⎦ .

A simple calculation confirms that P−1AP = D = diag{−2,0,3}.
We now illustrate how diagonalization can be used to solve the non-

homogeneous system of first-order equations

dx
dt

= Ax + b(t) (A2.16)

where the column vector b(t) has the elements b1(t),b2(t), . . . ,bn(t).
Substituting for A from equation (A2.15), system (A2.16) becomes

dx
dt

= PDP−1x + b. (A2.17)

However, P−1 is a constant matrix, so if system (A2.17) is multiplied
from the left (premultiplied) by P−1, this matrix may be taken under the
differentiation symbol, when the result becomes

d(P−1x)
dt

= DP−1x + P−1b. (A2.18)

Setting u = P−1x this simplifies to

du
dt

= Du + P−1b, (A2.19)

which is now a system of uncoupled ODEs, each of which is of the form

dui

dt
= λiui + fi(t), (A2.20)
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with ui(t) being the ith element of ui for i = 1,2, . . . ,n, while fi(t) is the ith
element of P−1b.

Equations (A2.20) are simple first-order linear ODEs that are easily
solved for ui(t) by means of an integrating factor (see result (2.12)), after
which u(t) can then be constructed. The required solution x(t) then follows
by using the result x = Pu.

Let us apply this approach to system (A2.16), with A being the 3 × 3
matrix in equation (A2.10) and b(t) = [0,1,0]T, subject to the initial
conditions x1(0) = x2(0) = x3(0) = 1. Equations (A2.20) become

du1

dt
=−2u1 − 1

5
,

du2

dt
= 1

3
,

du3

dt
= 3u3 − 2

15
.

When these are integrated using the initial conditions derived from the result
that u(0) = P−1x(0), and u is constructed, it follows from x = Pu that the
solution is

x1(t) =− 8
15

e3t − 1
10

e−2t + 1
3

t + 23
18
, x2(t) = 4

15
e3t + 2

5
e−2t + 1

3
,

x3(t) = 16
45

e3t − 3
10

e−2t + 1
3

t + 17
18

.



Chapter 3

Numerical techniques used in
hydraulic modell ing

3.1 Introduction

Practical applications of hydraulics require numerical and graphical results,
and if analytical expressions that describe phenomena of interest cannot
be derived from a mathematical model it becomes necessary to obtain the
results by purely numerical methods. This can involve the solution of vari-
ous types of mathematical problems, some of the most important of which
involve the solution of ordinary and partial differential equations (PDEs).

A numerical approach may involve the use of more than one technique,
and these may range from finding the roots of equations and approximating
discrete data in analytical form, to numerical integration, the determination
of the eigenvalues and eigenvectors of matrices, and the solution of the large
sets of linear algebraic equations that arise when using numerical methods
to solve PDEs.

The calculations that arise from practical problems can be complex, time-
consuming and, in many cases, impossible to perform by hand. Typically,
this happens when solving PDEs, because the methods used give rise to
many hundreds of linear algebraic equations that need to be solved by iter-
ation. Consequently, in practice numerical results are obtained and plotted
with the aid of a computer, using one of the efficient and highly optimized
commercial software packages that are available. The specialist hydraulics
packages will be mentioned later, but from among the general and very pow-
erful mathematical software packages that are readily available and easy
to use we mention MAPLE® (2007), MATLAB® (2007) with its various
special-purpose packages called Toolboxes, and MathCAD® (2007). Each
of these software packages is updated regularly to ensure it uses the latest
and most efficient numerical techniques, which in computing terminology
are called procedures. These are often self-adaptive to enable them to switch
between different procedures during a calculation in order to maintain a
predetermined accuracy and to accelerate the rate of convergence.

The purpose of this chapter is to provide an outline of the numeri-
cal solution of ordinary and PDEs, without attempting to describe all the
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possible methods and the refinements that are built into the general-purpose
optimized software packages.

3.2 Solving large sets of algebraic equations

3.2.1 Gaussian elimination

Because of the importance of solving systems of linear algebraic equations
that can arise in many different ways, and before showing how such sys-
tems of equations arise when solving PDEs, we review the following general
problem. In applications of mathematics to hydraulic computation and else-
where, systems of n non-homogeneous linear algebraic equations in the
n unknown real variables x1,x2, . . . ,xn arise, often where n is very large.
All such systems take the form

a11x1 + a12x2 + · · ·+ a1nxn = b1

a21x1 + a22x2 + · · ·+ a2nxn = b2

. . .

an1x1 + an2x2 + · · ·+ annxm = bn,

(3.1)

where the coefficients aij and the terms bI, called the non-homogeneous
terms, are given numbers. When all the terms bi are zero, system (3.1) is
said to be homogeneous.

If one or more of the equations in (3.1) can be expressed as a sum of
multiples of the other equations, say r< n of them, these equations are said
to be linearly dependent on the r equations. If, however, there is no linear
dependence among the n equations in (3.1) the system is said to be linearly
independent. The condition for the linear independence and dependence
of the equations in (3.1), when the terms bi are all zero, is a special case
of the corresponding conditions for functions given in equation (2.3) of
Chapter 2, with the functions u1(t),u2(t), . . . ,un(t) replaced by x1,x2, . . . ,xn.
For example, in the system of non-homogeneous equations

2x1 − x2 + 3x3 =1
x1 + x2 + x3 =2

4x1 + x2 + 5x3 =5,

the third equation is linearly dependent on the first two equations, because it
is the sum of the first equation and twice the second equation. So, although
the system appears to comprise three different equations involving the three
unknowns x1,x2 and x3, there are in fact only two linearly independent
equations.
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If the third equation is replaced by 4x1 + x2 + 5x3 = 6 the situation is
different. Although the expression on the left of the third equation is linearly
dependent on the expressions on the left of the first two equations, this is not
true of the non-homogeneous sixth term on the right of the third equation.
This means that the equations are inconsistent (i.e. they contradict each
other), because the result of subtracting the sum of the first equation and
twice the second equation from the third equation is to give 0 = 1, which
is impossible, showing that the modified system has no solution. Thus, for
equation (3.1) to have a solution when there is linear dependence of the
expressions on the left of equation (3.1), this same linear dependence must
exist for the terms bi on the right, although when such a dependence exists
the solution will not be unique, as will be shown later.

Finding the solution of system (3.1) involves finding the numbers
x1,x2, . . . ,xn that satisfy the equations, collectively called the solution set,
and the method to be described by which the solution set may be found is
called the Gaussian elimination process. This method, with important modi-
fications, forms the basis of all numerical software procedures for computers
that solve such systems directly without the use of iteration. To develop
the Gaussian elimination process it is convenient to use matrices, and to
represent system (3.1) in the form

Ax = b, (3.2)

where A = [aij] is the n × n coefficient matrix, b = [b1,b2, . . . ,bn]T is the
non-homogeneous column vector, and x = [x1,x2, . . . ,xn]T is the solution
vector. Here, to save space, the superscript T, signifying the matrix trans-
pose operation in which rows and columns are interchanged, has been used
to allow the matrix column vectors b and x to be written more concisely as
the transpose of the corresponding matrix row vectors.

System (3.1), correspondingly (3.2), can be displayed more concisely
by introducing what is called the augmented matrix denoted by A|b,
comprising matrix A adjoined to which on the right is vector b to give

A
∣∣b =

⎡⎢⎢⎢⎢⎢⎣
a11 a12 a13 · · · a1n b1

a21 a22 a23 · · · a2n b2

a31 a32 a33 · · · a3n b3

...
...

...
...

...
...

am1 am2 am3 · · · amn bm

⎤⎥⎥⎥⎥⎥⎦ . (3.3)

This matrix contains all the information in system (3.1), because in the ith
row of A|b the element aij is associated with the variable xj, while bi is the
corresponding non-homogeneous term on the right of system (3.1). When
A|b is interpreted as the system of equations in (3.1), it implies the presence
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of an equality sign between the terms on the left represented by the matrix
product Ax, and the non-homogeneous terms on the right represented by
the column vector b.

The idea underlying Gaussian elimination is simple, and it depends for
its success on the obvious facts that the order of the equations in (3.1)
can be changed, any equation can be multiplied throughout by a non-
zero constant, and multiples of equations in (3.1) can be added to or
subtracted from other equations in (3.1), all without altering the solution
set of the original system. When working with the augmented matrix A|b,
which is equivalent to the original set of equations (3.1), performing such
operations on the original system of equations corresponds to perform-
ing what are called elementary row operations on the augmented matrix
to produce a modified, but equivalent, augmented matrix. The elemen-
tary row operations that can be performed on an augmented matrix are
as follows:

1 Interchanging rows;
2 Multiplying each element in a row by a non-zero constant k;
3 Adding (or subtracting) a multiple of a row to (or from) another row.

The effect of performing these elementary row operations on an aug-
mented matrix A|b is to produce a modified augmented matrix that is in
all respects equivalent to the original system of equations in (3.1). In gen-
eral, the process of transforming matrix A|b to an equivalent matrix using
elementary row operations is called matrix row reduction.

Gaussian elimination starts by assuming that in equations (3.1) the coeffi-
cient a11 �=0. This is no restriction, because if this is not the case the order of
the equations can be changed to bring into the first row of equations (3.1)
an equation for which this condition is true. The method then proceeds by
subtracting multiples of row 1 of equations (3.1) from each of the n − 1
rows below it in such a way that the coefficient of the variable x1 is made
to vanish from each of these subsequent rows. Thus, a21/a11 times row 1 is
subtracted from row 2, a31/a11 times row 1 is subtracted from row 3 and so
on, until finally an1/a11 times row 1 is subtracted from row n, leading to a
modified augmented matrix A|b(1) of the form

A
∣∣b (1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n b1

0 a(1)
22 a(1)

23 · · · a(1)
2n b(1)

2

0 a(1)
32 a(1)

33 · · · a(1)
3n b(1)

3

...
...

...
...

...
...

0 a(1)
n2 a(1)

n3 · · · a(1)
nn b(1)

n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.4)
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This same process is now repeated, starting with row 2 of A|b(1). This
time row 2 with its first non-zero element a(1)

22 is used to reduce to zero all
elements in the column below it, leading to a modification of A|b(1) denoted
by A|b(2) of the form

A
∣∣b (2) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

a11 a12 a13 · · · a1n b1

0 a(1)
22 a(1)

23 · · · a(1)
2n b(1)

2

0 0 a(2)
33 · · · a(2)

3n b(2)
3

...
...

...
...

...
...

0 0 a(2)
n3 · · · a(2)

nn b(2)
n

⎤⎥⎥⎥⎥⎥⎥⎥⎦
. (3.5)

Continuing this process will lead to a simplification of the original system of
equations in which the numbers a11,a

(1)
22 ,a

(2)
33 ,a

(3)
44 , . . . ,a

(n−1)
n−1,n−1 used to reduce

to zero the entries in the columns below them are called the pivots for the
Gaussian elimination method.

If, as may happen, at some intermediate stage a pivot becomes zero and
so cannot be used to reduce to zero all entries in the column below it, the
difficulty is usually overcome by interchanging the row with the zero pivot
with a row below it in which the corresponding entry is non-zero, after
which the process continues as before.

The pattern of entries produced by Gaussian elimination after the com-
pletion of its row reduction is said to be the echelon form of the matrix, the
general definition of which is as follows:

1 All rows containing non-zero elements lie above any rows that contain
only zeros.

2 The first non-zero entry in a row, called the leading entry in the row
and also a pivot, lies in a column to the right of the leading entry in the
row above.

A matrix is said to be in reduced echelon form when, in addition to being
in echelon form, each row is scaled so that its pivot is 1 (unity).

As a leading entry is a pivot, condition 2 implies all entries in the column
below a leading entry are zero.

The pattern of entries in the echelon form of A|b generated by row reduc-
tion applied to a 7 × 8 matrix with a unique solution (the equations are
linearly independent) is shown in equation (3.17), where the symbol • rep-
resents a leading entry that is always non-zero or 1 if the matrix is in reduced
echelon form, while the symbol � represents an entry that may, or may not,
be non-zero.
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• � � � � � � �
0 • � � � � � �
0 0 • � � � � �
0 0 0 • � � � �
0 0 0 0 • � � �
0 0 0 0 0 • � �
0 0 0 0 0 0 • �

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.6)

Recalling that the augmented matrix in this illustration represents a set of
seven equations for the unknowns x1,x2, . . . ,x7, with an implied equality
sign between the seventh column and the non-homogeneous terms in the
eighth column, the solution of the system follows directly by the process of
back substitution. In this process the last equation determines x7, the last
but one equation determines x6 after substituting for x7, and so on, until the
first equation determines x1 after substituting for x7,x6, . . . ,x2.

The following simple example illustrates the process of Gaussian elimi-
nation applied to the system of four linearly independent equations in the
unknowns x1,x2,x3 and x4:

2x1 + x3 + 2x4 =1
−2x1 + x2 − x3 + 2x4 =1

x1 + 2x2 − 2x3 − x4 =1
x1 + x3 =2.

When written in its augmented matrix form, the system becomes

A
∣∣b =

⎡⎢⎢⎣
2 0 1 2 1
−2 1 −1 2 1
1 2 −2 −1 1
1 0 1 0 2

⎤⎥⎥⎦ .

After performing elementary row operations on this augmented matrix and
using the symbol ∼ as an abbreviation for ‘is equivalent to’, the matrix A|b
is reduced to the echelon form

A
∣∣b ∼

⎡⎢⎢⎣
2 0 1 2 1
0 1 0 4 2
0 0 − 5

2
10 − 7

2
0 0 0 −3 4

5

⎤⎥⎥⎦ .

The last row of this echelon form corresponds to the equation −3x4 =4/5,
and so x4 = −4/15. The last but one row corresponds to the equation
−5/2x3 +10x4 =−7/2, but x4 =− 4

15
, so x3 =37/15. Continuing this process
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of back substitution, the solution set {x1,x2,x3,x4} is found to have the
elements x1 =−7/15,x2 = 46/15,x3 = 37/15,x4 =−4/15.

A typical modification of the Gaussian elimination process used in com-
puter procedures involves changing the order of the equations at each stage
of the process, when necessary, to make the absolute value of the pivot
about to be used as large as possible. This is to ensure that at no stage is
a pivot with an unnecessarily small absolute value used to reduce to zero a
coefficient below it with a much greater absolute value, thereby reducing the
build-up of round-off errors as the computation proceeds. An augmented
matrix like equation (3.17) with n rows and n + 1 columns will always be
produced when a finite-difference scheme (to be described later) is used to
solve a PDE, and in that case the solution will be unique.

In the more general case, if the solution of a system is not unique, there
will be rows containing only zeros. This situation arises when seeking the
solution of a general system of n linear non-homogeneous equations in n
unknowns among which there is linear dependence. In such a case, if the
echelon form contains r rows of zeros, it follows from the structure of the
echelon form A|b that n − r of the unknowns can only be found in terms of
r of the unknowns as parameters that can be assigned arbitrarily.

To illustrate this situation, consider the system of equations

x1 + 2x2 + x3 = 1

2x1 − x2 + 3x3 = 2

4x1 + 3x2 + 5x3 = 4,

for which the augmented matrix is

A
∣∣b =

⎡⎣1 2 1 1
2 −1 3 2
4 3 5 4

⎤⎦ .

The echelon form of this augmented matrix is

A
∣∣b ∼

⎡⎣1 2 1 1
0 −5 1 0
0 0 0 0

⎤⎦
in which there is one row of zeros (because the third equation is the sum of
twice the first equation and the second equation). When written out in full,
A|b becomes

x1 + 2x2 + x3 = 1 and −5x2 + x3 = 0
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showing there are only two equations from which to find three unknowns.
Setting x3 = k, an arbitrary parameter, the solution set becomes{

x1 = 1 − 7
5

k,x2 = 1
5

k,x3 = k
}
,

so as n = 3 and r = 1 we see that n − 1 = 2 of the unknowns x1,x2 and x3

have been found in terms of r = 1 of the unknowns, namely x3 = k, as a
parameter.

We could, of course, equally well have solved for x1 and x3 in terms
of x2 = p, as an arbitrary parameter, when we would have found the
solution set

{x1 = 7p,x2 = p,x3 = 5p} ,

or in terms of x1 = s as an arbitrary parameter, when we would have found
the solution set

{x1 = s,x2 = (1/7) − (1/7s),x3 = (5/7) − (5/7s)}

although, of course, the three solution sets are equivalent. For more about
the solution of general systems of algebraic equations, and, in particular,
systems of m equations in n unknowns, see Jeffrey (2002), Kreyszig (2005)
and O’Neil (2006).

3.2.2 Gauss–Seidel iteration

When the number of equations n is very large, a completely different way
of solving system (3.1) is used that involves iteration. The method now
described is called the Gauss–Seidel iterative scheme, and for the process to
converge, that is, for each of the rth iterates x(r)

1 ,x
(r)
2 , . . . ,x

(r)
n to converge to a

specific value as r increases, it is necessary that the system of equations (3.1)
is written in diagonally dominant form. The condition of diagonal domi-
nance means that in the ith row of matrix A the element aii must be such that
|aii| is greater than the sum of the absolute values of all the other elements
in the ith row, for i = 1,2, . . . ,n, so the matrix

A =
⎡⎣a11 a12 a13

a21 a22 a23

a31 a32 a33

⎤⎦
will be diagonally dominant if

|a11|> |a12| + |a13| , |a22|> |a21| + |a23| , |a33|> |a31| + |a32| .
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Assuming this set of conditions is satisfied by system (3.1), the equations are
first solved successively for x1,x2, . . . ,xn, leading to the equivalent system

x1 = (b1 − a12x2 − a13x3 − · · ·− a1nxn

)
/a11

x2 = (b2 − a21x1 − a23x3 − · · ·− a2nxn

)
/a22

...
xn = (bn − an1x1 − an2x2 − · · ·− ann−1xn−1

)
/ann.

(3.7)

Now let the (r − 1)th iterated vector x(r) (approximation) for the solution
vector x have the elements x(r−1)

1 ,x(r−1)
2 , . . . ,x(r−1)

n . Then the rth iterates (the
next approximation) are found by substituting the (r − 1)th iterates into the
Gauss–Seidel system as follows:

x(r)
1 = (b1 − a12x

(r−1)
2 − a12x

(r−1)
3 − · · ·− a1nx(r−1)

n

)
/a11

x(r)
2 = (b2 − a21x

(r)
1 − a23x

(r−1)
3 − · · ·− a2nx(r−1)

n

)
/a22

x(r)
3 = (b3 − a31x

(r)
1 − a32x

(r)
2 − · · ·− a3nx(r−1)

n

)
/a33

· · ·
x(r)

n = (bn − an1x
(r)
1 − an2x

(r)
2 − · · ·− ann−1x

(r)
n−1

)
/ann.

(3.8)

The iterative process is started with an arbitrary vector x = x(0), which
is typically taken to be x(0) = [1,1,1, . . . ,1]T, and terminated with the rth
iterate when

∣∣x(r)
i − x(r−1)

i

∣∣ for i = 1,2, . . . ,n first becomes less than some pre-
assigned error ε>0, where, for example, ε=0.0001. Notice that the Gauss–
Seidel system uses the rth iterate of an unknown as soon as it has been
calculated, so by the time x(r)

n is calculated all the rth iterates for the other
variables have been used.

If the system is not diagonally dominant the iterations may not con-
verge, and may oscillate in sign while their absolute values increase without
bound. A system that is not diagonally dominant because an equation
fails the diagonal-dominance condition can usually be converted into a
diagonally-dominant equation by changing the order of the equations, or
by adding suitable multiples of the other equations to the equation that is
not diagonally dominant.

3.2.3 Successive over-relaxation

When n is large, the rate of convergence of the Gauss–Seidel method (3.8)
is too slow for many practical purposes, so it must be modified. The modi-
fication that is often used, particularly when seeking numerical solutions of
PDEs, is called the successive over-relaxation (SOR) process. To understand
how the SOR process works, let x̄(k)

i be the ith component of the kth Gauss–
Seidel iteration, then in the SOR process the kth iterate x(k)

i is found by the
following formula in which the constant ω is a parameter:
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x(k)
i = x(k−1)

i +ω
[
x̄(k)

i − x(k−1)
i

]
= (1 −ω)x(k−1)

i +ωx̄(k)
i . (3.9)

So, in the SOR process the value of the ith component in the kth iter-
ate is obtained by extrapolation from the kth Gauss–Seidel iterate and
the previously calculated estimate x(k−1)

i . The number ω is called the
over-relaxation parameter, and for the iterative process to converge this
parameter must be in the interval 1 < ω < 2, although the determination
of its optimum value to achieve the greatest acceleration of convergence
can only be found in special cases. Here it is sufficient to remark that,
when ω = 1, the SOR process reduces to the Gauss–Seidel process, and
the larger the n × n matrix A becomes, the closer the optimum value
of ω is to 2, although a typical value that is often used is around 1.5.
For a discussion of the SOR and related iterative processes, including
the choice of the optimum value of the relaxation parameter ω, see, for
example, Ferziger (1998), while for SOR and related codes and a more
detailed discussion of the choice of ω, see Press et al. (2007). Typically,
systems of up to 100 equations are best solved by Gaussian elimination,
although when more equations are involved it is best to use iterative
methods.

In general, the numerical solution of PDEs requires the solution of very
large systems of non-homogeneous linear equations. When these equations
are written in the form Ax =b, with A, x and b as defined in equation (3.2),
most of the elements in the n × n matrix A occur as rectangular blocks that
contain only zeros, while the non-zero elements tend to occur in the diag-
onals above and below, but close to, the leading diagonal of A. Matrices
of this type are called sparse matrices, and particularly efficient procedures
exist for the solution of systems of equations with sparse coefficient matri-
ces. One of the techniques used to minimize the time taken for calculations
takes account of the fact that when rows of A are scaled, no arithmetic
need be performed on the blocks of zero elements. As computer time spent
on additions and subtractions is very small relative to the time taken for
multiplications, by avoiding the unnecessary scaling of large blocks of zero
elements, such procedures are faster than ordinary Gaussian elimination or
standard iterative methods.

3.3 The numerical solution of ordinary
differential equations

3.3.1 The Euler method

A numerical solution of the ordinary differential equation (ODE)

dy
dx

= f (x,y), y(x0) = y0, (3.10)
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where y(x0) = y0 is the initial condition, approximates the continuous solu-
tion y(x) for x> x0 by computing a sequence of discrete approximations ỹr

to y(xr) at the points xr = x0 + rh, . . ., for r = 0,1,2, . . ., where h is called
the integration step length or step size. A numerical procedure that com-
putes the approximate solution ỹr+1 using only the approximate solution
ỹr−1 computed in the previous step and the value of h, is called a one-step
method. This is to distinguish the method from others that at each stage of
the computation need to know the values of the approximation ỹr at two or
more previous stages.

The simplest method is the elementary Euler method. This uses a tangent
approximation to the function f (x) at the point xr to find the approximation
ỹr+1 at xr+1 in terms of h, as illustrated in Figure 3.1.

From the interpretation of a derivative, the slope of the tangent to the
solution curve at the point P(xr, ỹr) is f (xr, ỹr), from which it follows that
tan (θr) = f (xr, ỹr), where θr is the angle between the tangent line at P(xr, ỹr)
and the x-axis. Thus, in Figure 3.1 we can write QR = h f (xr, ỹr), where R
has the coordinates (xr+1, ỹr+1) = (xr + h, ỹr + hf (xr, ỹr)). Consequently, we
have arrived at the result that

ỹr+1 = ỹr + hf (xr, ỹr), (3.11)

which is true for r = 0,1,2, . . ..

y

0

yr + 1
~

~

xr xxr + 1

h

P
Q

R

Solution curve

Tangent at P

θr

θr

yr
~

Figure 3.1 The Euler method using ỹr at x = xr and a tangent line, to find the approximate
solution ỹr+1 at x = xr+1
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This result leads to the following algorithm for the integration of a
first-order equation by Euler’s method, where for convenience ỹr has been
replaced by yr.

The Euler integration algorithm

Objective: It is required to integrate numerically the first-order equation
dy
dx

= f (x,y) over the interval a≤x≤b using n steps, each with length h, subject
to the initial condition y(a) = y0.

Method: Let yr be the numerical approximation to the exact solution y(xr).
As n equal-length steps are to be used, it follows that h = (b − a)/n, and so
xr = a + rh, with r = 0,1,2, . . . ,n.

Then the value yr+1 is given in terms of r and h by
yr+1 = yr + hf (xr,yr) for r = 0,1,2, . . . ,n − 1.

It can be shown that the Euler method is accurate to the order of h, in the
sense that the error will be approximately h, and this is shown by saying that
the accuracy is O(h). Although this accuracy can be improved by reducing
the value of h, this will result in more steps when advancing a calculation
over an interval a < x < b, with a corresponding build-up of truncation
errors. Consequently, if greater accuracy is required, a different method of
integration must be used. In the Euler method the accuracy O(h) is approx-
imated by h raised to the power 1, and because of this the Euler method is
called a first-order method of integration. The Euler method is an example
of a one-step method, because the calculation of yr+1 is uniquely determined
by the value of yr at the previous step in the calculation. Although the Euler
algorithm as given here involves a sequence of steps, all with the same incre-
ment h in x, if necessary the step length can be changed at any stage in the
calculation.

There are many accurate finite-difference methods of integration based on
the representation of derivatives by difference quotients. However, instead
of discussing these, the highly versatile fourth-order Runge–Kutta method
will be described, and its modification to form the self-adaptive Runge–
Kutta–Fehlberg method will be mentioned. For information about finite-
difference methods the reader is referred to the books by Atkinson (2007),
Burden and Faires (2005), Ferziger (1998), Fröberg (1999), Johnson and
Riess (1982), Pearson (1986), Ralston et al (2003) and Schwarz (1989).

The poor accuracy of the Euler method can be seen by applying it to the
differential equation dy/dt = y over the interval 0 ≤ x ≤ 1 with a step length
h=0.1, subject to the initial condition y(0)=1. This will allow a comparison
between the numerical solution and the exact solution y(x) = ex. The Euler
method gives y(0.5) = 1.610510, y(1) = 2.593742 and y(1.5) = 4.177248,
whereas the exact solutions are y(0.5) = 1.648721, y(1) = 2.718282 and
y(1.5) = 4.481689.
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The accuracy of the Euler method can be improved by reducing the value
of h, at the cost of more steps and with a corresponding build-up of trunca-
tion errors. Thus, there is a trade-off between the increase in accuracy as h
is reduced and the consequent build-up of round-off errors as the number of
steps increases. If greater accuracy is required, a different method of numer-
ical integration must be used that is of order O(hp), with p> 1, because the
accuracy of a method improves as its order p increases.

3.3.2 Runge–Kutta methods

A family of one-step integration methods exists called Runge–Kutta
methods, all of which are based on Taylor-series expansions truncated to
different orders. The one to be described next is the popular and accurate
fourth-order Runge–Kutta method, in which the accuracy is approximately
O(h4). This method, usually abbreviated to the rk4 method, is derived by
taking a weighted average of four slopes at specially chosen points between
xr and xr + h in such a way that the error is optimized at O(h4). The rk4
method is often the default method found in software packages because of
the good results it yields when used with most differential equations.

The fourth-order Runge–Kutta algorithm for a first-order ODE

Objective: To find a numerical approximation for the initial-value problem

dy
dx

= f (x,y), y(x0) = y0

for x>x0 using a step-size h at the points xn+1 = x0 + nh(n = 0,1, . . . ).

Method: Let yn be a numerical approximation for the exact solution y(xn).
Then

yn+1 = yn + 1
6

(
k1 + 2k2 + 2k3 + k4

)
,

where

k1 = hf (xn,yn),

k2 = hf
(

xn + 1
2

h,yn + 1
2

k1

)
,

k3 = hf
(

xn + 1
2

h,yn + 1
2

k2

)
,

k4 = hf
(
xn+1,yn + k3

)
,

with n = 0,1,2, . . . .
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The rk4 method is illustrated below by applying it to an equation with
an analytical solution to permit the exact and the numerical results to be
compared. The example chosen is one where the solution changes more
rapidly in some intervals than in others, because this subjects the method
to a more rigorous test than one where the rate of change of the solution
remains fairly constant.

The rk4 method with a step-size h = 0.1 is used over the interval
0 ≤ x ≤ 1.5 to determine the approximate solution of

dy
dx

+ 4y = 20x sin 8x, given that y(0) = 0,

which is then compared with the analytical solution

y(x) = 1
20

(3sin8x + 4cos 8x)+ x (sin8x − 2cos 8x)− 1
5

e−4x.

Setting xn = nh and yn = y(xn) for n = 01, . . . ,15, and f (x,y) =
20x sin 8x − 4y, the rk4 method gives the following results, where the last
column shows the absolute error |yn − Y(xn)| between the rk4 solution and
the exact solution.

The rk4 calculations, the exact solution and the absolute error

rk4 exact Absolute error

xn yn yn

∣∣yn+1 − Y(xn)
∣∣

0 0 0 0
0.3 0.5384421 0.5386771 0.0002350
0.6 −0.8526942 −0.8527660 0.0000718
0.9 −0.1451507 −0.1454756 0.0003249
1.2 1.9286007 1.9293262 0.0007255
1.5 −3.2479248 −3.2486321 0.0007073

♦

The rk4 method is easily adapted to solve systems of first-order dif-
ferential equations; the steps involved are described in the following rk4
algorithm.
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The fourth-order Runge–Kutta algorithm for a system of
two first-order ODEs

Objective: To find a numerical approximation for the initial-value problem

dy
dx

= f (x,y, z),
dz
dx

= g(x,y, z),y(x0) = y0, z(x0) = z0,

using a step size h at the points xn+1 = x0 + nh(n = 0,1, . . . ).

Calculate

k1n = hf (xn,yn, zn) K1n = hg(xn,yn, zn)

k2n = hf
(

xn + 1
2

h,yn + 1
2

k1n, zn + 1
2

K1n

)

K2n = hg
(

xn + 1
2

h,yn + 1
2

k1n, zn + 1
2

K1n

)

k3n = hf
(

xn + 1
2

h,yn + 1
2

k2n, zn + 1
2

K2n

)

K3n = hg
(

xn + 1
2

h,yn + 1
2

k2n, zn + 1
2

K2n

)
k4n = hf (xn + h,yn + k3n, zn + K3n)

K4n = hg(xn + h,yn + k3n, zn + K3n).

Set

kn = 1
6

(k1n + 2k2n + 2k3n + k4), Kn = 1
6 (K1n + 2K2n + 2K3n + K4n).

The numerical solutions yn+1 = y(xn+1), zn+1 = z(xn+1) are given by
yn+1 = yn + kn and zn+1 = zn + Kn.

When this approach is used with a step size h = 0.1 to solve the initial-
value problem

dy
dx

= z − 2y + x,
dz
dx

= y − 2z + 1, y(0) = 1, z(0) = 2

over the interval 0 ≤ x ≤ 2, the results of the calculations for y(x) and z(x)
are shown below for x = 0, 0.5, 1.0, 1.5 and 2.0. For conciseness, the inter-
mediate calculations leading to the determination of the constants ki and Ki

have been omitted.
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x y(x) z(x)

0 1.0 2.0
0.5 0.95891885 1.36067395
1.0 1.98243077 1.12120856
1.5 1.10938644 1.06000495
2.0 1.31342550 1.09258108

The analytical solution is y(x) = 2
3
x − 2

9
+ 3

22
e−x, z(x) = 1

3
x + 2

9
+ 3

2
e−x +

5
18

e−3x and the agreement between the analytical values

yexact(2) = 1.31342549 and zexact(2) = 1.09258036,

and the rk4 numerical solutions are seen to be excellent.
It is a simple matter to adapt this algorithm to solve an initial-value

problem for the general second-order equation

a(x)
d2y
dx2

+ b(x)
dy
dx

+ c(x)y = 0 with y(x0) = y0, y′(x0) = z0 . (3.12)

All that is necessary is to define dy/dx = z, when d2y/dx2 = dz/dx and then
to replace the ODE by the equivalent first-order system

dy
dx

= z,
dz
dx

=−
(

b(x)
a(x)

z − c(x)
a(x)

y
)
, with a(x) �= 0 (3.13)

subject to the initial conditions

y(x0) = y0 and z(x0) = z0. (3.14)

The numerical results will give both y(x) and z(x)=dy/dx, although usually
only y(x) is required. To illustrate the method, and to show how it may
equally well be applied to non-linear ODEs, this same approach is used to
solve the second-order non-linear initial-value problem

d2y
dx2

+ (1 + x2)
dy
dx

+ siny = 0, y(1) = 2, z(1) = 3

for 1 ≤ x ≤ 1.4, using a step size h = 0.1, where the non-linearity is due to
the term sin y.

Converting the second-order non-linear equation to a first-order system
leads to the following non-linear initial-value problem for the first-order
system



76 Numerical techniques used in hydraulic modelling

dy
dx

= z,
dz
dx

=− [(1 + x2)z + sin y
]
, y(1) = 2, z(1) = 3.

The result of using the rk4 method over the interval 1 ≤ x ≤ 1.4 with a
step size h = 0.1 is shown in the table below.

xn yn zn

1.0 2.0 3.0
1.1 2.266989 2.355528
1.2 2.474258 1.805809
1.3 2.631244 1.349200
1.4 2.746991 0.979803

In this case there is no known analytical solution with which these results
can be compared, but a repetition of the calculation with h = 0.05 confirms
that they are accurate to four decimal places.

In many differential equations, changes in the solution occur rapidly over
some intervals and slowly over others, so if a uniform step size h is main-
tained it is not possible to ensure that the magnitude of the error remains the
same as the computation proceeds. To overcome this difficulty a variant of
the rk4 method called the Runge–Kutta–Fehlberg 45 method is now used in
most software packages, where it is often abbreviated to the rkf45 method.
The rkf45 method uses a self-adaptive approach to maintain accuracy by
finding two solutions, one using the fourth-order rk4 method and the other
a complicated but more accurate fifth-order Runge–Kutta method. Because
of its complexity, the rkf45 algorithm will be omitted and in its place only
an outline of the method is given.

The method starts by specifying that throughout the integrations the mag-
nitude ε of the error in the rk4 calculations must lie between a minimum
error εmin and a maximum error εmax where, typically, εmin = 1 × 10−4 and
εmax = 5 × 10−4. Then, with a step length of size h, the value of the solution
y(x) at the next step x = xi + h is computed, first by the rk4 method to yield
y(4)

i+1 and then by the fifth-order Runge–Kutta method to yield y(5)
i+1. The abso-

lute value
∣∣y(4)

i+1 − y(5)
i+1

∣∣= ε is then taken to be an estimate of the magnitude
of the error in the rk4 computation.

It is at this stage that the self-adaptive process comes into operation:

1 If the estimated error lies within the accepted limits, so that
εmin <ε<εmax, the calculation proceeds using the step length h.

2 If ε>εmax, the acceptable error is exceeded, so the step length is reduced
to h/2.

3 If ε < εmin, the accuracy is greater than required, so the step length is
increased to 2h.

4 Thereafter the calculation continues in this self-adaptive manner.
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References have already been given to books that describe various other
ways of solving ODEs, most of which are based on the use of finite-
difference techniques, so here we only mention the useful reference work
by Press et al. (2007), which lists the details of the computer codes for all
these methods, including the rkf45 method.

3.3.3 Numerical instability and improperly posed
problems

Before proceeding to the next topic, it is necessary to mention that for some
initial-value problems simply increasing the accuracy of a numerical method
of integration cannot produce a correct solution. To illustrate this assertion,
consider the following simple initial-value problem:

y′′ − 7y′ − 8y = 0,

subject to the initial conditions

y(0) = 1 and y′(0) =−1.

It is easily shown that this initial-value problem has the solution
y(x) = e−x, so the solution tends to zero as x → ∞.

Now consider the related initial-value problem in which the initial condi-
tion y(0)=1 is replaced by the condition y(0)=1+ε, where ε>0 is an arbit-
rarily small number. This modified initial-value problem has the solution

yε(x) =
(

1 + 8
8
ε

)
e−x + 1

9
εe8x.

Inspection of this result shows that, however small ε may be, eventu-
ally the factor e8x will always cause the solution yε(x) to tend to infinity as
x → ∞. This has an immediate implication for a numerical solution y(x)
of the first initial-value problem, because however many decimal places are
used in the calculations, the build-up of round-off and truncation errors
that are unavoidable will eventually cause a numerical solution to tend to
infinity instead of to zero, as x → ∞.

By way of illustration, an application of the rkf45 method to the initial-
value problem y′′ − 7y′ − 8y = 0, with y(0) = 1, and y′(0) = −1, yields a
good approximation to the exact solution yexact(x) = e−x in the interval
0≤ x≤ 4, with yexact(4) =0.0183 and yrkf(4) =0.0183. However, for larger x
the numerical instability begins to manifest itself, because yexact(5) = 0.0067
and yrkf(5) = 0.0412, after which yexact(6) = 0.0025 and yrkf(6) = 102.7. The
solution yrkf(x) can be forced to approximate the true solution yexact(x) for
x > 6 by using double-precision arithmetic, but eventually the numerical
instability will again manifest itself.
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This is an example of what is called the numerical instability of a solution.
A differential equation such as this, the solution of which exhibits extreme
sensitivity to change in an initial condition, is said to be ill-conditioned or
improperly posed.

3.4 Two-point boundary-value problems

3.4.1 The shooting method

Not all problems involving ODEs are initial-value problems and a different
type of problem for a second-order equation is a two-point boundary-value
problem for an ODE over an interval a ≤ x ≤ b. In such problems a solu-
tion of the ODE is required to satisfy a single boundary condition at x = a
and another boundary condition at x = b. So, unlike initial-value problems,
instead of the functional value and its derivative being imposed at x = a,
one functional value is prescribed at x = a and another at x = b. Two-point
boundary-value problems may either involve linear or non-linear ODEs,
but whereas solving linear problems is straightforward, solving non-linear
problems is more difficult and requires iteration.

If the general solution of the second-order linear equation

d2y
dx2

+ P(x)
dy
dx

+ Q(x)y = R(x), a ≤ x ≤ b, (3.15)

subject to the two-point boundary conditions

y(a) = ya and y(b) = yb (3.16)

cannot be found analytically, one way to solve the problem numerically
is by using the rk4 or the rkf45 method. At first sight this leads to a dif-
ficulty, because a Runge–Kutta method solves initial-value problems and
not boundary-value problems. A way of overcoming this difficulty, while
still finding a numerical solution by means of a Runge–Kutta method, or
indeed any other numerical method for solving the initial-value problem,
starts by assigning an arbitrary value d1 to the unknown derivative of y(x)
at x = a, so that y′(a) = d1. A Runge–Kutta method can then be used to
obtain a numerical solution y1(x), subject to the initial conditions y1(a) = ya

and y1
′(a) = d1.

If the interval a ≤ x ≤ b is divided into N equal parts, a Runge–Kutta
method will determine a solution y1(x) for x>a, at intervals with a step size
h = (b − a)/N, and as a result at the end x = b of the interval the solution
will be y1(b) =β1, say, where β1 is the last value to be computed. This is not
likely to satisfy the second boundary condition y(b) = yb, so this process is
repeated using the same step size h, but with a different arbitrary value d2
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y

b2 = y2(b)
y2(x)

y1(x)
b1 = y1(b)

b = yb

ya

0

Exact solution

a b x

Figure 3.2 An illustration of the shooting method

assigned to the derivative y′(x) at x = a, so that this time y′(a) = d2. Now,
subject to the initial conditions y2(a)=ya, y′

2(a)=d2, a Runge–Kutta method
will again determine a solution y2(x) for x>a at intervals with a step size h,
and this time at the end x = b of the interval the solution will be y2(b) = β2,
where β2 is the last value to be computed. Once again this is unlikely to
satisfy the boundary condition at x = b. The relationship between y1(x) and
y2(x) is illustrated in Figure 3.2, where for the purpose of illustration the
required boundary condition y(b) = yb is seen to lie between β1 and β2. In
fact the position of yb relative to the values of β1 and β2 is unimportant,
because it will be seen from what follows that the method works whatever
the value of yb.

A linear combination of the solutions y1(x) and y2(x) is now formed by
setting

y(x) = k1y1(x) + k2y2(x), (3.17)

where it is convenient, although not necessary, to choose the constants k1

and k2 (to be found later) so that

k1 + k2 = 1. (3.18)

As ODE equation (3.15) is linear, the substitution of equation (3.17) into
equation (3.18), followed by grouping the terms, shows that equation (3.17)
is also a solution of the boundary-value problem.
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It is required to find a solution so that y(b) = yb, so substituting this
condition into equation (3.17) gives

yb = k1y1(b) + k2y2(b) or, equivalently, yb = k1β1 + k2β2. (3.19)

Solving equations (3.18) and (3.19) for k1 and k2 gives

k1 = yb −β2

β1 −β2
and k2 = β1 − yb

β1 −β2
. (3.20)

The solution of the boundary-value problem is now known, because using
equation (3.20) in equation (3.17) gives

y(x) =
[

yb −β2

β1 −β2

]
y1(x) +

[
β1 − yb

β1 −β2

]
y2(x), a ≤ x ≤ b. (3.21)

Thus, when a Runge–Kutta method of solution is applied to equation (3.15),
the boundary-value problem subject to equation (3.16) is solved over the
interval a≤x≤b at intervals with a step size h in terms of the two numerical
solutions y1(x) and y2(x).

This method of solving a boundary-value problem is called the shooting
method, because of the analogy between the way the numerical problem
is approached and shooting at a target from a fixed point using a dif-
ferent angle of elevation for each shot in order to hit the target at the
required point.

As already mentioned, the numerical solution of boundary-value prob-
lems becomes harder when the ODE is non-linear, because the linear
superposition condition (equation 3.17) no longer applies. To make the
method work it is necessary to modify the shooting method and again to
start by using two different (guessed) values X1 and X2 for the derivatives
y1

′(a) and y2
′(a). Thus, the calculation starts with y1(a)=ya, y1

′(a)=X1, and
y2(a) = ya, y2

′(a) = X2, each satisfying the same boundary value at the left,
but with different (guessed) slopes at x = a. Solutions y1(x) and y2(x) are
then calculated, usually by using either the rk4 or rkf45 method, to deter-
mine y1(b) and y2(b), both of which will differ from the required boundary
value y(b) = yb at the right. If the approximations are iterated, the subse-
quent iterations can be produced by using the sequence of values Xn given
by linear interpolation:

Xn = Xn−1 −
(
yn−1(b) − yb

)
(Xn−1 − Xn−2)

yn−1(b) − yn−2(b)
, for k = 2,3, . . . ,n (3.22)

The iteration is terminated when for some n = N the absolute value of the
difference between XN and XN−1 is such that |XN − XN−1|<ε, for some pre-
assigned error ε >0, say ε= 10−4. The required solution is then taken to be
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the solution corresponding to the initial conditions y1(a) = ya, y′
1(a) = XN.

Worked examples of this approach and of the use of Newton’s method
instead of using the linear interpolation method given above can be found
in Burden and Faires (2005).

3.4.2 Finite-difference methods

A completely different approach involves the use of finite differences with
the linear equation (3.15). To understand this method we must first define
the meaning of the different types of finite-difference approximations that
arise. Let a differentiable function y(x) be defined at the points x = x0 − h,
x = x0 and x = x0 + h. Then y′(x0) can be approximated in the three
different ways

y′(x0) ≈ 1
2h

[
y(x0 + h) − y(x0 − h)

]
, (3.23)

y′(x0) ≈ 1
h

[
y(x0 + h) − y(x0)

]
, (3.24)

and

y′(x0) ≈ 1
h

[
y(x0) − y(x0 − h)

]
. (3.25)

Approximation (3.23) represents y′(x0) as the quotient of the difference
between y(x) at equally spaced values h of x to the left and right of x0, and
the interval 2h between them, and is called the centred-difference approx-
imation for y′(x0). Approximation (3.24) represents y′(x0) as the quotient
of the difference between the values if y(x) at x0 and at x0 + h ahead of
x0, and the interval h between them, and is called the forward-difference
approximation, while for obvious reasons approximation (3.25) is called
the backward-difference approximation.

The formal derivation of these results follows from Taylor’s theorem with
a remainder. So, for example, to derive equation (3.23) we have

y(x0 + h) = y(x0) + y′(x0) + 1
2

h2y′′(ξ ),

where ξ is unknown, but such that a<ξ <b; after rearrangement

y′(x0) = 1
h

[
y(x0 + h) − y(x0)

]− h
2

y′′(ξ ), (3.26)
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which is equation (3.23) with an error term −1/2hy′′(ξ ) of magnitude O(h).
Similarly,

y(x0 − h) = y(x0) − hy′(x0) + 1
2

h2y′′(ξ ),

and after rearrangement

y′(x0) = 1
h

[
y(x0) − y(x0 − h)

]− h
2

y′′(ξ2), (3.27)

which is equation (3.24), again with an error term of magnitude O(h).
Adding equations (3.24) and (3.25) gives

y′(x0) = 1
2h

[
y(x0 + h) − y(x0 − h)

]− h
2

y′′(ξ ), (3.28)

which is equation (3.25) with an error term of magnitude O(h). A corre-
sponding argument shows the centred-difference approximation for y′′(x0)
is given by

y′′(x0) = 1
h2

[
y(x0 − h) − 2y(x0) + y(x0 + h)

]− h2

12
y(4)(ξ ), (3.29)

although this time the order of magnitude of the error term is smaller,
because it is O(h2).

In a finite-difference approach to the solution of the boundary-value
problem (3.15) and (3.16), the interval a ≤ x ≤ b is divided into N equal
subintervals with divisions at xi = a + kh, for k = 0,1, . . . ,N + 1, with
h = (b − a)/N, at each point of which the solution y(xk) = yk. The first-
and second-order derivatives y′(x) and y′′(x) in equation (3.15) are then
replaced by centred-difference approximations (3.27) and (3.29), and after
rearrangement the ODE is replaced by the finite-difference approximation

(
1
2

hP(xk) − 1
)

ỹk−1 + (2 − h2Q(xk)
)
ỹk −

(
1 + 1

2
P(xk)

)
ỹk+1 = h2R(xk),

(3.30)

where ỹk−1, ỹk and ỹk+1 are the finite-difference approximations for yk−1, yk

and yk+1.
The two-point boundary-value problem for equations (3.15) and (3.16)

can then be written in the matrix form

Ax = b, (3.31)

where, after using the boundary conditions ỹ0 = ya and ỹN+1 = yb, we have
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A =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

2 − h2Q(x1) −1 − h
2 P(x1) 0 · · · 0

−1 + h
2 P(x2) 2 − h2Q(x2) −1 − h

2 P(x2) · · · 0

0 0
...

... 0
...

...
...

... −1 − h
2 P(xN−1)

0 0 0 −1 − h
2 P(xN) 2 − h2Q(xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

and

x =

⎡⎢⎢⎢⎢⎢⎢⎣

ỹ1

ỹ2

ỹ3

...
ỹN

⎤⎥⎥⎥⎥⎥⎥⎦ , b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(
1 − h

2
P(x1)

)
ya − h2R(x1)

−h2R(x2)
...
−h2R(xN−1)(

1 + h
2

P(xN)
)

yb − h2R(xN)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.32)

In the linear algebraic system (3.31), A is a matrix in which non-zero entries
only occur on the leading diagonal and on the diagonals immediately above
and below it. This is called a tri-diagonal matrix and the equation Ax = b
can be solved for the solution vector x using Gaussian elimination or by
iteration, and possibly by using the SOR method if matrix A is very large.

As the error in this finite-difference approach is of the order h2, the accu-
racy of the result will depend on the number N of subdivisions in the
interval a ≤ x ≤ b. Note that the number of calculations involved in the
finite-difference method will increase very rapidly as N increases. Contrast
this with the effort involved and the accuracy attained when the shooting
method is applied to a linear ODE, because there the solution is easily
constructed as a linear combination of two solutions obtained either by
using the rk4 or the rkf45 method. This method can be adapted for use
with non-linear two-point boundary-value problems, but iteration again
becomes necessary and can lead to far more computational effort than the
generalization of the shooting method.

For more information about the solution of two-point non-linear
boundary-value problems, see Atkinson (2007), Johnson and Riess (1982)
and Schwarz (1989), while for a detailed explanation and application of the
method to a non-linear problem, see Burden and Faires (2005).

3.5 The numerical solution of partial differential
equations

3.5.1 Two-dimensional incompressible flow

The numerical solution of PDEs is an important and complicated subject,
and detailed descriptions of numerical procedures are to be found in many
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textbooks, some of which will be mentioned later. These books also describe
the different ways by which the large systems of equations produced by
the finite-difference and finite-element methods of solution can be solved.
Consequently, the limited space available here is only sufficient to outline
the basic ideas involved.

The study of two-dimensional incompressible fluid flow in Cartesian
coordinates (see also Sections 4.2 and 4.3) is based on the two fundamental
Navier–Stokes equations (the momentum equations)

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

=−1
ρ

∂p
∂x

+ ν

(
∂2u
∂x2

+ ∂2u
∂y2

)
, (3.33)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

=−1
ρ

∂p
∂y

+ ν

(
∂2v
∂x2

+ ∂2v
∂y2

)
, (3.34)

and the continuity equation

∂u
∂x

+ ∂v
∂y

= 0. (3.35)

In these equations u and v are the velocity components in the x- and
y-directions, t is the time, p is the pressure, ρ is the fluid density and ν

is the kinematic viscosity.
We mention in passing that, in computational work, as elsewhere, it is

usual to express equations (3.33–3.35) in non-dimensional form. This is
accomplished by introducing a characteristic length L, and a characteristic
velocity U, when the non-dimensional unit of time becomes L/U. Other
dimensionless quantities can then be defined as (see Chapter 5):

x = x

L
, y = y

L
, u = u

U
, v = v

U
, ζ = ζ(

U/L
) and t = t(

L/U
) ,

(3.36)

and, where appropriate, the non-dimensional Reynolds number Re = UL/ν
can be introduced, where ν is the dimensionless viscosity.

Various simplifications can be made in the governing equations, such as
neglecting viscosity by setting ν = 0 and by confining attention to steady-
state problems by setting ∂u/∂t = ∂v/∂t =0. However, instead of attempting
to study the specific types of PDE that arise from various approximations,
the problem will be simplified by examining instead some model equations
that are typical of the PDEs that occur.
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The model PDE equations to be considered are:

The Laplace equation

∂2u
∂x2

+ ∂2u
∂y2

= 0, (3.37)

the solutions of which are boundary-value problems.

The Poisson equation

∂2u
∂x2

+ ∂2u
∂y2

= f (x,y), (3.38)

the solutions of which are boundary-value problems. Note that the
Poisson equation reduces to the Laplace equation when f (x,y) ≡ 0.

A transport equation

∂u
∂t

=−u
∂u
∂x

+ κ
∂2u
∂x2

, (κ ≥ 0). (3.39)

This equation is also called the one-dimensional second-order advec-
tion equation and it involves both initial conditions and boundary
conditions.

The diffusion equation (also called the heat equation)

∂u
∂t

= κ
∂2u
∂x2

. (κ>0 is the diffusivity constant) (3.40)

This equation involves both initial conditions and boundary conditions.

The wave equation

∂2u
∂t2

= c2 ∂
2u
∂x2

. (3.41)

This equation can involve only initial conditions, when it becomes a
pure initial-value problem, or initial and boundary conditions, when it
becomes an initial boundary-value problem.

3.5.2 Finite-difference approximations for partial
derivatives

All finite-difference methods are based on the approximation of partial
derivatives obtained by the truncation of Taylor series. The approach for
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two-dimensional problems starts by considering a two-dimensional region
D of the (x,y)-plane with boundary B in which a solution of a PDE
is required. For the purpose of illustration let us suppose the region D is
a rectangle a ≤ x ≤ b and c ≤ y ≤ d. Now divide the interval a ≤ x ≤ b into m
subintervals each of length h = (b − a)/m, and the interval c ≤ y ≤ d into n
subintervals each of length k= (d − c)/n. Region D is then covered by a grid
of lines x=a+ ih, and by another grid of lines y= c+ jh, with i=0,2, . . . ,m
and j = 0,1,2, . . . ,n. It is then required to approximate the solution of the
PDE by discrete values at each of the grid points formed by the intersection
of the grid lines.

To obtain approximations for partial derivatives, let u(x,y) be a suitably
differentiable function of x and y, and denote by uij the functional value of
u(xi,yj), where xi = a + ih and yj = c + jk. Then the Taylor-series expansion
of u(xi + h,yj) about the point (xi,yj) in terms of x can be written as

ui+1,j = uij + h
(
∂u
∂x

)
ij

+ 1
2

h2

(
∂2u
∂x2

)
ij

+ remainder. (3.42)

When this is solved for ∂u/∂x, and only terms of order h are retained, we
arrive at the forward-difference approximation(

∂u
∂x

)
ij

= ui+1,j − uij

h
+ O(h), (3.43)

where O(h) represents a remainder with an order of magnitude h. Here the
expression O(h) includes not only terms of order h, but also all smaller
terms of still higher orders such as h2,h3, . . ..

A similar argument applied to the function u(xi − h,yj) yields the
corresponding backward-difference approximation(

∂f
∂x

)
ij

= fij − fi−1,j

h
+ O(h). (3.44)

The centred-difference approximation for (∂u/∂x)ij, obtained by differenc-
ing the forward- and backward-difference approximations over an interval
of length 2h while taking proper account of the behaviour of the higher-
order terms, is found to be(

∂u
∂x

)
ij

= ui+1,j − ui−1,j

2h
+ O(h2), (3.45)

showing that the truncation error is now much smaller, because it is O(h2).
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Further manipulation of Taylor series involving the expansion of ui−1,j and
ui+1,j to higher terms followed by addition of the results shows that(

∂2u
∂x2

)
ij

= ui+1,j − 2uij + ui−1,j

h2
+ O(h2). (3.46)

where once again the truncation error is O(h2). In similar fashion it
follows that(

∂2u
∂y2

)
ij

= ui,j+1 − 2uij + ui,j−1

k2
+ O(k2), (3.47)

where this time the truncation error is O(k2).
By equating the mixed derivatives ∂2u/∂x∂y and ∂2u/∂y∂x it is found that(

∂2u
∂x∂y

)
ij

= ui+1,j+1 − ui+1,j−1 − ui−1,j+1 + ui−1,j−1

4hk
+ O(h2,k2). (3.48)

These results can be combined to give finite-difference representations of
more general operators. For example, the addition of equations (3.46)
and (3.47) yields the following centred-difference approximation for the
Laplacian �u ≈ ∂2u/∂x2 + ∂2u/∂y2:

�u ≈ ui+1,j − 2uij + ui−1,j

h2
+ ui,j+1 − 2uij + ui,j−1

k2
+ O(h2,k2). (3.49)

The same approach applies to time-dependent problems where u=u(x,y, t),
when the time t is advanced in discrete steps of magnitude τ . So, for exam-
ple, at the nth time step, the centred-difference approximation (∂u/∂t)n

ij for
(∂u(x,y, t)/∂t)(xi,yj,t=nτ ) is given by

(
∂u
∂t

)n

ij

= un+1
ij − un−1

ij

2τ
(3.50)

with i and j fixed. The calculation of this derivative illustrates something
of the difficulties associated with time-dependent problems. This is because,
to find an approximation for

(
∂f/∂t

)n

ij
at the time t = nτ , it is necessary to

know by estimation the functional value at the next time step, although this
difficulty can be overcome by using a different approach.

The above results can be combined to yield finite-difference approxima-
tions for PDEs, although with time-dependent problems the straightforward
substitution of finite differences in place of partial derivatives does not
always yield a useful numerical approximation. This is because some
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numerical schemes are unstable in the sense that their forward predictions
become chaotic. As a result, the stability of a numerical scheme must always
be investigated to obtain stability conditions, which when satisfied ensure
the scheme yields stable results.

3.5.3 The finite-difference method for elliptical equations

We now give a simple example of how an elliptical PDE can be solved in a
bounded region D using a finite-difference approach. Although the method
is illustrated by applying it to the Laplace equation, the approach is quite
general and extends immediately to other elliptical equations.

Example

The problem to be solved requires the solution of the Laplace equation in a
unit square D, on the boundary of which Dirichlet conditions are imposed.

We will make use of result (3.49), where, because region D is a square,
we may set h = k. Using the centred-difference approximation (3.49), and
setting �f = fxx + fyy = 0 to form the two-dimensional Laplace equation
simplifies it to the finite-difference equation

ui+1,j + ui−1,j + ui,j+1 + ui,j−1 − 4uij = 0, (3.51)

and solving this for uij gives the following simple result:

uij = 1
4

(
ui+1,j + ui−1,j + ui,j+1 + ui,j−1

)
. (3.52)

This result is illustrated in Figure 3.3(a), which shows the distribution of
points around the grid point (i, j), while Figure 3.3(b) shows the weight to
be attached to each of the points relative to the central point. Thus, when
h = k, it is seen that the functional value at the grid point (i, j) is the average
of the functional values at the four surrounding points.

For convenience of reference the pattern of points shown in Figure 3.3(a)
and (b) is sometimes called a computational molecule.

The boundary-value problem to be considered involves solving the
Laplace equation in the unit square D with the boundaries 0≤x≤, 0≤y≤1
shown in Figure 3.4, subject to the Dirichlet boundary conditions

u(x,y) =

⎧⎪⎪⎨⎪⎪⎩
2x on y = 0,0 ≤ x ≤ 1
2 on x = 1,0 ≤ y ≤ 1
2sin 1

2
πx on y = 1,0 ≤ x ≤ 1

0 on x = 1,0 ≤ y ≤ 1.
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Figure 3.3 (a) The distribution of points around the grid point (i, j). (b) The weights
attached to the grid points in (a)

As the example only serves to illustrate the application of the finite-
difference method for an elliptical equation, we will not seek high accuracy
and set h = k = 1

3
; the corresponding grid lines are shown in Figure 3.4.

To formulate the finite-difference scheme we will apply (3.52) to each of
the points P1 to P4 in Figure 3.4; the boundary conditions at the points
Qi for i = 1,2, . . . ,12 follow from the Dirichlet boundary conditions. This
leads to the following four equations:

Point P1:4u1 − u(Q12) − u2 − u(Q2) − u4 = 0
Point P2:4u2 − u1 − u(Q5) − u(Q3) − u3 = 0
Point P3:4u3 − u4 − u(Q6) − u2 − u(Q8) = 0
Point P4:4u4 − u(Q11) − u3 − u1 − u(Q9) = 0,
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y

u = 0 u = 2

u = 2x

P2

P3

P1u1 u2

u4 u3

Q1 Q2 Q3 Q4
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Q10 Q9 Q8 Q7

P4

1

0 1 x

h = 1/3

h = 1/3

h = 1/3

h = 1/3 h = 1/3 h = 1/3

Figure 3.4 The region 0 ≤ x ≤,0 ≤ y ≤ 1

where, because of the use of the centred-difference approximation, the val-
ues of u at the four corners Q1,Q4,Q7 and Q10 do not appear in these
difference equations. Using the Dirichlet conditions with h = 1/3 to deter-
mine the values u(Q2),u(Q3),u(Q5),u(Q8),u(Q9),u(Q11) and u(Q12) then
leads to the corresponding four equations

Point P1:4u1 − u2 − u4 = 2sin
(π

6

)
Point P2:4u2 − u1 − u3 = 2 + 2

Point P3:4u3 − u4 − u2 = 2 +
(

4
3

)
Point P4:4u4 − u3 − u1 = 2

3
.

The solution of these equations is easily found to be u1 = 0.7971,
u2 = 1.4774, u3 = 1.3804 and u4 = 0.7111, so an approximate solution of
the boundary-value problem has been obtained. Naturally, to obtain a bet-
ter approximation a finer grid must be used, but the crude grid used here is
adequate to illustrate the general numerical approach.

Had a boundary B of region D not coincided with a grid line, as happened
in the above example, the problem would have become more complicated.
In such a case the finite-difference approximations at grid points close to the
boundary will require modification. This is to allow for the fact that close
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to the boundary at least one of the points in the computational molecules
will lie outside boundary B. We will not discuss how this is done, and refer
instead to the books by Ames (1978), Schwarz (1989) and Smith (1985).

The imposition of a Neumann boundary condition on a boundary
also requires consideration. Suppose, for example, that the condition
∂u/∂x = 0 is to be imposed on a boundary x = constant. Then, depend-
ing on whether the boundary is to the left or right of the region D, either
the forward-difference quotient in equation (3.43) equated to zero can be
used to approximate the Neumann boundary condition on the left, or the
backward-difference quotient in equation (3.44) can be equated to zero to
approximate the boundary condition on the right. This causes a slight loss
of accuracy, because the centred-difference quotients used to represent the
Laplacian operator have the second-order accuracy O(h2 +k2), while results
(3.43) and (3.44) only have the first-order accuracy O(h).

On occasion, symmetry can be used to represent a Neumann condition,
albeit at the cost of doubling the computational effort required to obtain a
numerical solution. The symmetry approach works as follows. Suppose, for
example, that the Neumann condition ∂u/∂x = 0 is ∂x = 0 is to be imposed
on the boundary x=1 of a region like D in x=1, together with its boundary
conditions on its other three sides to form a region D̃ double the size of D,
while leaving unspecified the values of u along the line x = 1 that bisects
region D̃. Then, from symmetry considerations, the solution in D will also
be reflected into the region to the right of x = 1. As the solution of the
Laplace equation must be continuous with continuous first-order partial
derivatives, the symmetry of the solution across x=1 implies that ∂u/∂x = 0
on x = 1, although of course it is not necessary that u = 0 on x = 1. So, if
the solution is found in D as in the example, the solution in the part of D
that forms D will be the required solution. This approach causes no loss
of accuracy when allowing for the Neumann condition ∂u/∂x = 0 on x = 1,
although the more accurate result is only obtained at the cost of doubling
the size of the set of linear equations that must be solved.

The finite-difference method extends in an obvious way to boundary-
value problems for the Poisson equation

∂2u
∂x2

+ ∂2u
∂y2

= f (x,y). (3.53)

In this case, it is not difficult to see that the finite-difference result
corresponding to equation (3.49) must be changed to

1
h2

[
u(x0 − h,y0) − 2u(x0,y0) + u(x0 + h,y0)

]
+ 1

k2

[
u(x0,y0 − k) − 2u(x0,y0) + u(x0,y0 + k)

]= f (x0,y0),
(3.54)

after which the computation proceeds as before.
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Finite-difference schemes can also be derived for boundary-value prob-
lems with more than two independent variables, although the numerical cal-
culations become extremely lengthy, particularly when curved boundaries
are involved.

A clear and straightforward account of the solution of linear elliptical
equations in general is to be found in Ames (1978), Ferziger (1998), Pearson
(1986), Smith (1985) and see also Ortega and Poole (1983).

3.5.4 The first-order transport equation

It is now necessary to comment on the solution of problems that depend
on both space variables and time, a typical example being the non-linear
transport equation

∂z
∂t

=−z
∂z
∂x

+ κ
∂2z
∂x2

, (κ ≥ 0) (3.55)

subject to the initial condition

z(x,0) = F(x). (3.56)

An equation like this can arise in various ways, one of which occurs when
deriving the PDE that describes how vorticity is transported through a fluid.

To avoid difficulties due to non-linearity, the equation will be lin-
earized by setting z = U + u, where U = constant. The result obtained after
linearization is

∂u
∂t

=−U
∂u
∂x

+ κ
∂2u
∂x2

, (κ >0) (3.57)

with the initial condition

u(x,0) = f (x), where f (x) = F(x) − U. (3.58)

To examine the constraints imposed on the space step size h and the time
step size τ if a finite-difference equation representing (3.57) is to yield a
satisfactory approximation, it will suffice to simplify equation (3.57) still
further by setting κ = 0 to arrive at the hyperbolic equation

∂u
∂t

+ U
∂u
∂x

= 0 (3.59)

subject to the initial condition u(x,0) = f (x).
It follows from the discussion in Chapter 2 that the characteristics of this

equation in the (x, t)-plane determined by dx/dt=U are the parallel straight
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lines x = x0 + Ut, where x0 is the intercept of the characteristic on the initial
line t = 0, while the constant value

u(x, t) = f (x0) (3.60)

is transported along the characteristic through the point (x0,0) on the
x-axis. This shows that the domain of determinacy of any point P on the
characteristic through (x0,0) is the characteristic itself that lies between
(x0,0) and P, while the domain of dependence of point P is the point
(x0,0). Let us now examine how these concepts apply to a finite-difference
approximation of equation (3.59).

Let the functional values at x = ih at the times t = nτ and t = (n + 1)τ be
un

i and un+1
i , and the functional values at x = (i − 1)h and x = ih at the time

t = nτ be un
i−1 and un

i .
Then a simple finite-difference approximation for equation (3.59) is

un+1
i − un

i

τ
+ U

un
i − un

i−1

h
= 0. (3.61)

When solved for un+1
i we find that

un+1
i = (1 − λ)un

i + λun
i−1, where λ=

(
Uτ
h

)
. (3.62)

Now consider the network of points in the (x, t)-plane that mark the inter-
section of grid lines. Let the discrete values of u at a given time t = (m + 1)τ
be represented in the (x, t)-plane by dots on the horizontal line t = (m + 1)τ ,
with the spacing between the dots equal to h, and consider the structure of
the approximation um+1

i at the dot P located at the point (x0 + ih, (m + 1)τ ).
Then, on the previous line where the time t = mτ , the structure of equa-
tion (3.61) is such that the solution at points influencing the solution at P
will lie at the two points (x0 + (i − 1)h,mτ ) and (x0 + ih,mτ ). Thus, on the
line where t =mτ , one dot will lie directly below P, with another one on the
same line to its immediate left, as shown in Figure 3.5, which illustrates a
particular case.

Considering the successive grid lines that lie below t=mτ , and continuing
in this manner, it can be seen that the dots corresponding to solutions that
influence the discrete solution at P will lie in a right-angled triangle, the
right side of which corresponds to the line x = x0 + ih, while all the other
dots will lie to the left of x=x0 + ih. By way of example, the pattern of dots
through the representative point (x0 +4h,4τ ) in the (x, t)-plane is illustrated
in Figure 3.5. The discrete approximate solutions in the triangular region
with its vertex at P in Figure 3.5 form the discrete analogue of the domain of
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Figure 3.5 The solutions at discrete points in the (x, t)-plane that influence the solution at
point P located at (x0 + 4h,4τ )

determinacy in the continuous case, while the points from Q to R represent
the discrete domain of dependence of the discrete solution at P.

Now consider the two different situations shown in Figure 3.6(a) and (b),
where the straight-line characteristic through P is shown as the solid line
that has been traced back to the x-axis at point S. The difference between
the two cases is that in Figure 3.6(a) the sizes of the spatial step length h
and the time step length τ are not the same as those in Figure 3.6(b). In
Figure 3.6(a) the characteristic intersects the x-axis at the point S that lies
between Q and R, so that S lies in the discrete domain of dependence. The
result of (3.60) is the solution along the straight-line characteristic through
the point (x0,0).

In Figure 3.6(a) the solution at P will be determined correctly by the finite-
difference scheme. However, in Figure 3.6(b) point S lies outside the discrete
domain of dependence, so in this case the solution at P cannot be properly
determined by the discrete form of the initial condition for the equation.

Consideration of Figure 3.6(a) shows that for the solution at P to be
properly determined by the initial condition, the slope of the line QP must
be less than or equal to the slope of the characteristic through the point S. In
Figure 3.6(a) the x-axis is horizontal and the t-axis is vertical; as we already
know that dx/dt = U on the characteristic in the (x, t)-plane, because of the
orientation of the axes it follows that the slope of the characteristic through
S in Figure 3.6(a) must be dt/dx = 1/U. For the solution at P to be deter-
mined correctly it is necessary that τ/h ≤ 1/U, which leads to the condition

Uτ/h ≤ 1. (3.63)
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Figure 3.6 (a) Point S lies inside the discrete domain of dependence of point P. (b) Point S
lies outside the discrete domain of dependence of point P

This important result is known as the Courant, Friedrichs and Lewy
condition, abbreviated to the CFL condition, that must be satisfied by the
condition on h and τ in equation (3.61) in order that the solution at P is
properly determined. The CFL condition is a necessary, but not a sufficient,
condition for a finite-difference scheme involving the space variable x and
the time variable t to take proper account of the initial conditions.

Just as the solution of an ODE can be unstable, so also can the solu-
tion of a finite-difference approximation in space and time. Conditions can
be derived that determine if and when a finite-difference scheme will be
stable and converge to the solution of the PDE as the sizes of both h and τ
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are reduced. For a scheme to produce correct results it is necessary that both
its stability condition and the corresponding CFL condition are satisfied.

An example of a finite-difference scheme for equation (3.59), that even
when the CFL condition is satisfied can be shown always to produce chaotic
results, is

un+1
i − un

i

τ
+ U

un
i − un

i−1

h
= 0. (3.64)

So it is appropriate to say this scheme is unconditionally unstable, because
no choice of τ and h can be made that will avoid this chaotic behaviour. A
scheme for equation (3.59) that uses a centred-difference expression for the
space derivative, instead of the forward difference used in equation (3.64),
and which does not lead to chaotic behaviour, is

un+1
i − un

i

τ
+ U

un
i+1 − un

i−1

h
= 0. (3.65)

This scheme can be said to be stable, and we now explain the exact meaning
of this term.

For any finite-difference scheme to be useful it is necessary that it is both
stable and convergent, so let us now make clear what the requirements of
stability and convergence really mean. A finite-difference scheme is said to
be stable if when it is applied to two closely related problems, say to two
Dirichlet problems with slightly different boundary conditions or to two
slightly different initial-value problems, the difference between the two sets
of boundary or initial conditions and between the two solutions is small.
A finite-difference scheme is said to be convergent if, as the size of the inte-
gration steps is reduced, the scheme generates solutions that approach a
limiting form. It can be seen that if these ideas are to be applied successfully
it is necessary that in the case of stability the meaning of the ‘closeness’ of
boundary or initial conditions, and also of solutions, must be made precise;
while for convergence the exact meaning of ‘tending to a limiting solution’
must be expressed in mathematical terms.

In both cases of stability and of convergence the mathematical meanings
of ‘closeness’ and of ‘tending to a limiting solution’ can be made precise
by introducing a concept called a norm, which can be related to both the
closeness of boundary and the initial conditions, and also to the closeness
of solutions. There are many different types of norm, but one that will be
familiar is the Euclidean norm where the ‘closeness’ between two space vec-
tors u = u1i + u2j + u3k and v = v1i + v2j + v3k is measured by the distance
between their tips, given by d = √

(u1 − v1)2 + (u2 − v2)2 + (u3 − v3)2. The
mathematical notation for this Euclidean norm involves writing d=‖u − v‖,
where the symbol ‖‖ is to be read ‘the norm of’. This idea easily extends
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to the n-component vectors u and v, when the norm of u − v becomes
d =‖u − v‖ =√(u1 − v1)2 + (u2 − v2)2 + . . .+ (un − vn)2.

To develop these ideas a little further, we can write a general linear dif-
ference scheme as AUn+1 = BUn + Cn, where A, B and C are matrices that
describe the finite-difference operations, while Un and Un+1 are matrix vec-
tors containing the finite-difference solutions at grid points at the nth and
(n + 1)th steps. Provided A−1 exists, which it does if detA �= 0, the finite-
difference scheme can be written as Un+1 = A−1 [BUn + Cn]. Then the norm
of the difference of the solution vectors

∥∥Un+1 − Un
∥∥ provides a measure of

the closeness of the two vectors Un+1 and Un. This can be compared with the
corresponding norm of the difference between the two boundary or initial
conditions. So the ability of the norm to measure the closeness of the bound-
ary or initial conditions also shows how the closeness of solutions can be
measured. A condition based on the norm can then be derived which, when
satisfied, ensures the stability of the scheme. We will not attempt to explain
how a stability condition can be derived, but suffice it to say that one way
of finding such a condition makes use of a Fourier-type approach.

At first sight, a process similar to the one used to determine a stability con-
dition for a finite-difference scheme needs to be repeated in order to estab-
lish the convergence of the scheme. Fortunately, a theorem proved by Lax in
1953 has shown that the stability of a scheme implies (is equivalent to) the
convergence of the scheme, so only a stability analysis becomes necessary.

This important result, called the Lax equivalence theorem, has wide-
ranging implications. In straightforward terms the theorem says that for a
finite-difference scheme for a PDE whose solution is not unreasonably sen-
sitive to changes in the boundary or initial data, or to round-off error, the
stability of the scheme is a sufficient condition to ensure its convergence.

Before proceeding to the next section, we mention in passing that a stable
finite-difference scheme for the linearized parabolic equation (3.57) is

un+1
i − un

i

τ
+ U

un
i+1 − un

i−1

2h
= κ

un
i+1 − 2un

i + un
i−1

h2
. (3.66)

3.5.5 The finite-difference method for parabolic
equations

We will take as a typical example of a parabolic equation the diffusion
equation

∂u
∂t

= κ
∂2u
∂x2

, (κ >0 is the diffusivity constant) (3.67)

in the strip 0 ≤ x ≤ 1 subject to the initial condition u(x,0) = f (x) and the
boundary conditions u(0, t)=F(t) and u(1, t)=G(t). Following an approach
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due to Fröberg (1999), a way of solving this problem that illustrates an
important property of parabolic equations is as follows: divide the interval
0 ≤ x ≤ 1 into N equal subintervals of length h = 1/N with their end points
at xn = nh with n = 0,1, . . . ,N, and replace uxx by its centred-difference
approximation. Leaving the time derivative ut unmodified, we arrive at the
coupled system of first-order ODEs

dun

dt
= κ

h2
(un−1 − 2un + un+1) , for n= 1,2, . . . ,N − 1, (3.68)

where now the x variation has become discrete, and ∂un/∂t has been
replaced by dun/dt. This system of ODEs can be solved subject to the
conditions that u0 = f (t) and uN = g(t), where at t = 0 we have u1 = f (h),
u2 = f (2h), . . . ,un−1 = f ([N − 1]h). In terms of matrices, the system of
equations becomes

h2

κ

dU
dt

= AU + B, (3.69)

where

U =

⎡⎢⎢⎢⎣
u1

u2

...
uN−1

⎤⎥⎥⎥⎦ , B =

⎡⎢⎢⎢⎢⎢⎣
u0

0
...
0
uN

⎤⎥⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎣
−2 1 0 · · · 0 0
1 −2 1 · · · 0 0
...

...
...

...
...

...
0 0 0 · · · 1 −2

⎤⎥⎥⎥⎦ .

(3.70)

The solution of this system of equations will involve a sum of time-
dependent exponential functions, each of the form eλt, where the numbers λ
are the eigenvalues of matrix A which can be shown to be given by

λn = 2 (cos (πn/N) − 1) .

It can be seen from this that when N is large the quotient of the abso-
lute values of the largest and smallest eigenvalues of A is approximately
4N2/π2. Thus, the smaller the space step h becomes, the larger becomes
the quotient of the absolute values of the largest and smallest eigenvalues.
This demonstrates the fact that, as the size of the space step h is reduced, in
order to preserve the correct magnitudes of the effects due to all the time-
dependent exponential terms, it is necessary that the size of the time step
must be reduced much faster than the space step h. A more careful analy-
sis of the problem shows that if the time step is τ , then for the method to
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converge and give correct results, it is necessary that the following stability
condition is satisfied

τκ

h2
<

1
2

. (3.71)

This approach can be converted into a forward finite-difference scheme
by replacing the term ∂u/∂t by its forward finite-difference approximation.
In what follows, if h is the step in the space variable x, and τ is the step in
the time variable t, the discrete values u(mh,nτ ) of the solution will be rep-
resented by un

m. Relative to the point (mh,nτ ), the forward finite-difference
approximation for ut is given by

(
un+1

m − un
m

)
/τ . Substituting this result into

the left of equations (3.68) and modifying the notation we find that

un+1
m − un

m

τ
= κ

h2

(
un

m−1 − 2un
m + un

m+1

)
, (3.72)

which should be compared with (3.67).
So the value of un+1

m at x=mh and at the forward time t= (n+1)τ is given
in terms of un

m−1, un
m and un

m+1 by

un+1
m = un

m + τκ

h2

(
un

m−1 − 2un
m + un

m+1

)
, (3.73)

and from equation (3.71) it follows that this simple scheme will only con-
verge if τκ/h2 < 1/2. This approach is called an explicit method, because
the solution at the time stage t = (n + 1)τ is completely determined by the
solution at points occurring during the previous time stage. The distribu-
tion of points in this scheme is shown in Figure 3.7, where the point un+1

m is
shown as a solid dot, while the three points on which it depends are shown
as circles.

To solve an initial-value and boundary-value problem for equation (3.67)
using the forward-difference explicit scheme, the space–time region 0 ≤ x ≤
1, t > 0 is first covered by a grid in which the space step length is h and
the time step is τ , chosen to satisfy the stability condition (3.71). The values
of the solution at the grid points on the boundary of the space–time region

Figure 3.7 An explicit finite-difference scheme
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follow from the initial condition u(x,0)= f (x), and the boundary conditions
u(0, t) = F(t) and u(1, t) = G(t). Taking a specific number of space steps M0,
and N0 time steps, and applying the finite-difference scheme (3.73) to each
internal grid point produces a system of linear equations for the approxi-
mate solution at each internal grid point in terms of the known values at the
grid points on the boundary of the space–time region. Solving this system
by Gaussian elimination, by an iterative scheme, or if necessary using SOR,
will then give the required solution.

However, this explicit approach suffers from the disadvantage that in
order to represent the x variation accurately by taking h sufficiently small, it
becomes necessary that the time step τ must be taken to be extremely small
if the method is to remain stable. Thus, to obtain an approximate solution
that is accurate over a large interval of time will lead to a very large system
of equations. It can be shown that the error in this explicit method of solu-
tion is O(τ + h2), so the method is described by saying it is only first order
in time, but second order in space.

To illustrate an application of this finite-difference method we will model
a simple hypothetical physical problem for the diffusion equation. Let us
suppose that a liquid pollutant is distributed throughout a lake of uniform
depth Y in which the water is at rest, and that when the x-coordinate is mea-
sured vertically downward from the surface of the water, at a time t = 0 the
concentration of the pollutant at a depth x is f (x). Then a natural diffusion
process will occur throughout the water, across the surface of the lake into
the air, or into the impervious material at the bottom of the lake. The ques-
tion we now ask is: what is the distribution of the pollutant as a function of
x and t? Physical intuition suggests that regions of high concentration will
diffuse into regions of lower concentration. As no diffusion occurs at the top
or bottom of the lake, the total amount of the pollutant will remain con-
stant, and eventually the concentration must become uniform throughout
the water.

When formulating the problem it will be convenient to replace the dis-
tance x, the time t and the concentration u(x, t) of the pollutant at depth
x and time t by the corresponding non-dimensional quantities X,T and
U(X,T). In what follows we will choose these to be X = x/Y, T = t/T0,
where T0 is some convenient reference time, say 1 day, and U =u/u0, where
u0 is a representative value of the concentration of the pollutant. Then the
equation governing diffusion is

∂U
∂T

= κ
∂2U
∂X2

,

where κ = constant is the diffusion coefficient. The initial condition to be
imposed that specifies the distribution of concentration at t = 0 is

U(X,0) = f (X),0 ≤ X ≤ 1.
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As ∂U/∂X represents the change of U with respect to X, and no diffusion
can occur at the top or bottom of the lake, the boundary conditions are

UX(0,T) = UX(1,T) = 0,T>0.

To formulate a finite-difference approximation it is necessary to specify
the function f (X) and to assign a value to κ, so we will set f (X) = X(1 − X)
for 0 ≤ X ≤ 1 and the diffusivity constant κ = 0.2. Before proceeding to
examine the numerical results, let us first find the steady-state concentration
that is to be expected. The amount M of pollutant in a column of water
with a unit cross-sectional area is

M =
∫ 1

0

X(1 − X)dX = 1
6

.

As the non-dimensional height of the column of water is 1 and the amount
of pollutant is conserved, the steady-state concentration m must be such that
m × 1 = M, showing that m = 1/6. Although it is a simple matter to find the
concentration when the distribution of pollutant is uniform (in equilibrium),
this simple analysis gives no information about the time (non-dimensional)
for this condition to be reached. To answer this question it is necessary to
solve this initial-value and boundary-value problem numerically.

The three-dimensional surface plot obtained from the finite-difference
solution is shown in Figure 3.8, where the solution U(X,T) is shown over
the region 0 ≤ X ≤ 1 and 0 ≤ T ≤ 1 in the (X,T)-plane. In this computation
the space step was h = 0.05 and the time step was τ = 0.005. Note that, as
required, this choice of parameters satisfies the general stability condition
τκ/h2 <1/2, because in this case τκ/h2 = 0.4. The number N of grid points
used in the calculation was N = 1/(hk) = 4,000.
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Figure 3.8 The distribution of U as a function of X and T
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Figure 3.8 shows that the diffusion process redistributes the initial con-
centration very rapidly, and by T = 0.6 it has almost reached the uniform
steady-state value U = 1/6, confirming the result found by the previous
elementary conservation argument.

In the more general case where the diffusivity is a slowly varying function
of X, so that κ = κ(X), the explicit formula to be used becomes more com-
plicated than the one in equation (3.73), and it can be approximated by the
result

un+1
m =

(
1 − 2τκ(mh)

h2

)
un

m + τκ(mh)
h2

(
un

m−1 + un
m+1

)
. (3.74)

A different approach is needed if, as in the case of Figure 3.8, the
introduction of a step length h that is small enough to produce a good
approximation in space necessitates the introduction of the very large num-
ber of small time steps of length τ if the essential stability condition in
equation (3.71) is to be satisfied. The methods to be outlined next that
overcome this difficulty are called implicit backward finite-difference meth-
ods, because they relate three approximate solutions at the (n + 1)th time
step to a solution or solutions at the previous nth time step. In the first
of these methods ut is represented by a backward finite-difference approxi-
mation, with the result that it yields the implicit backward finite-difference
approximation

un
m =−τκ

h2
un+1

m−1 +
(

1 + 2τκ
h2

)
un+1

m − τκ

h2
un+1

m+1 . (3.75)

The points used in this approximation are shown in Figure 3.9(a), where
the three forward points are shown as solid dots, while the other point is
shown as a circle. As with the explicit forward finite-difference scheme the
error to be expected is O(k+h2), but the method can be shown to be uncon-
ditionally stable. The system of equations is constructed in the same way as
for the forward finite-difference scheme, after which it is solved either by
Gaussian elimination, by an iterative scheme, or possibly by using SOR.

A far better method is the famous Crank–Nicholson implicit scheme,
which has an error O(τ 2 + h2) that is smaller than the previous ones as it is
second order in both space and time, and it is also unconditionally stable.
This scheme is essentially a combination of schemes, and it takes the form

− κτ

2h2
un+1

m−1 +
(
1+κτ

h2

)
un+1

m − κτ

2h2
un+1

m+1 = κτ

2h2
un

m−1+
(
1−κτ

h2

)
un

m+ κτ

2h2
un

m+1.

(3.76)
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(a) (b)

Figure 3.9 (a) The implicit backward finite-difference approximation. (b) The Crank–
Nicholson implicit scheme

In Figure 3.9(b), the three forward points used in this scheme are shown as
solid dots, while the three backward points are shown as circles.

The construction and solution of the system of linear algebraic equations
from which the approximate solution is to be found proceeds as before.
A straightforward account of the solution of parabolic equations, together
with examples, can be found in Smith (1985), who also shows how to deal
with different types of boundary conditions.

The numerical schemes used in professional software packages are usu-
ally more complicated than the Crank–Nicholson scheme, although they use
the same basic approach and are also implicit. Although implicit schemes
involve more computation than do explicit ones, they are usually used
because of their unconditional stability.

3.5.6 Finite-difference methods and hyperbolic equations

A stable finite-difference scheme for the elementary linear hyperbolic
equation

ut + Uux = 0,

subject to the CFL condition being satisfied, has already been given in equa-
tion (3.65). If the more complicated linear equation ut + f (x, t)ux = g(x, t)
is encountered, it is a simple matter to modify result (3.65) by replacing
the constant U by the discrete form of f (x, t) and adding the discrete form
of g(x, t) to the scheme. The scheme can also be modified in a straightfor-
ward manner to deal with two linear first-order simultaneous PDEs, again
subject to the CFL condition being satisfied, so this situation will not be
considered here.

Finding a numerical solution for a non-linear first-order ODE such as
ut + f (u,x, t)ux = g(u,x, t) is difficult, because of the result established in
Chapter 2 that discontinuous solutions may arise from smooth initial con-
ditions. Special techniques have been developed to deal with the occurrence
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of discontinuities in solutions (tidal bores in rivers and shock waves in gas
dynamics), because when these occur a finite-difference scheme is no longer
valid. One approach involves introducing a pseudo-viscous term into the
hyperbolic equations, the objective being to smooth out the discontinuity so
that a finite-difference scheme can be used. This method is not always suc-
cessful, because when the pseudo-viscous term is large the discontinuity is
smoothed out over a distance that is physically unrealistic, whereas when it
is small physically unrealistic oscillations may occur in the solution. In this
short chapter it is not possible to elaborate on the various techniques that
have been developed to deal with the evolution of discontinuous solutions.
For more information about this topic, we refer the reader to the work of
LeVeque (1992), wherein other references can be found, and Chung (2003),
and to the early work by Richtmyer and Morton (1994).

In what follows we will take the linear wave equation as our model
hyperbolic equation

∂2u
∂t2

= c2 ∂
2u
∂x2

, (c= constant) (3.77)

subject to suitable initial and boundary conditions. The wave equation (3.77)
can be solved by replacing the second-order partial derivatives ∂2u/∂x2 and
∂2u/∂t2 by their centred finite-difference approximations, which leads to the
explicit scheme

un+1
m = 2

(
1 − c2τ 2

h2

)
un

m + c2τ 2

h2

(
un

m+1 + un
m−1

)− un−1
m (3.78)

with an error O(τ 2 + h2), where h is the space step length and τ is the
time step. This scheme can be shown to be stable provided the condition
c2τ 2/h2 ≤ 1 is satisfied, which contains the CFL condition.

An implicit scheme that can be derived, the details of which will be
omitted, is

−un+1
m+1 +

(
1 + 2

c2τ 2

h2

)
un−1

m − c2τ 2

h2
un+1

m−1 = 2un
m − un−1

m . (3.79)

This scheme has an error O(τ 2 + h2) and, like other implicit schemes, it is
unconditionally stable but, for it to be applied, the CFL condition must be
satisfied.

A difficulty arises when dealing with the pure initial-value problem
for equation 3.77 subject to the initial conditions

u(x,0) = f (x) for −∞<x<∞ (3.80)
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and

ut(x,0) = g(x). (3.81)

This is because in the finite-difference approximation it is necessary to know
the values of ut(x, τ ) at the first time step t = τ , although this information
is not part of the initial conditions. The difficulty is overcome by using
the following approximation, which can be derived directly from the initial
conditions

u1
m = u0

i + τg(mh) + c2τ 3

2h2

(
f ((m − 1)h) − 2f (mh) + f ((m + 1)h)

)
, (3.82)

for which the error is

O(τ 2 + τh2). (3.83)

This scheme requires modification if the wave speed c is a function of x,
although the details of how this is to be done will be omitted. For more
information, we refer the reader to Ames (1978), Pearson (1986), Richtmyer
and Morton (1994) and Smith (1985). For an account of the application of
numerical methods to conservation laws and to shock formation, we again
refer to LeVeque (1992), and to the extensive list of references therein.
Applications to hydraulics can be found in Abbott (1979), Abbott and
Cunge (1982), Abbott and Minns (1998), Anderson (1995), Benqué et al.
(1982), Chadwick et al. (2004), Chung (2003), Cunge et al. (1980), Guinot
(2008), Mader (2004) and Verwey (1983), in the following chapters.

3.5.7 The finite-element method for elliptical equations

We return to the solution of elliptical equations to describe a very effective
method of solution called the finite-element method, which is accurate and
deals very effectively with arbitrarily shaped boundaries. Although orig-
inally intended for the solution of elliptical problems, the finite-element
method can be adapted to solve parabolic and hyperbolic problems, and
also non-linear problems. The approach is computationally highly intensive
as it leads to the solution of extremely large systems of equations, and is
always performed by computer. Professionally developed software is usu-
ally used, which may be either of a very general and flexible nature, like
MATLAB® (2007), or developed for specific purposes that take account
of special features of a class of problems, thereby reducing the amount
of computation involved. For a detailed description of the finite-element
method, specialist texts such as the one by Schwarz (1988) should be con-
sulted, while Burden and Faires (2005) provide an introductory account
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that includes some very simple applications. See also Brebbia (1983) and
Zienkiewitz and Taylor (2000).

Because the finite-element method can be implemented in many ways,
only a brief outline of the general approach will be given here. By way of
illustration we will consider a boundary-value problem for the (elliptical)
Poisson equation

∂2u
∂x2

+ ∂2u
∂y2

= f (x,y), (3.84)

in the interior of a plane region D of arbitrary shape with boundary �, sub-
ject to the Dirichlet condition u=0 on �. The approach starts by multiplying
the PDE (3.84) by a smooth function v(x,y), called a test function, with the
special property that it vanishes on the boundary �, and then integrating
the result over D to get∫

D

(
∂2u
∂x2

+ ∂2u
∂y2

)
vdxdy =

∫
D

fvdxdy. (3.85)

To proceed further, the two-dimensional form of Green’s theorem is
needed (see Jeffrey (2002), Kreyszig (2005) and O’Neil (2006)) that takes
the form∫

D

(
∂Q(x,y)

∂x
− ∂P(x,y)

∂y

)
dxdy =

∫
�

(
P(x,y)dx + Q(x,y)dy

)
. (3.86)

This is applied to the integral on the left of equation (3.86), with
P(x,y)=−vuy and Q(x,y)=vux, where the integral on the right of equation
(3.86) is a line integral around �, so this integral is to be evaluated on and
around �. This leads to the result∫

D

(
∂v
∂x

∂u
∂x

+ ∂v
∂y

∂u
∂y

)
dxdy +

∫
D

(
v
∂2u
∂x2

+ v
∂2u
∂y2

)
dxdy

=
∫
�

(
−v

∂u
∂y

dx + v
∂u
∂x

dy
)
,

but the integral on the right vanishes because v=0 on �, so using this result
in equation (3.85) allows it to be replaced by

−
∫
D

(
∂u
∂x

∂v
∂x

+ ∂u
∂y

∂v
∂y

)
dxdy =

∫
D

fvdxdy. (3.87)
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Figure 3.10 (a) Triangularization of an arbitrary region D. (b) Triangularization of the
hexagonal region Dmn about a node at (xm, yn)

This expression is called the weak or variational form of the Poisson equa-
tion (3.84), and is to be interpreted to mean that u must be such that
equation (3.87) is true for all test functions v.

The next step is to subdivide region D into smaller regions, usually
of a triangular nature, as shown in Figure 3.10(a), although all with-
out obtuse internal angles. This allows the curved boundary � to be
approximated arbitrarily closely by a polygonal line. Each of the small
interior triangular regions is called a finite element; the vertices of these
elements are called nodes. A typical triangularization of a unit square
is shown in Figure 3.10(b). Note that neighbouring triangles around
the point (xm,yn) either share a common side or meet at a common
node. If for some positive integer N the grid lines in Figure 3.10(b) are
h = 1/N apart, then the grid points occur at xm = mh, yn = nh, so there
are (N − 1)2 grid points inside the unit square. The six finite elements with
the common node at (xm,yn) representing an area Dmn are shaded in the
diagram.

In the simplest case, the approximation û(x,y) for the true solution u(x,y)
above each of the shaded regions in Figure 3.10(b) is represented by a
triangular planar surface of the form

û(x,y) = a1 + b1x + c1y, (3.88)

and it is required that the approximate solution is continuous across the
six edges of the pyramid function shown in Figure 3.11. For convenience,
because of subsequent scaling, the height of the vertex of the pyramid
function above the central node is taken to be unity.

The six-faced pyramid function ϕmn(x,y) shown in Figure 3.11 that
approximates the solution above the six shaded triangles forming the region
Dmn is called a basis function, and the finite-element approximation above
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1

(xm, yn)

Figure 3.11 The approximate solution in region Dmn represented by the surface of the
pyramid above the point (xm, yn)

the entire region D is taken to be the following linear combination of the
basis functions

û(x,y) =
N−1∑

m,n=1

cmnϕmn(x,y), (3.89)

where the coefficients cmn have still to be determined.
The finite-element method was first introduced to deal with the elastic

deformation of solids, so for historical reasons the square matrix C = [cmn]
is usually called the stiffness matrix, although this name has no physical
significance when working with hydraulic problems.

The conditions that must be satisfied by the basis functions ϕmn(x,y) if the
approximate solution is to be continuous over D are:

(a) ϕmn(xr,ys) =
{

1, when r = m, s = n
0 at every other grid point of Dmn,

(b) ϕmn(x,y) = 0 when the point (x,y) does not belong to Dmn.

The coefficients cmn are found by requiring the approximate solution in
equations (3.89) to satisfy the variational form of the problem in equation
(3.87) for each function ϕmn(x,y). Consequently, when û(x,y) is substituted
for u(x,y) and ϕmn(x,y) is substituted for v(x,y) in equation (3.87), a linear
system of equations for the coefficients cmn is obtained of the form

N−1∑
m,n=1

cmnA(ϕmn,urs) = B(urs), for r, s = 1,2, . . . ,N − 1, (3.90)
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where

A(ϕmn, ϕrs) =
∫

Ars

(
∂ϕmn

∂x
∂ϕrs

∂x
+ ∂ϕmn

∂y
∂ϕrs

∂y

)
dxdy and

B(urs) =
∫

Ars

fϕrsdxdy. (3.91)

When the analytical expressions for the basis functions are used in equa-
tions (3.90) and the necessary integrations are performed, a large system
of linear equations is generated for the elements cmn. Once this system has
been solved, substituting the constants cmn and the basis functions ϕmn(x,y)
in equation (3.89) gives the required finite-element approximation.

Because of the way the approximate solution has been constructed, it
will generate a continuous solution over the triangularization of region D
formed by a large number of small planar surfaces. A smoother approximate
solution can be found if the linear expression in x and y in equation (3.88)
is replaced by a quadratic expression, although at the cost of a significant
increase in the amount of computation that is required.

Professional finite-element software packages provide the facility for
automatic triangularization of regions, the ability to allow for more gen-
eral boundary conditions, the efficient solution of the system of equations
for the coefficients cmn, and the plotting of the approximate solution sur-
face, together with the ability to apply the method to different types of
PDE. It will be clear from this brief outline of the method that the amount
of computation involved is such that the finite-element method can only be
implemented by computer.
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Chapter 4

Theoretical background –
hydraulics

4.1 Introduction

As this text is not intended to be a treatise on fluid mechanics or hydraulics,
only the essentials of these disciplines necessary as a background to further
discussion of the main theme, i.e. modelling in hydraulics, will be dealt with
here; furthermore, a basic knowledge and understanding of fluid mechanics
and hydraulics and of their principles are assumed throughout. In most cases
the equations presented are given without formal proofs in their derivation –
for further details and references, see, for example, Batchelor (2000),
Chadwick et al. (2004), Daily and Harleman (1966), Douglas et al. (2005),
Fox (1977), Goldstein (1965), Rouse (1961), Tritton (1988) and Vardy
(1990). Some parts of (applied) hydraulics developed from statements in this
section and used in the formulation and application of scaling laws, in math-
ematical modelling of various types of flow or engineering applications, are
best dealt with immediately before discussing the modelling procedure and
problems, and therefore have mainly been placed in the relevant ‘applied’
Chapters (7–13).

4.2 Some basic concepts and equations in
hydrodynamics

4.2.1 The continuity equation

For a cubical element of fluid (control volume) of density ρ and velocities u,
v, w along the axes x, y, z, from considerations of mass conservation

∂ρ

∂t
+ ∂

∂x
(ρu) + ∂

∂y
(ρv) + ∂

∂z
(ρw) = 0 (4.1)

or

∂ρ

∂t
+∇.(ρu) = 0 (4.1a)
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For steady incompressible fluid flow ρ is constant; thus

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0 (4.2)

or

∇.u = 0 (4.2a)

4.2.2 The Euler equations

The differential form of Newton’s second law of motion for fluid flow in a
pressure field without friction results in

− ∂p
∂x

+ ρX = ρ

(
u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

+ ∂u
∂t

)
(4.3)

− ∂p
∂y

+ ρY = ρ

(
u
∂v
∂x

+ v
∂v
∂y

+ w
∂v
∂z

+ ∂v
∂t

)
(4.4)

− ∂p
∂z

+ ρZ = ρ

(
u
∂w
∂x

+ v
∂w
∂y

+ w
∂w
∂z

+ ∂w
∂t

)
(4.5)

where ρX, ρY and ρZ are body forces/unit volume in the directions x, y,
and z. These equations can be written more concisely as

du
dt

= X − ∂p
ρ∂x

(4.3a)

dv
dt

= Y − ∂p
ρ∂y

(4.4a)

dw
dt

= Z − ∂p
ρ∂z

(4.5a)

In equations (4.3)–(4.5) the groups of derivatives u(∂u/∂x) + v(∂u/∂y) +
w(∂u/∂z), etc. are convective accelerations describing velocity changes by
movements in space. As the Euler equations describe relationships between
forces and accelerations they are differential forms of momentum equations,
the integration of which with respect to distance yield energy relationships.

4.2.3 The Navier–Stokes equations

Introducing the definition of dynamic viscosity as the ratio of shear intensity
τ in the x–y plane to the rate of angular deformation

τxy =μ

(
∂u
∂y

+ ∂v
∂x

)
(4.6)
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(with similar expressions for τyz and τzx), and by adding the effect of
viscosity to account for frictional forces and shear stresses to the Euler
equations (4.3)–(4.5) we obtain the Navier–Stokes equations:

−∂p
∂x

+ ρX +μ

(
∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

)
= ρ

(
u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

+ ∂u
∂t

)
(4.7)

Similar expressions could be written for the y and z axis (see equations (4.4)
and (4.5)); or more concisely

du
dt

= X − 1
ρ

∂p
∂x

+ ν∇2u (4.7a)

4.2.4 Vorticity, irrotational flow, velocity potential,
Laplace equation

The rate of rotation (angular velocity) of a fluid particle in the x–y plane is
ωxy = 1/2((∂v/∂x) − (∂u/∂y))

The vorticity ζ (intensity of circulation �) is equal to 2ω.
Irrotational flow is flow without vorticity; thus, for this type of flow

ωxy =ωxz =ωzy = 0, and

∂v
∂x

= ∂u
∂y

(4.8)

∂u
∂z

= ∂w
∂x

(4.9)

∂w
∂y

= ∂w
∂y

= ∂v
∂z

(4.10)

Denoting u = ∂ϕ/∂x, v = ∂ϕ/∂y, w = ∂ϕ/∂z we get from equation (4.2)

∂2ϕ

∂x2
+ ∂2ϕ

∂y2
+ ∂2ϕ

∂z2
= 0 (4.11)

or

∇2ϕ = 0 (4.11a)

Irrotational flow with a velocity potential (u = ∂ϕ/∂x, etc.) is called
potential flow and equation (4.11) is the Laplace equation.
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4.2.5 The stream function

The stream function ψ defines streamlines in fluid motion as lines with a
constant value of ψ(∂ψ = 0) given by:

u = ∂ψ

∂y

(
= ∂ϕ

∂x

)
(4.12a)

and

v =−∂ψ

∂x

(
= ∂ϕ

∂y

)
(4.12b)

From this definition it follows that no flux can cross the streamlines, and
that between adjacent streamlines

δQ = δψ (4.13)

(ψ and ϕ for two-dimensional flow are conjugate harmonic functions).

4.3 Hydraulics – basic concepts, boundary layer,
turbulence

4.3.1 Some basic concepts and equations in hydraulics

4.3.1.1 Continuity

From equation (4.13) for steady incompressible fluid flow between two
streamlines, and applying the concept to a stream tube of cross-sectional
area A, we get for two consecutive sections 1 and 2:

Q = A1v1 = A2v2 = constant (4.14)

where v is the velocity in section A, etc.
Replacing velocity v with the mean cross-sectional velocity V in a

conveyance area A results in

Q = AV = constant (4.14a)

4.3.1.2 Energy

Energy considerations result in the Bernoulli equation for the ‘total’
energy head

H = p
g

+ v2

2g
+ z = constant (4.15)
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i.e. the sum of pressure, kinetic and potential energy components per unit
weight of fluid is constant (‘total’ energy is an oversimplification, as this
should include other forms, e.g. turbulent and thermal energy).

For a real fluid taking into account the velocity distribution in the
cross-section with the local (time averaged) velocity differing from the cross-
sectional velocity V, the kinetic energy head has to be written as αV2/2g,
where α is the Coriolis coefficient

α =
A2
∫
A

u3dA(∫
A

VdA
)3

4.3.1.3 Force and momentum

From Newton’s second law for steady flow and an incompressible fluid

�P = ρQ(v2 − v1) = ρAv(v2 − v1) = ρQ2

(
1
A2

− 1
A1

)
(4.16)

where �P is the sum of external forces acting on a segment of fluid between
sections 1 and 2 of mass ρAδl (with v = dl/dt).

For a real fluid with non-uniform velocity distribution, equation (4.16)
has to be modified by the introduction of the Boussinesq coefficient

β(<α)(β(< α)

⎛⎜⎜⎜⎜⎜⎜⎜⎝
β=

A
∫
A

u2da

⎛⎝∫
A

VdA

⎞⎠2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

�P = ρQ(β2v2 − β1v1) (4.16a)

Applications of the mass conservation, energy and momentum equa-
tions (4.15) and (4.16) lead to many equations used in hydraulics; e.g. equa-
tions for flow through orifices, over notches, through venturimeters and
contractions (energy principle), and for forces acting on vanes, in pipe
bends, and the hydraulic jump (momentum principle), etc.

4.3.1.4 Vortex

By introducing rotational motion into a flow (e.g. the Earth’s rotation) a
free vortex is formed which, ideally, does not dissipate any energy, and thus
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for dH/dr = 0, where r is the radius of rotation of a fluid particle,

dv
dr

+ v
r

= 0 (4.17)

and

vr = c (4.17a)

where c is a constant – the strength of the free vortex (2πc is the
circulation �).

Combining a free cylindrical vortex and radial flow (sink) results in a free
spiral vortex.

If the fluid is forced to rotate (e.g. by a stirring device) with an angular
velocity ω a forced vortex results, with

v
r

=ω (4.18)

At the centre of a free vortex there are high velocities and velocity gradi-
ents, and thus large viscous shears are present, causing energy ‘losses’ and
decay of the free vortex near its centre. This results in a forced vortex sur-
rounded by a free vortex, i.e. the Rankine vortex. (Energy ‘losses’ are really
energy transfers from bulk-flow kinetic energy to other forms of energy,
e.g. turbulent, heat and sound energy.)

4.3.2 Boundary layer and resistance

The flow field may be generally considered to consist of two parts – influ-
enced or not influenced by frictional (viscous) effects caused by the presence
of flow boundaries (in reality there is, of course, no sharp dividing line
between the two parts). In the former case there is a boundary layer with
a velocity gradient, while in the latter there is a velocity potential and the
Euler equations may be applied.

When a fluid flow approaches a boundary, it is slowed down (to zero
at the contact with the boundary). First, a laminar boundary layer (with
parabolic velocity distribution) develops, and after some distance (from the
leading edge of the boundary) there is a transitional boundary layer that
shortly develops into a turbulent boundary layer with a laminar sublayer
(where there is a large velocity gradient and strong viscous shear). The thick-
ness of the boundary layer may be taken as the distance from the boundary
to the point where the velocity attains 99% of the undisturbed velocity u0

(Figure 4.1).
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Figure 4.1 Development of the boundary layer along a flat plate

From experimental observation of, for example, flow past a flat plate, the
boundary layer thickness δ for a laminar layer can be written as

δ = 5
(

νx
u0

)1/2

= x5Re−1/2
x (4.19)

or

Reδ = 5Re1/2
x (4.19a)

where Reδ = u0δ/ν and x is the distance from the leading edge.
The corresponding equation for the turbulent boundary layer with
Rex >105–106(Reδ >3,000) is

δ = x0.37Re−1/5
x (4.20)

The velocity distribution in a turbulent boundary layer (in the x–y plane)
can for Re<20 × 106 be closely approximated by

u
u0

=
(y

δ

)1/7

(4.21)

and the displacement thickness δ∗ (the distance by which a surface would
have to be moved in order to reduce the discharge of an ideal fluid at velocity
u by the same amount as the reduction caused by the velocity reduction in
the boundary layer) (from equation (4.21)):

δ∗ = δ

8
(4.22)



Theoretical background – hydraulics 119

The boundary resistance may be expressed in terms of the kinetic energy of
the undisturbed flow, using a ‘friction coefficient’ cf , as

τ0 = cf ρu2
0

2
(4.23)

where cf will be a function of Reynolds number. Generally, the drag
resistance of immersed bodies can then be formulated as

P = CAρu2
0

2
(4.24)

where A is the projected area of the body on a plane perpendicular to the
flow vector u0, and C is a function of Reynolds number and the shape of
the body.

Using the Prandtl mixing-length concept and writing u = ū + u′ (where
u′ is the instantaneous velocity deviation from the time average ū; the same
applies for v and w – see also Section 4.3.3), the velocity fluctuation between
adjacent streamlines in the x-y plane becomes

u′ = l
∂u
∂y

(4.25)

Assuming homogeneity with u′ = v′, the shear stress

τ= ρu′v′ (4.26)

becomes

τ= ρl2

(
∂u
∂y

)2

(4.27)

where l is the mixing length, or

U∗ = l
∂u
∂y

(4.28)

where U∗ = (τ/ρ)1/2 is the shear velocity.
Taking l = κy with κ = 0.4 (von Karman’s ‘universal constant’) and τ = τ0

(shear stress at the boundary) results in

u = 2.5
(

τ0

ρ

)1/2

lny + C = 5.75U∗ log
(y

c

)
(4.29)
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Figure 4.2 Definition sketch for evaluating the thickness of the laminar sublayer

where c is a ‘constant’, which in fact is a function of the surface roughness
and shape of the conveyance. We can thus conclude that the growth of the
turbulent boundary layer (and the boundary resistance) are a function of the
Reynolds number, relative surface roughness and shape of the conveyance.

Equation (4.29) can also be written as

u
U∗

= 1
κ

ln
y
y′ (4.30)

where y′ is the distance from the boundary at which the velocity u (as given
by equation (4.30)) reduces to zero (Figure 4.2).

Equating the velocity from the velocity distribution given by equa-
tion (4.29) with that given by a laminar velocity distribution (derived from
τ =μdu/dy) (and using Nikuradse’s work – see Section 4.4.1) results in the
equation for the laminar sublayer thickness

δ′ = 11.6
ν

U∗
(4.31)

Further development and applications of equations (4.30) and (4.31) will
be given in Section 4.3.1.

If the flow over a boundary is in a situation of decreasing pressure in the
direction of flow, the fluid will accelerate, the boundary layer will become
thinner and the flow will be stable (e.g. flow between convergent bound-
aries). In the opposite case of a positive pressure gradient (e.g. in divergent
flow) boundary layer separation will occur after a stagnation point (a point
where the transverse velocity profile begins to exhibit an inflexion) has been
reached. Flow separation is characterized by increased energy losses, with
the flow being inherently unstable.
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For a flow velocity u0 around a cylinder of diameter D the flow behaviour
depends on the Reynolds number u0D/ν changing from no separation at
and behind the cylinder (Re< 0.5) through symmetrical attached vortices
(2 < Re < 30) to an alternative shedding of vortices (Re > 70–120) – the
Karman vortex street – with a frequency f given by the Taylor equation:

f = 0.198u0

D(1 − 19.7/Re)
= 0.2u0

D(1 − 20/Re)
(4.32)

At Re>105, the wake behind a cylinder narrows (Francis 1975).

4.3.3 Turbulence

Reynolds’ classical experiment demonstrated that originally stable laminar
flow, when the velocity is increased, passes through an ill-defined transi-
tional stage to turbulent flow with chaotic violent eddying and mixing (of
originally adjacent fluid layers).

Each time a flow changes as the result of an instability, the ability to
predict the details of motion – using the Navier–Stokes equations describing
the flow – is reduced. When successive instabilities have reduced the level of
predictability so much that it is appropriate to describe the flow statistically
and globally rather than in detail, it is considered to be turbulent with a
predominance of random features. Most of the knowledge of turbulent flow
comes from the interaction between theory and experimental results.

For a statistical description of turbulent flow, the velocity (and pressure
fields) are divided into mean and fluctuating parts, e.g. u = ū + u′ (see also
Section 4.3.2) (the time average of velocity u is over a long period of time
relative to turbulence but could be over a short period relative to variations
in the primary unsteady flow). For the description of the flow conditions ū
and the root-mean-square (RMS) value of u′, the energy spectrum and the
probability function of the velocity fluctuations are important.

Returning to the Navier–Stokes equation (4.7) and substituting for each
component of the instantaneous velocity vector u the sum of the mean and
its fluctuation (ū + u′) results in

dū
dt

= X − 1
ρ

∂p̄
∂x

+ ν∇2ū − ∂u′2

∂x
− ∂u′v′

∂y
− ∂u′w′

∂z
(4.33)

(and similar expressions for the y–z axis).
It is important to appreciate that these modifications first formulated

by Reynolds (the Reynolds equations) do not apply more accurately to
conditions of turbulence than do the original Navier–Stokes equations.
They permit, however, the differentiation between primary and secondary
characteristics of motion.
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It is evident from equation (4.33) that the magnitude of the terms for
purely viscous stress are reduced and that the additional term implicitly
expresses the viscous action in the secondary motion of eddies, i.e. the
actual stress due to viscous action is replaced by the viscous stress given
by the mean velocity gradient plus the apparent stress due to the exchange
of momentum in the mixing process. The stress intensity τ expressed by

τ= ρu′v′(etc.) (4.34)

(see also equation (4.26)) is called the Reynolds stress. Reynolds stresses are
thus the mathematical representation of the transport of momentum across
a hypothetical surface due to random turbulent velocity fluctuations.

Analoguous to the laminar shearing flow with stress τ =μdu/dy, Prandtl
introduced the eddy viscosity concept for turbulent flow with τ̄ = τ + τ ′′,
which for τμ = 0 and τ ′ = ρl2(dū/dy)2 gives

τ̄= 4ρ

(
�ydū

dy

)2

= ηdū
dy

(4.35)

where η=ρ(2�y)2dū/dy is a function of the shear rate and eddy size 2�y= l
(mixing length). Here, η is the coefficient of the dynamic eddy viscosity and
ε=η/ρ is the coefficient of kinematic eddy viscosity depending only on flow
properties (i.e. the eddy size and eddy velocity). Since ε provides a direct
measure of the mixing process, it is also called the diffusion coefficient.

The ‘k − ε′’ turbulence model based on the use of the turbulent kinetic
energy k and the rate of its dissipation due to viscous damping ε′ is fre-
quently used in computational modelling, and will be discussed in later
chapters.

In all cases of turbulent motion there is a tendency for the mean square
values of the three components of turbulent motion to become equal
to one another, leading to isotropic turbulence. This might be expected
if the time elapsed since the turbulence was formed is so great that
there is no correlation between the motion of a particle and its initial
motion.

We can conclude that turbulence is a system of eddies – large ones gener-
ated by the main flow, with a size of the order of the flow field (e.g. depth
of flow), where viscous effects are negligible; and small eddies (generated by
the large ones) dissipating energy due to viscosity.

It is beyond the scope of this text to proceed further in the development
and application of the turbulence equation and discussion of turbulence
models, and the reader is referred to the many publications on the subject,
some of which are listed in the references to this chapter (see particu-
larly Rodi 1993). It is, however, pertinent to note here that closure of
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turbulence equations can only be achieved by using empiricism at some
level.

4.4 Flow in conduits

4.4.1 Steady flow and friction coefficients

The pressure head loss due to friction hf for flow in a pipe of diameter D
over a length l is given by the Darcy–Weisbach equation:

hf = λlV2

2gD
(4.36)

where the coefficient of friction head loss λ is given by

λ=�

(
VD
ν
,

k
D

)
=�

(
Re,

k
D

)
(4.37)

where k is the ‘effective’ wall roughness size. Introducing the hydraulic
radius R = A/P (for a pipe of circular cross-section R = D/4) and substi-
tuting into equation (4.36) gives:

hf = λlV2

8gR
= λRlV2

2gR
(4.36a)

with λ= 4λR.
Equating the wall resistance over a length l (τ0Pl, where τ0 is the mean

wall shear stress) with the pressure loss �p over area A(�pA = ρghf A)
yields

hf = τ0lP
ρgA

= 4τ0l
ρgD

(4.38)

From equations (4.36) and (4.38)

τ0 = λρV2

8
= ρU2

∗ (4.39)

(see also equation (4.23)).
Integrating the (Hagen–Poiseuille) equation for the distribution of veloc-

ity u in laminar flow in a pipe (see Section 5.5.2)

u = �p
(4μl)(D2/4 − y2)
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results in:

hf = 32lV2ν

gD2
(4.40)

From equations (4.36) and (4.40), for laminar flow λ is given by

λ= 64ν

VD
= 64

Re
(4.41)

The laminar regime is maintained for flow through a circular cross-section
pipe up to the critical value Recr = 2,300(VR/ν = 580). Below this limit,
flow at a sufficient distance from the inlet into the pipe is always lami-
nar. In favourable circumstances (e.g. very quiet water in the inlet reservoir)
laminar flow may also be achieved for Re>Recr.

For values of the Reynolds number above the critical limit Recr the flow
passes through the transitional zone into the region of turbulent flow, where
energy losses are much greater than for laminar flow and where there are
three possible regimes: smooth turbulent flow, transition from ‘smooth’ to
‘rough’, and rough turbulent flow (see Figure 4.4). The exponent of the
mean cross-sectional velocity in the head-loss equation changes from 1
(see equation (4.40)) up to 2 for fully developed rough turbulent flow. In
this case, the Reynolds number disappears from equation (4.37) and the
resistance coefficient is only a function of the relative roughness k/D. The
Reynolds number for which rough turbulent flow begins (i.e. for which the
friction loss is proportional to the square of mean velocity) is denoted by
Resq. For Re>Resq the resistance coefficient λ is, therefore, independent of
the Reynolds number.

When stating the general equation for the friction-loss coefficient λ (equa-
tion 4.37), the effective roughness size k of the pipe wall was used. It is
evident that the roughness coefficient will be influenced not only by the
magnitude of the wall protuberances, but also by their shape, homogeneity
and concentration. For homogeneous roughness formed by regularly spaced
sand grains of equal size k glued to the inside wall of smooth bronze pipes,
equation (4.37) was solved experimentally by Nikuradse (for roughness
values 30<D/k< 1,014). The resultant graph illustrating the relationship
between the resistance coefficient λ, Reynolds number Re = VD/ν and the
relative roughness value r/k (where r is the radius of the pipe) is shown in
Figure 4.4.

For Re < Recr the Lagrange number La = constant, for Re > Resq the
Euler number Eu = constant (see Section 5.5.2) and for the intermediate
region Recr <Re<Resq equation (4.37) applies. The velocity distribution in
turbulent flow for Re<20 × 106 can be approximated by a power law

u = y1/m (4.42)
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where m = 7 (y is the distance from the wall); it is, however, better to use
the velocity distribution equation (4.30), which can be written as

ū√
τ0/p

= 5.75 log
(

y
y′
)

(4.43)

On the basis of Nikuradse’s experiments, and using equation (4.31) for
‘smooth’ pipes

y′ = δ′
107

= 11.6ν

U∗107
= 0.108ν√

τ0/ρ
(4.44)

For ‘rough’ wall pipes experiments have shown that

y′ = κ

30
(4.45)

Substituting for y′ in equation (4.43) and integrating the results in the
following equations for the mean velocity of flow,

V
U∗

= 5.75 log
(

rU∗
ν

)
+ 1.75 (4.46)

for smooth pipes, and

V
U∗

= 5.75 log
( r

k

)
+ 4.75 (4.47)

for rough pipes.
Introducing the friction coefficient λ from equation (4.39) (and carrying

out a small correction in the coefficients according to experimental results)
gives the Karman–Prandtl equations for the friction coefficient for turbulent
flow in smooth pipes (Re = VD/ν):

1√
λ

= 2 log

(
Re

√
λ

2.51

)
(4.48)

and in rough pipes

1√
λ

= 2 log
(

3.71D
k

)
(4.49)
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We also obtain a single equation for the relative velocity distribution in
rough and smooth pipes

(Ū − V)

(V
√
λ)

= 2 log
(y

r

)
+ 1.32 (4.50)

Furthermore, from equations (4.31) and (4.39) we obtain the relationship

δ′
r

= 11.6ν

rV
√
λ/8

= 65.6ν

VD
√
λ

= 65.6

Re
√
λ

(4.51)

From the above equations it follows that every pipe of a certain roughness
will behave like a smooth pipe for low Reynolds number and like a rough
pipe for high values of Reynolds number; between the two cases there is
a transitional zone in which loss due to friction is a function both of the
Reynolds number and the relative roughness of the pipe. As long as the
protuberances on the pipe wall are submerged in the laminar sublayer they
do not influence the magnitude of the losses at all; however, as soon as the
thickness of the laminar sublayer decreases to such an extent that, because
of the protruding parts of the wall, it becomes unstable, the resistance to
flow will increase.

The transition from smooth to rough pipe flow begins at about δ′ = 4k
and finishes at δ′ = k/6. Using the latter value in equation (4.51) results in

Resq >
65.6 × 6r

k
√
λ

>
400r

k
√
λ

(4.52)

From this the condition for the influence of viscosity to become negligi-
ble is

U ∗ k
ν

( = Re∗
k)>70 (4.53)

The above considerations refer to a uniform roughness of pipe walls as
used by Nikuradse. However, as the roughness of the wall of every com-
mercial pipe is caused by protuberances of various sizes, shapes and density,
using an equivalent roughness k (corresponding to a uniform grain size and
resulting for a pipe of given diameter with the same value of coefficient λ
as the actual heterogeneous roughness) Colebrook and White proposed a
single semi-empirical relation that included not only the transitional zone
but also closely approximated the experimental results and equations for
smooth and rough pipes:

1
λ

=−2 log
(

2.51

Re
√
λ

)
+ k

3.71D
(4.54)
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On the basis of these studies and further measurements on industrial
pipes, Moody drew up a diagram (reproduced in most hydraulics text-
books) that shows the relationship between λ, Re and k/D, i.e. it represents
equation (4.37). The values of k (effective roughness size) for various mate-
rials and new pipes are quoted in published tables (e.g. for steel k is
0.005–0.05 mm, for cast iron k is 0.12–0.60 mm, and for concrete k is
0.30–3.0 mm). For 1 year’s operation of metal and concrete pipes an
increase in the value of λ by 0.0005–0.001 should be allowed for.

Combining equation (4.54) with equation (4.36) results in an explicit
equation for velocity (and discharge) (Sf = hf/l):

V =−2
√

2gDSf log
(

k
3.71D

)
+ 2.51ν

D
√

2gDSf

(4.55)

This equation forms the basis for the charts and tables for the hydraulic
design of pipes (e.g. as given in Wallingford and Barr (1994)). Approximat-
ing the logarithmic smooth turbulent part of equation (4.54), Barr (1975)
proposed the explicit equation for λ:

1
λ

=−2 log
(

k
3.71D

+ 5.1286

Re0.89

)
(4.56)

For Re > 105, equation (4.56) provides a solution for the head-loss
coefficient to an accuracy of ±1%.

In practice, the method of solution will depend on which two of the three
variables (Q, D and Sf = hf/l) are known.

Equations (4.46)–(4.56) apply to pipes of circular cross-section. For other
shapes or circular conduits not flowing full, the shape of the conveyance will
affect the value of the coefficient λ, as the integration of equation (4.43) –
even for the same value of k – will produce a different constant of integra-
tion. Thus, for example, for flow between two parallel planes at a distance
a (where the second dimension of the cross-section is theoretically infinite,
or at least too great to influence the velocity distribution in the major part
of the cross-section), we obtain for smooth surfaces

1√
λ

= 2.03 log
(

2aV√
λ/ν

)
− 0.47 (4.57)

and for rough surfaces

1√
λ

= 2.03 log
( a

2k

)
+ 2.11 (4.58)
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Comparing these equations with equations (4.48) and (4.49) (for a large
second dimension R=a/2), we find that λ for a cross-section other than cir-
cular is always larger than for the circular one. This increase in the friction
coefficient and the resultant energy losses are caused primarily by secondary
currents, the streamlines of which are in a plane perpendicular to the axis
of the pipe. The resultant is a spiral flow leading to increased mixing of
particles from the zones of higher and lower velocities, and to an increase
in turbulence, and thus also to an increase in the friction coefficient of the
pipe. The change in the cross-section also influences (to a greater extent)
the magnitude of the critical Reynolds number Recr = VR/ν; for a circular
cross-section Recr =580(=2320/4), for a square conduit Recr =525 and for
a wide open channel (R = h)Recr = 500.

In general, we can express the above equations also in the form

V = U∗
κ

ln
(

bR
δ′

)
(4.59)

for smooth pipes and

V =
(

U∗
κ

)(
cR
k

)
(4.60)

for rough pipes, where b and c are constants depending on the conduit
shape. For a circular pipe b = 46.6 and c = 14.3, and for a wide rectangular
conduit b = 38.4 and c = 11.0.

Equations (4.59) and (4.60) lead also to the ‘Delft’ equation, which
simplifies the coefficients in a single equation (for the Chezy coefficient C):

C = 18 log
(

6R
(k/2 + δ′/7)

)
(4.61)

Finally, a comparison of the Darcy–Weisbach equation with the empirical
Chezy, Manning and Strickler equations

V = C
√

RS (4.62)

V = 1
n

(R2/3S1/2) (4.63a)

V = c
k1/6

(R2/3S1/2) (4.63b)

results in

C = 1
nR1/6

=
√

8g
λ

=
√

2g
λR

= 26
(

k
R

)1/6

(4.64a–d)
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(putting c = 26). The range within which this simple relationship can well
approximate the more complicated logarithmic one is 5< y/k<500.

4.4.2 Local head losses

‘Local (head) losses’ occur in conduits at changes of direction of flow or
cross-section (contractions, expansions, valves, gates, bends, etc.). They are
usually expressed in the form

hl = ξV2

2g
(4.65)

where ξ is a ‘coefficient’ depending on the type of local loss, geometry, wall
roughness, Reynolds number and upstream velocity distribution, and V is
the mean cross-sectional velocity downstream of the feature causing the
local loss.

In the more common cases (bends, changes in pipe diameter, orifices,
etc.) the relationship between ξ , Reynolds number and geometric parame-
ters of the change has been well investigated and published in tables and/or
graphs (Lencastre 1987, Miller 1994). In cases where this relationship is not
known, it has to be investigated experimentally in the laboratory.

Local losses may be substantially influenced (i.e. increased or decreased)
by the upstream configuration unless the distance between the items (e.g. fit-
tings or appliances) causing the loss is sufficiently large (usually more than
about 40D).

As in the case of the friction coefficient, ξ will be independent of the
Reynolds number only if this exceeds a certain limiting value. Considering
that every feature introducing a local loss causes secondary currents and
increased turbulence upstream and, particularly, far downstream, it may be
safely assumed that this Reynolds number will be smaller or at most equal
to Resq = 50–100 with ξ = 700. Thus, if equation (4.53) is satisfied for the
friction coefficient, the relevant values of ξ will also be given by equation
(4.53) (e.g. for a 90◦ bend, Resq =VD/ν=5 × 103, with ξ =1, for an orifice
R independent of viscosity).

4.4.3 Basic concepts and equations for non-uniform and
unsteady flow in pipes and open channels

In unsteady flow the discharge is a function both of position and time
(Q = f (x, t)). In open channel flow (of depth y) Sf = dH/dx results in the
Saint Venant equation:

Sf = ∂H
∂x

= −∂z
∂x

− ∂y
∂x

− ν

g
∂ν

∂x
− ν

g
∂ν

∂t
dt
dx

(4.66)
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The first term on the right of equation (4.66) signifies uniform flow and
the first three terms signify non-uniform (gradually varied) flow.

From continuity (with no lateral discharge in �x and B the water surface
width),

A∂ν
∂x

+ ν∂A
∂x

+ B∂y
∂t

= 0 (4.67)

The first term in equation (4.67) represents the prism storage and the second
term the wedge storage.

From equation (4.66) the equation for gradually varied non-uniform flow
(∂t = 0) can be written as (where Fr2 = Q2B/(gA3) and S0 is the bed slope):

dy
dx

= S0 − Sf

1 − Fr2
(4.68)

A special case of equations (4.66) and (4.67) is the shallow water formula-
tion for surface waves (using y for depth)

∂u
∂t

+ u∂u
∂x

+ g∂y
∂x

= 0 (4.69)

∂y
∂t

+ u∂y
∂x

+ y∂u
∂x

= 0 (4.70)

For further development and use of equations (4.66)–(4.70), see Chapters 7,
8, 11 and 12.

Considering a surge produced by sudden changes in depth and/or a dis-
charge moving with velocity V in a flow with section 1 in front and section 2
behind (Figure 4.3), the surge momentum and continuity result in

y1

y2 v2v1

v

Figure 4.3 Definition sketch of a surge

Fr2
1 = (V1 + V)2

gy1
= 1

2
y2

y1

(
y2

y1
− 1

)
(4.71)

(V1 + V)y1 = (V2 + V)y2 (4.72)
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From these equations the velocity of the surge is

V =−V1 ±
√

gy1 + 3
2

(y2 − y1) + (y2 − y1)
2

2y1
(4.73)

For small surges (y2 − y1) is small and

V = V1 ±√
g y1 (4.74)

For the initial velocity V1 = 0, V = √
(gy1) (the sign convention in equa-

tions (4.72)–(4.74) indicates a surge moving against the direction of flow).
The energy loss in the surge (per unit weight of fluid) is

�E = (y2 − y1)
3

4y2y1
(4.75)

From the point of view of an observer moving with velocity V the surge
becomes a stationary one, and equations (4.71)–(4.73) (with V =0) become
the equations for a hydraulic jump denoting the transition from supercritical
to subcritical flow.

Fast changes of discharge in pipelines caused by, for example, fast changes
in flow at a hydroelectric power station, by manipulation of valves or by
pump start or shut-down, produce pressure waves in the pipeline system.
These transients, with the flow velocity a function of both time and position
and influenced by the elastic properties of the fluid and pipeline material,
are called waterhammer.

Changes in discharge in cases where there is a (very elastic) interface of
the liquid (water) with air result in slow transients without the influence
of elasticity – mass oscillation – where the flow velocity is a function of
time only.

The basic differential equations for waterhammer, derived from momen-
tum and continuity principles are:

∂H
∂t

+ 1
g

(ν
c

+ 1
) ∂ν
∂t

+ Sf = 0 (4.76)

∂V
∂x

+ g
c2

∂H
∂t

= 0 (4.77)

where H is the pressure head and c is the pressure wave velocity given by

c =
√

K/ρ
1 + DK(eE)

= c0√
1+DK/(eE)

(4.78)
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where K is the bulk modulus of the fluid, E the Young modulus of the
pipeline material and e the wall thickness of the pipeline of diameter
D. The velocity of the pressure wave in the liquid (without the effect
of the pipe) c0 = √

(K/ρ) is 1,425 m/s for water (this may be greatly
reduced even by a small amount of entrained air, e.g. a concentration of
air of 0.01 reduces the pressure wave celerity to about 400 m/s). As in
most cases V << c, the term in the bracket in equation (4.76) may be
neglected.

The above system of equations is usually solved by numerical computa-
tion using a discrete (finite-difference) formulation (method of characteris-
tics) but can also be solved by mathematical or graphical methods based
on their Riemann invariants solution (Schnyder–Bergeron). The main diffi-
culties are in complicated pipe networks with pressure-wave reflections and
transmissions, and in the determination of the value of a in the presence of
dissolved and/or dispersed air in the liquid.

For mass oscillation (slow changes in discharge, e.g. in a system with a
surge tank) the dynamic equation is

L
g

dV
dt

+ z ± PV2 ± RV2
s = 0 (4.79)

and continuity results in

VA = VsAs + Q′ (4.80)

with

Vs = dz
dt

(4.81)

where z is the difference between the water levels in the surge tank
and in the reservoir, P = λL/2gD, R is given by the head loss coef-
ficient at the entry into the surge tank, As is the surge-tank area,
Vs the velocity of flow in the surge tank and Q′ is the turbine
(pump) discharge. Differentiating equation (4.79) and substituting from
equations (4.80) and (4.81) results in a second-order differential equa-
tion which, for a general case, cannot be solved. We have to resort,
therefore, either to simplifying assumptions (e.g. Q′ = 0) or to solving
the above system of equations by graphical or numerical finite-difference
methods.
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Further development and applications of equations (4.71)–(4.81) are
discussed in Chapter 9.

4.5 Introduction to ocean wave motion

Most ocean waves are examples of periodic progressive gravity waves gen-
erated by the action of wind on water. There is little translation involved,
with water particles describing elliptical orbits in a vertical plane and only
wave crests moving in a horizontal direction.

L

H

y

Still water level
a h

Figure 4.4 Definition sketch for a sinusoidal wave

Consider a wave of amplitude a, height H( = 2a), length L (distance
between wave crests), period T and celerity (or velocity) c moving on a
water surface with a still water depth y (Figure 4.4). Thus

c = L
T

(4.82)

For a sinusoidal wave, excluding the effect of viscosity and surface tension
(Airy wave) from two-dimensional ideal fluid flow, the variation η (distance
from the still water surface) is

η= a cos 2π

(
x
L

− t
T

)
= a cos (kx − ft) (4.83)

where k = 2π/L is the wave number and f = 1/T or ω = 2π f (the wave
frequency).

The Stokesian and cnoidal wave theories give a better approximation of
the form of steep waves than the above Airy equation, which is, however,
sufficiently accurate for many engineering purposes.
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For H << L and H << y, equation (4.83), after substitution into the
Laplace equation for two-dimensional irrotational flow, yields the wave
celerity c:

c = gT
2π

tan h
(

2πy
L

)
=
√

gL
2π

tan h
(

2πy
L

)
(4.84)

or

c =
√

gT
2π

tan h(ky) (4.84a)

Including the effect of surface tension modifies equation (4.84) into

c =
√((

gL
2π

)
+ 2σπ

ρL

)
tan h

(
2πy
L

)
(4.85)

For large values of 2πy/L, tan h(2πy/L) = 1, and thus

c =
√√√√ gL

2π
+ 2ψ

ρL
=
√

g
k

+ kσ

ρ
(4.86)

Evidently, whereas the celerity of gravity waves increases with wave length,
the opposite is true for capillary waves. The minimum celerity with which a
surface wave may be propagated follows from equation (4.86) as

cmin =
(

4gσ

ρ

)1/4

(4.87)

corresponding to a minimum wave length for gravity waves of

Lmin = 2π

√(
σ

ρg

)
(4.88)

(for gL/(2π ) < 2πσ/(gL) the surface tension is dominant). For an air–
water interface (σ = 0.075N/m), equations (4.87) and (4.88) result in
cmin = 0.23m/s and Lmin = 0.017m. For L >> Lmin the effect of surface
tension becomes negligible.

Equation (4.84) demonstrates the effect of depth on wave celerity. For
y>0.5L, tan h(2πy/L) = 1 and thus for a deep water (or short) wave

c = gT
2π

=
√

gL
2π

=
√

g
k

(4.89)
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For y < 0.05L, tan h(2πy/L) = 2πy/L and for a shallow water (or
long) wave

c = gTy
L

=√
gy (4.90)

(see also equation (4.74)). There is, of course, a transition between these
two ratios of y/L. Equation (4.90) is the equation of a Lagrangian wave.
(Note: waves can move upstream only if V< c.)

The kinetic energy of one wavelength per unit width of wave crest Ek is
given by

Ek = 1
16

(H2ρgL) (4.91)

As (for Airy waves) the potential and kinetic energies are equal, the total
energy per unit area E is

E = 1
8

(ρgH2) (4.92)

Summing the potential, kinetic and pressure energies of individual particles
and multiplying by particle velocity for all particles in a wave leads to the
equation for wave power N, which for Airy waves is

N = ρgH2

16
=
(

1 + (4πy/L)
sin h(4πy/L)

)
= Ecg (4.93)

where cg is the group wave celerity:

cg = c
2

(
1 + (4πy/L)
sin h(4πy/L)

)
(4.94)

cg = c/2 for deep-water waves and cg = c for shallow-water waves. Thus, for
deep-water waves individual wave crests travel twice as fast as the group as
a whole (the dispersive property of the waves).

It has been shown that for waves in shallow water c = √
(gy); thus, in

this case, c is independent of the wave number, and gravity waves (of finite
amplitude) in shallow water are non-dispersive.

Regarding a solitary wave of finite amplitude as a series of small waves
superimposed on each other it is clear that, relative to the undisturbed fluid,
each element of the wave must move more rapidly than that directly below
it, resulting in progressive steepening of the wave front, which could even-
tually form a shock wave unless counteracted by the smoothing effects of
dispersion.
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Further discussion and application of these equations, as well as of
wave refraction, shoaling, breaking, diffraction and reflection, are given in
Chapter 12.

4.6 Environmental processes – hydrodynamic
factors, sediment mechanics, water quality
and air–water flows

4.6.1 General

The increase in the social and political awareness of the impact of engineer-
ing on the environment and the resulting legislation requiring environmental
impact assessments or environmental statements of the effects of works led
to further research into the many complex interactions between the phys-
ical, chemical and biological factors involved. In the aquatic environment,
the simulation modelling of the current and post-project conditions played
a major role in the recognition of environmental hydraulics as a branch
of hydraulics dealing with the interaction of the water movement with the
suspended and boundary sediments, marginal vegetation, effluent inputs,
and the water chemistry and biological processes within the flow. This
section considers in outline the influence of hydrodynamics on other impor-
tant environmental parameters, often called transport modelling, including
the motion of sediments and water-quality modelling. However, the gen-
eral ecological or habitat models are not covered. Further development and
applications of the concepts mentioned here are included in Chapters 7–13.

A common feature of transport modelling is that the other processes of
interest are strongly affected by the imposed bulk-flow field and, in some
cases, can themselves alter the hydrodynamics. Experimental techniques are
of great value in developing an understanding of the processes involved,
through observations under precisely controlled conditions designed to cap-
ture the parameters of interest. Physical models may be used to simulate
and investigate the effects of some environmental processes (e.g. saltwater
intrusion in estuaries, gas transfer at the air–water interface, buoyant jets,
coherent structures in shallow-water flows) and their engineering applica-
tions (Jirka 1992). However, the complex interactions between the many
processes that occur in, say, determining resultant water quality can usu-
ally be best undertaken using a computational model (Falconer 1992).
This section will, therefore, also discuss some of the consequences of the
approximations inherent in the development of a computational model of
these processes.

4.6.2 Hydrodynamic factors

The most important hydrodynamic factor in environmental hydraulics is
the influence of turbulence (see Section 4.3.3). Its effect is to introduce a
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much greater effective diffusion of any transported parameter than would
be estimated from molecular viscosity alone. The properties of the tur-
bulent flow field depend strongly on the local geometry and can vary
across the domain of interest. In descriptions of the hydrodynamics of
environmental and mixing processes, two pairs of similar sounding terms
are frequently encountered: advection and convection, and diffusion and
dispersion.

Convection is the process of transport of a quantity that in itself
determines the bulk flow field (e.g. momentum, and also heat if the
variation in density with temperature is modelled). The term u.∇u in
equations (4.3)–(4.5) is often called the ‘convection term’, as are the cor-
responding terms in the shallow-water and Saint Venant equations for two-
and one-dimensional flow, respectively (see equations (4.66) and (4.69)).

Advection is the transport of any other scalar quantity (e.g. a tracer) by
an imposed bulk fluid motion. In a transport equation, the advection term
for the concentration of a quantity C takes the conservative form ∇.(Cu) or
a rearrangement of this.

Diffusion is the transport of a quantity from an area of high concentration
to an area of lower concentration through random mixing processes within
the fluid. Random molecular motion is weakly diffusive, while turbulent
motion is strongly diffusive. Molecular diffusion can occur in fluid that
has no mean motion, whereas turbulent diffusion requires flow at a high
Reynolds number. The diffusive term in a process equation will often appear
as the second derivative of the concentration field, thus

ε∇2C

where ε is the diffusivity coefficient.
A related notion is that of the turbulent eddy viscosity, which appears

in the turbulent closures of the Reynolds momentum equations (see
Section 4.3.3). Often the assumption is made that the eddy viscosity (for
momentum) and the eddy diffusivity (coefficient of turbulent diffusion) of,
say, a passive tracer are equal. This need not be the case. In the simplest rep-
resentations of the flow, these coefficients may be assumed to be constants
over the flow field or related in a simple manner to the characteristics of the
primary flow. In higher-order turbulence the closure properties of the turbu-
lence field are formulated in terms of differential equations that are coupled
to the hydrodynamic equations of the primary flow. This is discussed further
in Chapters 8 and 11.

Dispersion is the result of a combination of advection and diffusion; it is
the differential transport of the distribution of a quantity by spatial varia-
tions in the bulk flow velocity. Shear flows are particularly dispersive, and
dispersion distorts the shape of the initial concentration profile. This is the
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key distinction from diffusion, which usually entails only a gradual change
in the overall shape of the concentration profile.

In many circumstances, a computational model with reduced spatial
dimensionality will be used in engineering practice. This reduction in
dimensionality has a number of important consequences. All features of the
flow physics in the directions that have been excluded from the model will
not appear in the model simulations, nor will processes that are on a smaller
scale than those resolvable by the model grid. Examples of such processes
that may be explicitly excluded from the modelling are the helical secondary
currents in river bends, which are removed by depth and area integration,
and zones of circulation in the lee of an obstruction, which are removed by
area averaging. Whereas these may not be of great significance in determin-
ing the principal features of the primary flow, they can have a profound
effect on the simulation of other environmental processes, as, in proto-
type, they can introduce dispersion, and this has to be incorporated in the
model.

It is common to analyse flow in a river using a one-dimensional model
based on the Saint Venant equations of open channel flow (equation (4.66))
to determine the hydrodynamics (see Chapter 7). The transport of pollu-
tants in the flow is then simulated using an advection–diffusion equation.
The coefficient of diffusion needed to simulate the propagation of observed
releases of tracers is often found to be much larger than the coefficient deter-
mined from turbulent and molecular diffusion alone. Clearly, there are other
sources of dispersion in the one-dimensional model. One is the area integra-
tion of the deviation from their averages of the contaminant concentration
and flow velocity profiles across the section. Another process is the existence
of dead zones, which act as temporary sinks for the pollutant. The dead
zones are areas of recirculation driven by separated flow past irregularities
in the channel shape; they take in the pollutant as the main pollutograph
passes and then release the trapped pollutant on the tail of the concentra-
tion profile. The aggregated dead zone (ADZ) dispersion models of river
flows are based on this concept.

The shallow-water equations (SWEs) (see Chapter 2) represent the hydro-
dynamics of unstratified flow in shallow seas, estuaries and lakes. These
equations are obtained from the Navier–Stokes or Reynolds equations by
integrating through the depth of the flow. It is well known that the phys-
ical flow may contain an area of strongly sheared fluid near the bed; this
introduces dispersion.

In the formulation of the SWEs, the x-component of the convection term
of the Reynolds equation (equation (4.33)) ū ∂ū

∂x
+ v̄ ∂ū

∂y
+ w̄ ∂ū

∂z
is integrated

through the depth of the flow (i.e. with respect to z), and the order of
differentiation and integration is reversed using the continuity equation to
simplify the results. Using u, etc. (instead of ū), to represent the mean veloc-
ities over the timescale of turbulence, with h being the water surface level
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and z the bed level, results in

h∫
zb

(
u
∂u
∂x

+ v
∂u
∂y

+ w
∂u
∂z

)
dz = ∂

∂z

h∫
zb

u2dz + ∂

∂y

h∫
zb

uvdz + uw�h − u2 ∂h
∂x

− uv
∂h
∂y

− uw�zb
+ u2 ∂zb

∂x
+ uv

∂zb

∂y

The contributions to the integrations at the free surface and the bed cancel
identically from the kinematic boundary condition, which expresses zero
normal flow at these surfaces. Expanding the integrals in terms of the depth
(y = h − zb) and average velocity (U, V),

U(x,y) = 1
y

h∫
zb

u(x,y, z)dz; V(x,y) =
h∫

zb

v(x,y, z)dz

and using u2 = (U − (U − u))2 and
∫ h

zb
U(U − u)dz = 0 and similar relation-

ships for the other products uv and v gives

∂

∂x

h∫
zb

u2dz + ∂

∂y

h∫
zb

uvdz

= ∂

∂x

h∫
zb

(U − (U − u))2dz + ∂

∂y

h∫
zb

(U − (U − u)) (V − (V − v))dz

= ∂

∂x
(U2y) + ∂

∂y
(UVy) + ∂

∂x

h∫
zb

(U − u)2dz + ∂

∂y

h∫
zb

(u − u)(V − v)dz

(4.95)

The convection term of the SWEs is thus seen to have two components.
The first (first two terms in equation (4.95)) is the analogue of the convec-
tion term in strictly two-dimensional flow, and the second (third and fourth
terms in equation (4.95)) is dispersive and non-zero if the three-dimensional
velocity profile in the vertical is not uniform, as physically must be the case.
A common means of accounting for this dispersion is to aggregate it with
the turbulent diffusion by using an effective diffusion coefficient. The tradi-
tional reasoning is as follows: the terms look like the Reynolds stress terms
in the formulation of turbulent flow (i.e. they involve integrals of deviations
from the depth mean velocity), and hence they might be modelled using a
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Boussinesq-type model relating the integrated values of these deviations to
derivatives of the primary flow velocity. This, of course, lacks any rigorous
justification, as we are dealing with spatial integrals and not time averages,
and the velocity deficit (U – u) etc. will have a systematic structure rather
than the chaotic random nature of turbulence.

Dispersive processes dominate the overall effective diffusion coefficient,
and their representation by the formula for turbulent diffusion is ques-
tionable. Nevertheless, because of its simplicity, this formulation of the
dispersion term in the SWEs has been used widely in modelling practice.

In many cases, the flow density is not homogeneous throughout the depth
(e.g. at outflows from cooling systems into a recipient, or in estuaries with
salt-water penetration into the river flow). In the former example, a buoyant
jet is formed with diffusion across the jet boundary and further dilution due
to the entrainment of the surrounding fluid. The degree of stratification, or
mixing, in the second example is a function of the estuary geometry and
the tidal range. The strength of turbulent diffusion varies with the degree of
stratification in the flow, with vertical diffusion being depressed across the
interface between layers of different density.

A measure of the importance of stratification in the flow is given by
the local densimetric Froude number Frρ (1/Fr2

ρ
is sometimes called the

Richardson number) and the Richardson number Ri (sometimes called
the gradient Richardson number Rig), both derived from the continuity
equation and the equations of motion of stratified flow with a density dif-
ference �ρ. These numbers quantify the relative importance of inertia and
buoyancy forces (see also Chapter 5) and are defined by (where L is a length
term, typically the depth of flow, u is the turbulent mean velocity and z is
the vertical coordinate):

Frρ = u√
gL�ρ/ρ

(4.96)

Ri = g�ρ/�z

ρ(�u/�z)2 (4.97)

The stability of the stratification increases as the gradient Richardson
number increases (i.e. for larger density gradients or a smaller vertical gra-
dient of horizontal velocity). The rate of entrainment of the upper layer
of flow into the lower depends on the Richardson number defined using the
appropriate length and velocity scales of the turbulence. The role of the den-
sity gradient on the generation of the turbulence depends on its sign. If the
density increases upwards, the buoyancy forces provide an additional source
of energy for turbulence. Thus, negative values of the Richardson number
indicate an unstable density gradient, with both shear and buoyancy forces
generating turbulence (only opposed by viscous dissipation).
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For further treatment of and references on the above principles, see, for
example, Hino (1994), Raudkivi and Callander (1975), Rutherford (1994)
and Singh and Hager (1996); further development and applications are
discussed in Chapters 8 and 11.

4.6.3 Basic sediment mechanics

A full discussion of sediment mechanics is clearly outside the scope of this
text. Thus, only a few basic concepts necessary for further development
of the modelling methods and their application in engineering design (see
Chapters 8–13) are included here.

From the point of view of source, sediment transported by flow can be
divided into washload, comprising very fine material derived mainly from
overland flow and moving in rivers and canals in suspension, and bed-
material load, moving as bedload and/or suspended load depending on
sediment size and flow velocity. Thus, washload is limited only by supply,
whereas bed-material load depends also on hydraulic factors.

Catchment processes supply a wide range of particle sizes to channels and
bedload transport leads to size sorting in rivers both downstream (fining of
sediments) and vertically within the bed (armouring).

Sediment concentration in rivers varies enormously between continents,
countries and even catchments (e.g. from 15,000 ppm at the mouth of the
Hwang Ho River to 10 ppm in the Rhine delta (de Vries 1985)).

Bedload is the important element of sediment transport for river engineer-
ing, navigation canals and sewers, as it determines the morphology of rivers
and bed erosion and sedimentation aspects; suspended load is important
in river engineering only in reservoir sedimentation and, exceptionally, in
sedimentation at canal intakes; it is also important in sewer outfall design.

The important properties of sediment and the parameters used in sed-
iment computations are the sediment size d, the shape and grading, the
density ρs (usually 2,650kg/m3), the fall velocity w, the bulk density
and porosity, and the sediment concentration C (volumetric, or ppm, or
mg/L). According to size, we usually distinguish between clay particles
(0.5<d(μm)<5), silt (5<d(μm)<60), sand (0.06<d(mm)<2) and gravel
(2<d(mm)<60).

The fall velocity can be approximately expressed by the equation

w =
(

4gd�
3CD

)1/2

(4.98)

where � = (ρs − ρ)/ρ and CD is a drag coefficient dependent on the
Reynolds number Re = wd/ν. For Re< 1 (very fine sediment), CD = 24/Re,
which leads to Stokes’ law w = g�d2/(18ν); for large sizes with Re> 103,
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CD becomes constant and is a function of grain shape only (usually CD =1.3
for sand particles). The fall velocity varies, therefore, with d1/2 to d2.

The threshold of sediment motion (incipient motion) is given by a critical
value of the shear stress, which for a plane sediment bed is given by the
Shields criterion:

τc = c(ρs − ρ)gd (4.99)

where c, according to various authors, varies between 0.04 and 0.06. The
condition of validity of equation (4.99) is that Re( = wd/ν)>103.

As τ0/ρ= U2
∗ , equation (4.99) can also be written as

Fr2
d = U2

∗
gd�

= c (4.99a)

where Frd is the grain or densimetric Froude number.
For a sediment particle on a slope (e.g. the side slope of a canal) inclined

at an angle β to the horizontal, the critical shear stress is reduced by a
factor {1 − ( sin2

β/ sin2
ϕ)}, where ϕ is the natural angle of stability of the

non-cohesive material. (For stability, naturally β <ϕ.) The average value of
ϕ is about 35◦.

On the other hand, the maximum shear stress induced by the flow on a
side slope of the canal is usually only about 0.75ρgyS (instead of ρgRS as
applicable for the bed). In a channel that is not straight, the critical shear
stresses are reduced further by a factor of 0.6 to 0.9 (0.6 applies to very
sinuous channels).

Investigations into bedload and bed material transport have been going
on for decades, without producing a really satisfactory all-embracing equa-
tion connecting the fluid and sediment properties. This is due mainly to the
complexity of the problem, including the effect of different bed forms, on
the mode and the magnitude of bedload transport, the stochastic nature of
the problem, and the difficulty of field data collection to verify laboratory
investigations. Nevertheless, substantial advances have been made.

Sediment transport equations deal either separately with one component
of the transported sediment phase (i.e. bedload or suspended load) or with
the total sediment load. There are two approaches to the total sediment
load determination: by addition of the two components (bedload and sus-
pended load) – the ‘microscopic’ methods; or by using a single equation for
both types of transport based on a shear parameter and representative size
for the entire sediment mixture (although methods based on fractionwise
computations have also been developed) – the ‘macroscopic’ methods. The
situation is further complicated by the fact that the suspended sediment load
in rivers always includes washload and the suspended part of bed material
load, whereas the suspended part of the total sediment load in laboratory
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flume measurements excludes washload. As the total load equations were
developed from results obtained in a controlled laboratory environment, it
is more correct in these cases to speak of ‘bed material load’ rather than
‘total load’.

Most of the used approaches can be reduced to a correlation between the
sediment transport parameter φ= qs/(d3/2√(g�)) (where qs is the sediment
transport in m3/s/m) and Fr2

d = 1/ψ = U2
∗/�gd (where ψ is called the flow

parameter; ψ can also contain an additional parameter – the ripple factor –
to account for the effect of bed form (Graf (1984)). The power of Fr2

d in
many correlations varies between 2 and 3, i.e. qs varies as Vn with 4<n<6,
demonstrating the importance of a good knowledge of the velocity field
in the modelling and computation of bedload transport, particularly when
using two- or three-dimensional models.

Examples of simplified φ and ψ correlations are the Meyer–Peter and
Muller equation (bedload only):

φ=
(

4
ψ

− 0.188
)3/2

(4.100)

the Einstein–Brown equation (bedload):

φ= 40ψ−3 (4.101)

and the Engelund–Hansen equation (‘total load’):

φ= 0.4ψ−5/2

λ
(4.102)

It must be emphasized that the full application of the above and other more
sophisticated equations requires further reading (e.g. Garde and Ranga Raju
(1985), Graf (1984), (1998), Simons and Senturk (1992) and Yalin (1992))
and the equations are quoted here only to demonstrate the correlation
and trend.

The Ackers–White equation correlates the modified transport and flow
parameters by the equation (‘total load’)

Ggr = C
(

Fgr

A − 1

)m

(4.103)

where Fgr (modified Fr), called the mobility number, is given by Fgr =
Un

∗V1−n
/

((�gd)1/2(
√

32 log (10y/d))1−n) and Ggr = Xy/
(
(�+ 1)d

)
(U∗/V)n,

where X is the concentration expressed as the mass flux of the solid (sed-
iment) phase divided by the mass flux of the fluid phase (X = qsρs/(Vyρ)).
The coefficients C, A, m and n are functions of a dimensionless grain size
Dgr = d(�g/ν2)1/3; for water Dgr = 25d (with d in mm).
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Although the relationship between the transport of bed sediment and the
flow, and even the relationship between the hydraulic resistance and channel
sedimentary features, particularly the bed configuration (which, in turn, is a
function of the sediment characteristics and discharge), are broadly known,
the third equation required for computations on alluvial channels, relating
the flow parameters and the erosive resistance of the banks, still by and large
eludes a physically based formulation. Nevertheless, the minimum stream
power concept or other optimization methods show much promise in this
area, where we otherwise fall back on regime equations that synthesize the
physical functions into groups of formulae describing the channel geometry
(Ackers 1983). This, as well as river morphology, are briefly discussed in
Chapter 8.

The computation of the suspended sediment load alone is best related to
the discussion of the turbulent eddy viscosity and the coefficient of turbulent
diffusion presented in the preceding paragraphs. The equation for a concen-
tration C in a (two-dimensional) flow with diffusivity coefficients εx and εz

(see equation (4.35)) is

∂C
∂t

+ u∂C
∂x

+ ν∂C
∂y

− w∂C
∂z

= ∂

∂x

(
εx∂C
∂x

)
+ ∂

∂εz

(
∂C
∂z

)
(4.104)

For steady conditions ∂C/∂t = ∂C/∂x = 0; furthermore, if v<<w, equation
(4.104) reduces to

w∂C
∂z

= −εz∂
2C

∂z2
(4.105)

or

wC = εz∂C
∂z

(4.105a)

stating that the upward rate of sediment movement due to turbulent dif-
fusion is balanced by the downward volumetric rate of sediment transfer
due to gravity. As from equations (4.28) and (4.35) εz = l2du/dz and
du/dz = U∗/(κz), for l = κz

√
(1 − z/y)

εz = κzU∗

(
1 − z

y

)
Integration of equation (4.105) then results in

C
Ca

=
(

a(y − z)
(z(y − a)

)w/(κU∗)

(4.106)
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giving the concentration at a height z above the bed as a function of the
concentration at a distance a from the bed. As equation (4.106) gives a
zero concentration at the water surface (z = y) and C = ∞ at z = O, which
evidently is not correct, it is better to use in equation (4.105) a constant aver-
age value of ε̄z, which from above and for κ = 0.4 is ε̄z = yU∗/15. Equation
(4.105) then leads to

C
Ca

= e−15w/U∗(z−a)/y (4.107)

Combining equation (4.107) with the logarithmic velocity distribution
equation (equation (4.29)) and integrating over the depth y results in the
equation for suspended sediment discharge:

qs = qCaξe15wa/(U∗y) (4.108)

where ξ is a function of w/U∗ and relative channel-bed roughness (typi-
cally, for w/U∗ = 0.01, ξ = 1; for w/U∗ = 0.1, ξ = 0.45; and for w/U∗ = 1,
ξ = 0.035).

To use equation (4.108) it is necessary to measure or estimate Ca. For
a = 2d Einstein suggests Ca equal to the computed bedload divided by 2d
and the velocity in the layer of thickness 2d.

Equation (4.107) is valid only for particles of equal w, and therefore each
part of a suspension with varying grain size has to be computed separately.
It also contains among other assumptions the notion that the eddy viscosity
and eddy diffusivity of the sediment are equal, which need not be the case
(see also Section 4.6.2), as it has been shown that for the same depth, veloc-
ity (slope) and boundary roughness the flow resistance of sediment-laden
streams is often smaller than that of clear water.

Many empirical equations linking the suspended load and water dis-
charge have been proposed. Engelund suggested a simple form:

Qs = 0.5q
(

U∗
w

)4

(4.109)

The washload phase of sediment transport will depend primarily on
the erosion of soil particles by raindrop and leaf-drip impact and over-
land flow, with the sediment particles reaching the river channels through
this mechanism. The final outcome will thus be largely dependent on the
soil properties, hydrological and land morphological parameters, as well
as on vegetation cover and land use, and is best modelled by compu-
tational methods using either empirical equations (e.g. the universal soil
equation) or more sophisticated methods (e.g. the SHE system with a phys-
ically based distributed sediment yield model (Wicks and Bathurst (1996))).
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The washload is generally supply limited and the flow in the watercourse
will transport as much of it as arrives there.

Urbanization also brings about the problems of sediment transport
in storm drainage systems, which has received increased attention in
recent years.

For the critical mean velocity of flow Vc for the initiation of motion of
sediment particles resting on a fixed rough or smooth bed (e.g. sewer invert)
Novak and Nalluri (1984) suggested the equation

Vc√
gd�

= a
(

d
R

)b

(4.110)

for 0.008<d/R<1.0 and 3.5<d/k, where the coefficients a and b are pri-
marily functions of d/k (k is the roughness size) and the degree of isolation
of individual sediment particles (single or touching particles resting on the
bed) with 0.5< a< 0.61 and −0.27< b<−0.4. (Later, May (Ackers et al.
(1996)) suggested a = 0.125 and b = −0.47 using depth of flow over pipe
invert instead of R.)

For the critical bedload transport, defined as the maximum possible rate
of transport along the channel without any deposition, Novak and Nalluri
(1984) proposed the equation

φ= 11.6ψ−2 (4.111)

which translates into

VL√
gd�

= 1.77C1/3
V

(
d
R

)−1/3

λ−2/3 (4.112)

where CV is the sediment volumetric concentration, λ the friction coeffi-
cient for clear water flow and VL the limiting flow velocity. In a further
development, Mayerle et al. (1991) proposed the equation

VL√
gd�

= 14.43D−0.14
gr λ0.18

s

(
d
R

)−0.56

C0.18
V (4.113)

where λs is the friction coefficient in the presence of sediment transport.
May (Ackers et al. (1996)) suggested the equation

CV = 3.03 × 10−2

(
D2

A

)(
d
D

)0.6( V2
L

gd�

)1.5(
1 − Vc

VL

)
(4.114)

where A is the area of flow with a (centre-line) depth z; for a small deposit
of about 0.01D a doubling of the numerical coefficient is proposed. Ackers
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(1991) suggests using the Ackers–White equation (equation (4.103)) and
assuming an effective sediment transport width 0.04D.

The above equations are based on laboratory experimental data and
the whole area of sediment transport in sewers is still an active research
topic, particularly for cases of varying deposition and degree of cohesion of
deposited sediment. Ackers et al. (1996) have published a comprehensive
review of the whole subject area.

Sediment transport under wave action follows the principles developed
for unidirectional flow. On a microscopic scale the velocity of fluid parti-
cles orbiting under the waves and developed from equation (2.84) will be
appropriate for estimating the effect on a non-cohesive bed, as from an
overall point of view the unsteady motion of the fluid can be treated as a
quasi-steady flow over a long period.

The net movement of sediment in coastal zones is generally classified as
longshore movement under the action of waves and currents parallel to the
shoreline, and onshore/offshore transport of sediment normal to the coast.

The deep-water and shallow-water waves were defined in Section 4.5
(equations (4.89) and (4.90)). Closer to the shore, the breaker, surf and
swash zones (see Chapter 12) can be identified, where the wave energy
(equation (4.92)) is spent at a rate sufficiently large to cause movement of
the loose bed and thus littoral drift. Sediment transport in a coastal envi-
ronment is an active research area (see EC MAST programme); for further
discussion of this topic and its application to modelling, see Muir Wood and
Fleming (1981) and Chapter 12.

Sediment data are essential for the study of morphological problems and
applications of sediment transport equations; although it is possible to esti-
mate by computation the rates of sediment transport, the results obtained
with different methods could differ by several orders of magnitude. Thus,
actual sampling in situ, whenever possible, is the more reliable method of
assessing sediment transport rates.

Suspended sediment (concentration) samples can most simply be collected
using spring-loaded, flap-valve traps or samplers consisting of a collecting
pipe discharging into a bottle. Continuous or intermittent pumped sam-
plers are also used. Point-integrating or depth-integrating sediment samplers
with nozzles oriented against and parallel to the flow and samplers shaped
to achieve a true undistorted stream velocity at the intake are used for
measuring suspended sediment discharge; the US series of integrating sam-
plers (particularly the US P-61) developed by the US Geological Survey are
frequently used.

Sediment from the bed is collected for further analysis of size, shape, etc.,
using various types of grabs.

Quantitative measurement of bedload transport is extremely difficult and
there is probably no universally satisfactory method, although some rea-
sonably well-functioning samplers (devices placed temporarily on the bed
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and disturbing the bedload movement as little as possible) have been devel-
oped. Their efficiency (i.e. the ratio of actually measured sediment transport
to that occurring without the presence of the sampler) has to be tested
in the laboratory for the range of field conditions under which they are
to be used. The VUV sampler (Novak 1957), developed for a wide range
of sediment sizes (1–100 mm) and velocities (up to 3 m/s), has an effi-
ciency of about 70% for the sampler filled up to about one-third (for a
fuller sampler the efficiency decreases); similar figures have been quoted for
the Helley–Smith sampler (Hubbell et al. (1981)). In gravel-bed streams
wire-mesh baskets attached to a special frame can be used as bedload
samplers.

Other methods of measuring bedload transport are: (i) surveying sediment
deposits at river mouths or, in smaller streams, collected in trenches; (ii)
differential measurement between normally suspended sediment load and
total load, including the bedload brought temporarily into suspension in a
river section with naturally or artificially increased turbulence (turbulence
flumes); (iii) dune tracking; (iv) remote sensing; (v) use of tracers; and (vi)
use of acoustic detectors.

4.6.4 Water quality

Sediment and contaminant transport processes are closely linked, as the
contaminant load can be in a dissolved and/or sediment-adsorbed form;
sediment behaviour thus influences a whole range of chemical, biologi-
cal and bacteriological reactions. Furthermore, metal contaminants that
enter a fluvial system follow the same environmental pathways as any
other ion or sediment-associated element. In rivers, and particularly in
coastal and estuarine waters, the water quality is also governed by the
interaction of a number of hydrodynamic and other processes (e.g. diffu-
sion and dispersion, gravitational circulation, stratification, wind effects, air
entrainment etc.).

Wastewater contains the constituents of the water supply with additional
input from waste-producing processes. To understand the nature of a par-
ticular water sample a range of characteristics may have to be considered.
The more frequently used parameters are (Tebbutt 1992):

physical – temperature, density, viscosity, taste and odour, colour, tur-
bidity, suspended solids, dissolved solids, radioactivity and electrical
conductivity;
chemical – pH, oxidation–reduction potential, alkalinity, acidity,
hardness, dissolved oxygen, oxygen demand (e.g. biological, oxygen
demand, BOD), nitrogen, chloride and phosphate;
biological – viruses, bacteria, fungi, algae, protozoa and rotifers.
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The quality of water is judged in relation to its use (e.g. irrigation, drink-
ing) and its suitability for aquatic life. According to its ultimate usage the
quality is defined by several parameters such as pH, suspended solids, BOD,
etc. (see e.g. Chapman (1996), James (1993), Sawyer et al. (1994)). For
each criterion there can be a variety of determinants which are more or less
suitable, and easier or more difficult to measure.

These parameters are usually determined by means of laboratory tests on
samples collected from the river water, and are carried out either in situ
(mobile laboratory) or in central laboratory facilities. Continuous in situ
monitoring is preferable in order to avoid possible changes in characteristics
due to transportation and the time taken between sampling and analysis.
The quality standards are formulated on a statistical basis, and are more
flexible for the uses of abstracted water as it is possible to improve this by
treatment.

One of the processes most frequently represented by modelling is the
biological oxidation of organic matter and self-purification in rivers.

From the equation for the rate of change (with time t) in the concentration
of organic matter remaining in the water (or ultimate BOD) L

dL
dt

=−K1L (4.115)

where K1 is a constant:

Lt

L
= e−K1t = 10−K1t (4.115a)

Thus, the oxygen uptake is given by

BODt = L0 − Lt = L0(1 − 10−k1t) (4.115b)

where L0 is the initial load, and the value of k1 is substance and temperature
dependent (e.g. for domestic sewage k1 = 0.17/day at temperature 20 ◦C).

Any body of freshwater can assimilate a certain amount of pollution
because the natural biological cycle allows for certain adjustments to
changed conditions, and self-purification will eventually stabilize organic
matter. Only if the capacity to assimilate organic matter in surface waters is
exceeded will serious water quality problems arise.

Waste properties of particular interest in pollution studies (Tebbutt 1992)
are: toxic compounds in industrial effluents or toxins released by blue-
green algae (which inhibit biological activity); components that affect the
oxygen balance of water by consuming dissolved oxygen, by hindering
reoxygenation from the atmosphere (oils, detergents), or by increasing
the temperature, which in turn decreases the saturation concentration of



150 Theoretical background – hydraulics

dissolved oxygen (heated effluents); or by high concentrations of inert sus-
pended or dissolved solids affecting the bed of streams, thus preventing the
growth of fish food. If the dissolved oxygen falls below saturation, on expo-
sure to the atmosphere the water will dissolve more oxygen to restore the
balance. From Henry’s law the rate of solution of oxygen is proportional to
the deficit D

dD
dt

=−K2D (4.116)

or

Dt = D0e−K2t (4.116a)

where D0 is the initial dissolved oxygen deficit and K2 the reaeration con-
stant. Using the dissolved oxygen concentration C, equation (4.116a) can
be written as

ln (Cs − C)
(Cs − C0)

=−K2t (4.117)

or

K2 − 1
t

ln (Cs − C1)
Cs − C2

= 1
t

ln r (4.117a)

where C1 and C2 are concentrations at two downstream stations and r is the
deficit ratio.

Assuming that only BOD removal by biological oxidation and dissolved
oxygen replenishment by reaeration from the atmosphere are involved,
combining equations (4.115) and (4.116) leads to the Streeter–Phelps
equation – the ‘sag curve equation’:

dD
dt

=K1L − K2D (4.118)

or, after integration and changing to base 10 (k = 0.4343K)

Dt = k1L0

k2 − k1
(10−k1t − 10−k2t) + D010−k2t (4.119)

giving a critical maximum deficit Dc at time tc

Dc = k1

k2
L010−k1t

c (4.120)

tc = 1
k2 − k1

log
(

k2

k1

1 − D(k2 − k1)
L0k1

)
(4.121)
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Equations (4.115)–(4.121) represent, of course, only a simplified one-
dimensional approach. The dissolved oxygen and BOD and the whole
self-purification process in a river will also be influenced by settlement and
resuspension of bottom sediments, diffusion of dissolved oxygen into bot-
tom muds, longitudinal dispersion and plant activities (addition of dissolved
oxygen by photosynthesis in the daytime and removal at night). To achieve a
BOD<4mg/L an effluent with 30 mg/L suspended solids and 20 mg/L BOD
(30:20 standard) has to be diluted with clean river water in a ratio 1:8.

The oxygen balance of a river may be improved by using artificial aera-
tion by aerators; alternatively, hydraulic structures using overfalls (weirs)
or hydraulic jumps (gates) also represent a possible source of local dis-
solved oxygen improvement. Predictive equations for the deficit ratio r
as a function of hydraulic parameters at hydraulic structures are given in
Chapter 13.

For further discussion of modelling water-quality processes, see Chap-
ters 8, 10 and 11; for a detailed discussion of estuarine water-quality
management and modelling, see O’Kane (1980).

4.6.5 Air–water flow and cavitation

4.6.5.1 Air–water flow

In general, there are several possibilities for air–water flows, both in free
surface and in closed conduit systems (Kobus 1991):

i air flow without mixing – e.g. flow of air into (or out of) an air vessel,
or air flow in response to air demand in conduits flowing partially full;

ii air entrainment with mixing – e.g. at and downstream of a hydraulic
jump or at the transition from free surface to conduit flow with vortex
action;

iii formation of air–water mixtures by air coming out of solution – e.g. in
hydraulic transients with waterhammer and cavitation action;

iv formation of air–water mixture by injection of air – e.g. in designed
aeration systems;

v air in closed conduits can flow in several forms – e.g. bubbly flow, slug
flow or stratified flow.

There is an interrelation between air entrainment governed by upstream
conditions and air transport capacity and, possibly, detrainment, governed
by downstream conditions.

Air entrainment requires a velocity of flow exceeding a minimum value Vi,
i.e. the inception limit (e.g. for plunging jets Vi is in the region of 0.8 m/s,
although this is also influenced by the turbulence of the approach flow; for
air entrainment from a free surface flow Vi = 6m/s).
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After exceeding the inception limit the entrainment limit is principally
a function of the approach Froude number, which must be higher than a
critical value (e.g. Fr > 1 for a jump), and the air supply limit, which in turn
depends on the characteristics of the air-supply system.

The upper limit for air-transport capacity is governed by the maximum
possible bubble concentration in the downstream flow, where the ratio of
flow velocity to bubble-rise velocity vb is decisive. The bubble-rise velocity
vb is a function of bubble diameter db, ν, ρa/ρ and Re = vbdb/ν. For small
bubbles (db <0.2mm, Re<1) Stokes’ law results in vb = 0.36 d2

b. For inter-
mediate sizes, 0.2< d< 20, 0.1< vb < 0.4, and for large air bubbles with
a spherical cap (db > 20)vb = 0.07d1/2. All the above values apply for fluid
properties of air and water at 10 ◦C with db in millimetres and vb in metres
per second.

Neglecting air properties, the air–water flow (Qa/Q=β= ratio of air and
water flow) will be a function of the geometry, the size of the conduit, the
velocity of the flow and its turbulence, the characteristics of the air-supply
system and the physical properties of the water (density, viscosity, surface
tension and, in pressure transients, also compressibility).

The effects of the entrainment of air on the flow are manifold and can be
beneficial as well as detrimental, and include: a change in the density and
elasticity of the fluid; changes in turbulence, wall shear and flow field due to
changes in the discharge and pressure distribution in the pipe systems, the
effect on pressure transients and the performance of hydraulic machinery
with regard to oxygen and nitrogen transfers. A specific problem for closed
conduits is the possibility of blow-outs of accumulated air in the system.

For further discussion of dimensionless numbers involved, see Chapter 3
and of air entrainment and transport capacity in hydraulic structures, see
Chapter 13.

4.6.5.2 Cavitation

Cavitation occurs when the pressure in a flow drops to the value of the sat-
urated vapour pressure pv. This may be the result of separation of flow
(usually of a high velocity) or of a large pressure fluctuation in highly
turbulent flow with a low mean pressure.

As a consequence of these conditions, cavities are formed that are filled
with saturated vapour and gases excluded from the fluid due to a severe
pressure drop. These bubbles are carried downstream by the flow until they
reach areas of higher pressure (p>> pv), where the vapour condenses and
the bubbles suddenly implode. The result is not only noise and instability
in the flow pattern, resulting possibly in vibrations of structures, but also,
and more importantly, damage and pitting (cavitation corrosion), where
the implosion, accompanied by violent impact at high pressure of water
particles filling the imploded cavitation bubble, occurs against a part of a
structure (conduit, spillway) or machine (turbine, pump, screw impeller).
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Cavitation, if sustained over a period of time, can cause substantial damage,
which may lead to a complete failure of the structure or machine. The cavi-
tation strength (pressure from implosion) is linked to the concentration and
size distribution of the gas bubbles as well as to the dissolved gas content of
the liquid.

Cavitation may conveniently be characterized by the cavitation number σ
(a form of Euler number), which combines the two parameters (pressure p
and velocity u) that influence the onset of cavitation:

σ = (p − pv)
1/2ρu2

(4.122)

In free surface flow, p is usually the atmospheric pressure increased by the
hydrostatic pressure.

The saturated vapour pressure pv depends on the temperature and
atmospheric pressure p0. (At normal atmospheric pressure, for 100 ◦C
pv = 10m H2O = p0, for 60 ◦C pv = 2.0m H2O, and for normal water
temperature (10–20 ◦C)pv = 0.2m H2O.)

Cavitation occurs if the cavitation number σ falls below a critical value σc

(i.e. due to an increase in velocity u or drop in pressure p). The value of σc

will be a function of geometry (and other factors – see Chapter 13), and has
to be ascertained experimentally, usually under laboratory conditions and
using special equipment (see Chapter 6).

It must be borne in mind that p and u refer to undisturbed instantaneous
values of pressure and velocity, and that fluctuations in these parameters in
highly turbulent flow may cause cavitation, even if the time-averaged values
do not (see also Chapter 13).

Cavitation damage may be mitigated by use of special materials, or the
danger eliminated by a change in the design and/or the introduction of air
to the flow boundary at subatmospheric pressures.
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Chapter 5

Development of physical
models

5.1 Introduction

Research on physical (scale) models is based on the theory of similarity
between the model and prototype. This theory provides guidance on the
preparation of experiments, computation of model parameters, processing
of results, limits of their validity and likely scale effects. In technical disci-
plines, including hydraulics, the theory of similarity is generally based on
one of three approaches (or their combination):

1 The first approach determines the criteria of similarity from a system of
homogeneous (differential) equations, which express the investigated
phenomenon mathematically (see e.g. Section 5.5).

2 If no equations are available, we have to resort to the second path –
dimensional analysis – which, on its own or together with sound empir-
ical equations, may form the basis for determining the conditions of
similarity. The use of dimensional analysis requires a careful prelimi-
nary appraisal of the physical basis of each investigated phenomenon
and of the parameters influencing it; these may have to be determined
by separate experiments. A combination of physical and dimensional
analyses may have to be used to achieve the required results. For further
details, see Section 5.2.

3 The third route could be denoted as the method of synthesis – see
Section 5.3.

Sections 5.4–5.9 cover in some detail the theory of similarity, dimension-
less numbers and the modelling (scaling) laws most relevant to physical
models in hydraulic engineering.

As analogue models reproduce a prototype situation in a physically dif-
ferent medium (i.e. in this sense they are physical models), a brief treatment
of analogue models has been added to this chapter as Section 5.10.

If we denote the dimensions of mass as M, length as L and time as T,
we can express the physical dimensions of almost all parameters used in
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hydraulics with these symbols; for example, velocity has the dimension
LT−1, specific mass (mass/volume, density) ML−3 and the coefficient of
dynamic viscosity ML−1T−1. These dimensions are easily derived from
the definitions of the above quantities and from the physical laws that
characterize them.

For example, the coefficient of viscosity μ is characterized by the equation

τ= μdu
dz

where τ is the tangential stress. Stress has the dimension of force acting on
a unit area; therefore, MLT−2L−2 = ML−1T−2. From the above equation we
thus obtain

ML−1T−2 ∼μLT−1L−1

and therefore μ− ML−1T−1

Expressing the parameter in physical dimensions also permits safe trans-
formation from one system of units to another.

5.2 Dimensional analysis

5.2.1 General

Dimensional analysis provides some basic information about the investi-
gated phenomenon on the assumption that it can be expressed by a dimen-
sionally correct equation containing the variables influencing it. Obtaining
a certain grouping of variables allows, for example, a wider application and
interpretation of experimental results.

An equation is dimensionally homogeneous if it is independent of the
basic units used. For example, in the well-known form of Bazin’s equation
for discharge Q over a rectangular notch

Q = m
√

2gbH3/2

where H is the head, b the length of the notch crest and g the acceleration
due to gravity. The coefficient m is independent of the units used for b, H, g
and Q as long as the same units of length and time (cm, m, ft, s, etc.) are
used throughout, as in the dimensional form both sides of the equation are
identical:

Q − L3T−1; g − LT−2; b − L; H − L

L3T−1 = L1/2T−1LL = L3T−1
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It will be noted that in the above example viscosity μ and surface tension
σ have not been introduced. It follows that Bazin’s equation will be correct
only if the dimensionless coefficient m is either independent of these (and
other) parameters or includes their influence in the variation of its value.
A dimensionally examined equation is, therefore, correct only if it con-
tains all the necessary variables, as it would in an analytical derivation.
Thus, in the application of dimensional analysis the basic step is the
correct choice of variables that might influence the phenomenon under
observation.

In hydraulics, the relationship between variables, any one of which may
be dependent on the others, is usually experimentally investigated using a
physical model. In most cases, all quantities are easily independently con-
trolled, with the exception of one, which becomes the dependent variable. In
the choice of variables we may introduce a parameter that under the condi-
tions investigated is in fact constant, but which in connection with different
variables forms a dimensionless number.

To include more than one dependent variable in the investigated relation-
ship is almost as serious a mistake as omitting some of the participating
quantities. But no harm is done in introducing quantities that do not influ-
ence the investigated problem, because they mostly eliminate themselves
in further analysis. To make a correct choice of variables we must, first
of all, formulate a certain theory about the phenomenon under considera-
tion and accordingly assess which independent variables must be taken into
account. This means that we must at least know, either from experience
or by analogy, why the phenomenon might be influenced by a particular
variable.

It must be appreciated that, apart from sometimes giving incomplete solu-
tions, the pitfalls of the purely simple dimensional approach are that the
analysis can lead to spurious correlations or only obvious conclusions. To
avoid drawing wrong conclusions from, for example, statistical analysis
of experimental data by means of dimensionless products, it is important
that the parameters present in the problem and having a strong stochastic
character appear only in one dimensionless product.

Although dimensional analysis is often applied in hydraulic research it
does not provide an insight into the physical process, and its use must not
be exaggerated and regarded as a replacement for, rather than a primary
aid to, the analytical solution. The correct use of dimensional analysis is
always linked to experience and previous critical analysis of the investigated
phenomenon.

The three kinds of variables used in hydraulic investigations describe the
geometry, the flow, and the properties of the fluid used. In scale models with
geometric similarity (see Section 3.4) it is enough to introduce a single vari-
able into the experimentally investigated relationship for the determination
of the linear scale (model scale) on which the other dimensions depend.
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Usually only two or three fluid properties are chosen that may play an
important part in the case under investigation (e.g. density, viscosity, sur-
face tension). Nearly every flow characteristic comes within the group of
dependent variables, but always one only can be considered, according to
the type of acting force.

The choice of variables included in the investigated relationships should
be kept as simple as possible. Thus, of the three interdependent variables
length, velocity and discharge, it is usually more suitable to include length
(or area A) and velocity V rather than velocity and discharge Q(Q = VA).

Two conventional and related methods of dimensional analysis are of
the greatest importance in hydraulics – Rayleigh’s (indicial) method and
Buckingham’s method (π theorem) – and both are well documented in the
literature and briefly explained below.

5.2.2 Rayleigh’s method

Rayleigh’s method is based on the fact that in each dimensionally homo-
geneous equation the exponent of every dimension on the left-hand side
of the equation must be equal to the sum of the exponents of the corre-
sponding dimension on the right-hand side. If the equation expressing a
dependent variable p contains n independent variables and if the depen-
dent variable contains r basic dimensions, we can write r equations for
n unknown exponents; from these it is possible to calculate r exponents
for arbitrary values of the remaining (n − r) exponents, and the result
can be expressed as a general function containing r independent variables
with known exponents and (n − r) dimensionless arguments with unknown
exponents. This unknown function is then determined on the basis of
experimental results.

Let the general expression for the dependent variable p be given by
equation

p = axbyczduev (5.1)

where a, b, c, d and e are independent variables and x, y, z, u and v are
unknown exponents. On the assumption that the dimensions of quantities
p, a, b, c, d and e, are P, A, B, C, D and E, the equation

P ∼ AxByCzDuEv (5.2)

is valid. If we substitute for P, A, B, C, D and E the corresponding dimen-
sions M, L and T, we obtain three homogeneous linear equations for the
exponents of the dimensions M, L and T, from which three unknown expo-
nents may be calculated, for example x, y and z expressed by means of
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the remaining exponents u and v. The result may then be expressed by the
equation

p = ax1by1cz1π1
uπ v

2 (5.3)

where x1, y1 and z1, are integers or fractions calculated from the equa-
tions for the exponents of M, L and T, and π1 and π2 are dimensionless
arguments. Equation (5.3) is, however, only a special form of the general
equation

p = ax1by1cz1

( ∞∑
1

knπ
n
1

)( ∞∑
1

kmπ
m
2

)
(5.4)

where kn and km are dimensionless constants.
Equation (5.4) can also be written as

p = ax1by1cz1 f (π1,π2) (5.4a)

Rayleigh’s method may best be illustrated by the following example. Let
us consider the equation for the determination of resistance P(MLT−2) of
a sphere of diameter D(L) moving with a velocity v(LT−1) in an incom-
pressible and unlimited medium of specific mass ρ(ML−3) and coefficient of
viscosity μ(ML−1T−1). The equation will have the following form:

P = f (D,v,ρ,μ) (5.5)

or

P = Davbcd (5.5a)

where a, b, c and d are constants. If we rewrite equation (5.5a) dimension-
ally, we obtain

MLT−2 = La,LbT−b,McL−3c,MdL−dT−d

For this equation to be dimensionally homogeneous the exponents for M, L
and T on both sides of the equation must be identical. Therefore, for

M: 1 = c + d

L: 1 = a + b − 3c − dL

T: − 2 =−b − d
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We have three equations for four unknowns, and can therefore express three
of them by means of the fourth:

from the equation for M: c = 1 − d, T = 1 − d

from the equation for T: b = 2 − d

from the equation for L: a = 1 − b + 3c + d = 1 − 2 + d + 3 − 3d + d =
2 − d.

Substituting into equation (5.5a) we obtain

P = D2−dv2−dρ1−dμd = ρD2v2
( μ

vD

)d

(5.6)

or, according to equation (5.4),

P = ρD2v2f
(

vD
v

)
(5.6a)

thus

P
ρD2v2

= f
(

vD
v

)
(5.6b)

In equation (5.6b) both sides are dimensionless numbers:

P
ρD2v2

∼ MLT−2

ML−3L2L2T−2
(Newton Number)

vD
ν

= vDρ

μ
∼ (LT−1LML−3)

(ML−1T−1)
(Reynolds Number).

The area of the projection of the sphere is A = πD2/4; we can therefore
rewrite equation (5.6a) as

P = 1
2

Cf ρv2A (5.6c)

where the resistance coefficient is Cf =8/πf (vD/ν) (see also equation (4.24)).
Equation (5.6c) is generally used to express the resistance of a sphere

moving in an incompressible medium, and the relationship between C and
the Reynolds number has to be investigated experimentally. To obtain the
same result without dimensional analysis we would have to analyse many
experimental results to show the mutual influence of the variables v, D, ρ
and μ.

The correct result in the derivation of equation (5.6) also depended on
the choice of the unknown d to express the other three unknowns a, b and
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c in equation (5.5a); use was made here of the fact that a force can best be
expressed from the given four variables by the use of ρ, D, v because the
inertia force

P = ma = ρl3 l
t2

= ρl2v2

(where l represents length); the Newton number is thus a ratio of the resis-
tance (pressure) and inertia forces and the Reynolds number is the ratio of
inertia and the viscous forces.

5.2.3 Buckingham’s method (π theorem)

By applying the π theorem, the relationship describing the investigated
problem in terms of variables a, b, c, . . .

f (a,b, c,. . . ,n) = 0 (5.1a)

is transformed into another relatively simpler relationship between a smaller
number of variable dimensionless arguments π1, π2, . . ., which are estab-
lished from the variables participating in the problem:

F(π1,π2,π3 . . . ) = 0 (5.7)

If n independent variables a, b, c. . ., n participate in a problem and their
dimensions A, B, C, . . ., N can be expressed with the aid of r basic
magnitudes, it is usually possible to establish (n − r) dimensionless argu-
ments π1, π2, . . .. When these arguments are regarded as new variables,
instead of equation (5.1a) a new dimensionally homogeneous relationship
(equation (5.7)) with (n− r) variables can be written. This second function is
much simpler to investigate, as the reduction in the number of variables by
r also reduces the number of experiments necessary for the solution of the
problem. The closer the number of participating quantities n to the number
of basic dimensions r, the simpler the solution.

The number of basic magnitudes used to express the dimensions of inde-
pendent variables participating in the investigated problem is usually r ≤ 3,
for three basic units of length, mass and time. If all three participate in the
problem (the most frequent case in practice), then r = 3.

The dimensionless arguments π1, π2, . . ., πn−r are products of various
powers of variables participating in the problem

π1 = ax1by1cz1. . . . ; π2 = ax2by2cz2 . . .

In every argument π there should be (r + 1) of these variables. In the
choice of variables that are to occur in every dimensionless argument two
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further conditions must be fulfilled: the recurring (governing) variables must
together include all the basic dimensions and they must not in themselves
form a dimensionless argument. In the general case (r = 3), these condi-
tions are complied with in such a way that among four variables three (the
characteristic length, velocity and specific mass) will be repeated in every
argument. The fourth variable will differ in every argument (with the expo-
nent 1), so that in the solution all n variables that influence the problem
might be applied.

In general, the dimensionless arguments π are simple numbers. Therefore,

[π ] = [A]x[B]y[C]z
. . . [N]v = 1

If the dimensions A, B, etc., of the variables participating in the prob-
lem contained in every dimensionless argument π1,π2,π3, etc., are now
expressed using the basic dimensions (e.g. L, M and T), we can add the
exponents of each basic dimension for each dimensionless argument; this
sum is then, in each case, equal to zero, as the product of the various powers
of the dimension from which we set out was equal to one (π is a dimension-
less argument). Thus, we obtain r equations for the unknown exponents
x,y, z, . . . ,v; the expressions for all dimensionless arguments having been
determined, we can proceed with the experimental solution of the problem.

In practice, certain dimensionless arguments are usually introduced, so
that the investigation of unknown exponents and thus also of dimensionless
arguments is guided and simplified to a considerable degree.

When dealing with a greater number of dimensionless arguments and
lacking sufficient experience in the choice of suitable exponents, it is possible
arbitrarily to combine various dimensionless arguments (raise to a power,
multiply or divide) so that we obtain, for example, the relationship:

F′
(
π2

1 ,
π1

π2
,π1,π2,π3 . . .

)
= 0 (5.8)

All these combinations are again dimensionless numbers. However, their
number must be the same as before, i.e. (n − r), and all the original argu-
ments must be used. This procedure usually aims at cancelling out some of
the variables common to two or more combined arguments.

The use of Buckingham’s method of dimensional analysis is again best
demonstrated by a simple example. With the aid of a geometrically similar
reduced model, the resistance of a body (ship) moving with a steady velocity
on an unlimited surface of an ideal (non-viscous) liquid of unlimited depth is
to be determined. The effect of viscosity is omitted to simplify the problem,
as only a method of dimensional analysis is being demonstrated; for further
treatment of the subject, see Section 5.9.
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The following variables are involved: resistance P(MLT−2), velocity
v(LT−1), gravitational acceleration g(LT−2), specific mass of the liquid
ρ(ML−3) and a basic dimension (e.g. the length of the vessel) l(L), i.e. alto-
gether five variables (n = 5). Their dimensions may be expressed by three
(r=3) basic dimensions (M, L and T), so that (n− r), i.e. two dimensionless
arguments may be established, according to the principles stated above.

π1 = lx1vy1ρz1g; π2 = lx2vy2ρz2P

The variables are now expressed in terms of the basic dimensions L, M
and T, and the exponents of the same basic dimension added:

π1 ∼ Lx1

(
L
T

)y1
(

M
L3

)z1
(

L
T2

)
For

L: x1 + y1 − 3z1 + 1 = 0

T: − y1 − 2 = 0

M: z1 = 0

Therefore, x1 = 1,y1 =−2, z1 = 0 and
π1 =gl/v2, which is the reciprocal of the square of Froude number Fr (the

ratio of gravity and the inertia forces).

π2 ∼ Lx2

(
L
T

)y2
(

M
L3

)z2
(

ML
T2

)
For

L: x2 + y2 − 3z2 + 1 = 0

T: − y2 − 2 = 0

M: z2 + 1 = 0

Therefore, x2 = −2,y2 = −2, z2 = −1 and π2 = P/(ρl2v2) (the Newton
number Ne). The relation between the two dimensionless arguments

F
(

P
l2v2ρ

,
gl
v2

)
= 0 (5.9)

may be found experimentally (e.g. by dragging a model on the surface of
the (ideal) fluid with a varying velocity v and measuring the resistance P).
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For pairs of measured values v and P the corresponding pairs of numbers Ne
and Fr are calculated; these represent points on the graph of the investigated
correlation F(Ne, Fr) = 0.

If the resistance of a geometrically similar body of length lp dragged
at velocity vp over the surface of an ideal fluid is to be determined, the
Froude number Frp = vp/

√
(glp) is calculated, and the corresponding value

of Newton’s number Nep is read from the graph of F(Ne, Fr). The resistance
against the movement of this body on the surface of an ideal liquid is then
represented by the relation

Pp = Nepl2
pv2

pρ

From the above it will be seen that there is no fundamental difference
between the two methods of dimensional analysis. The advantage of Buck-
ingham’s method is that it avoids the use of the general equation (5.4), the
introduction of which is part of the derivation of Rayleigh’s method. In
practice, however, this step can be omitted without difficulty, and we easily
change from an equation of the type (5.1) (with a numerical coefficient) to
an equation of type (5.5).

An advance on the two conventional methods of dimensional analysis
is presented by the basic echelon matrix procedure (Barr (1979)). This inte-
grated procedure cannot be undertaken without simultaneously encompass-
ing a check on the rank of the matrix of dimensions in formal mathematical
terms, and therefore it cannot lead to an incomplete set of non-dimensional
products.

Barr (1983) lists five procedures for dimensional analyses where the first
four – Rayleigh, Buckingham, basic stepwise and echelon matrix – involve
the direct formulation of pi-term non-dimensional functional equations.
The fifth procedure, the proportionalities-stepwise procedure, is associated
with the third route, the method of synthesis.

5.3 Method of synthesis

The conventional methods of dimensional analysis guide the analysis to a
correct but not necessarily convenient solution; although convenient solu-
tions may be obtained by compounding (combining) parameters, the full
range of solutions is not easily apparent. The method of synthesis was
developed to overcome these disadvantages, bridging the dimensional and
similitude analysis.

In presenting the method, Barr (1969) originally introduced an inter-
mediate step by formulating a dimensionally homogeneous equation with
a redundancy, which then allowed flexibility in the development of the
final dimensionless equation. Instead of using force terms, as is the case in
conventional similitude analysis, Barr initially suggested the use of ‘dynamic
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velocities’; at this stage the method was really only a variant of the normal
one. As the use of ‘velocities’ was cumbersome, a change was made to lin-
ear measures, ‘linear proportionalities’ (e.g. v2/g, v2/3/g1/3,Q2/5/g1/5, etc.),
which proved to be easily handled and appropriate.

Although there are similarities with the normal pi-method (functional
dimensional equations are formed by combining variables into terms hav-
ing a dimension of length and then combining these terms with any relevant
length), the advantages of this method are that more combinations can be
formed than are necessary. Early in the analysis the resulting redundancies
lead to the choice of the most convenient terms to be used and the most
useful form of the dimensionless equation. Thus, a solution can be obtained
where the dependent variables appear as infrequently as possible, which of
course is the solution most appropriate for the study of these variables. For
example, in a situation involving viscous forces and gravity, a length and a
dependent velocity:

v = f (g,μ,ρ, l) (5.10)

A dimensionally homogeneous equation with linear proportionalities can
now be written as:

f
(

v2

g
,
ν

v
,
ν2/3

g1/3
, l
)

= 0 (5.11)

To specify the system only two proportionalities (out of the three) are
required with each variable included at least once. Therefore,

f
(

v2

g
,
ν

v
, l
)

= 0 (5.12a)

or

f
(

v2

g
,
ν2/3

g1/3
, l
)

= 0 (5.12b)

or

f
(

ν

v
,
ν2/3

g1/3
, l
)

= 0 (5.12c)

Conventional dimensional analysis starting with equation (5.10) would
lead directly to one of the above equations (most likely to V2/gl =φ(vl/ν) –
see equation (5.12)), whereas the method of synthesis, using equation (5.11)
as an interim step, proceeds directly to any of the (nine) possible solutions
(dimensionless equations).
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A full exposition and development of the method with applications to the
resistance to flow in pipes and densimetric phenomena, and with examples
of formulation of model laws has been given by Sharp (1981).

5.4 Basic concepts and definitions in the theory
of similarity

The ratio of a certain variable in the prototype and the corresponding value
in the model (e.g. the ratio of lengths) is called the module, or scale, or scale
factor (of length) and will be referred to throughout this book as M. Some
authors use the reciprocal value of M as the scale factor.

Scaling laws are conditions that must be satisfied to achieve desired
similarity between model and prototype.

Distortion is a conscious departure from a scaling law that is often neces-
sitated by a complex set of prototype and laboratory conditions; the term
is most frequently used for geometric distortion in which the vertical and
horizontal scales are different.

In the theory of similarity, a dimensionless number is usually regarded as
a physically meaningful ratio of parameters that is dimensionless (e.g. force
ratios and ‘ratios which are of particular physical significance’) (ASCE
(1982)). Although the standard form of the principal dimensionless num-
bers is well established, confusion can arise by the same number being given
two different names or the same name being used for different powers of
the same number (e.g. Froude number – see Section 3.5.1). It is, there-
fore, important to define clearly all dimensionless numbers and terms used,
particularly the velocity and length terms.

If not all pertinent dimensionless numbers are the same in the model and
the prototype, the result is a scale effect. The scale effect is thus a conse-
quence of non-similarity between the model and the prototype, an error
arising by using the model according to the main determining law (e.g. for
forces) and neglecting others. The cause (as opposed to the consequence) of
non-similarity is best described as scale defect (as opposed to scale effect –
see Novak (1984)).

The consequence of necessary laboratory simplifications or physical con-
straints on the model are best described by the term laboratory effect
(ASCE (1982)).

If the shape of a reduced model (m) of any object corresponds exactly
to the prototype (p), all dimensions are reduced at the same scale and the
corresponding angles are the same, and this is referred to as geometric sim-
ilarity of the model and prototype. In geometry, the corresponding points
of two formations (which need not necessarily be geometrically similar) are
called ‘homologous points’. Homologous parts of a model and prototype
are thus parts composed of homologous points.
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Let us now consider two formations – the real formation and its model in
motion – and let us observe the routes described by the homologous points.
If the homologous points of both formations lie on the homologous points
of their routes in proportional (i.e. homologous) times, this is referred to
as kinematic similarity. The proportionality of times means that the ratio
of times in the prototype and the model in which the homologous points
travel a homologous part of their routes is constant. Kinematic similarity
thus assumes the similarity of the corresponding components of velocity
and acceleration.

For the ratio of lengths in three coordinates

lpx

lmx
= Mlx;

lpy

lmy
= Mly;

lpz

lmz
= Mlz

we can write for the scale of velocities

Mu = up

um
= Mlx

Mt
(5.13a)

Mv = vp

vm
= Mly

Mt
(5.13b)

Mw = wp

wm
= Mlz

Mt
(5.13c)

and for the scale of acceleration

Max = apx

amx
= Mlx

M2
t

(5.14a)

May = apy

amy
= Mly

M2
t

(5.14b)

Maz = apz

amz
= Mlz

M2
t

(5.14c)

If in equations (5.13a)–(5.13c) and (5.14a)–(5.14c) Mu,Mv,Mw and
Max,May,Maz are constants, kinematic similarity is obtained. Furthermore,
if the formations are geometrically similar, i.e. Mlx = Mly = Mlz = Ml, this
results in the equality of the velocity scales Mu = Mv = Mw = Ml/Mt and of
the acceleration scales Max = May = Maz = Ml/M2

t . In this special case the
streamlines passing through homologous points of the two formations are
also geometrically similar.

Lastly, when the homologous parts of the model and prototype are
exposed to proportional total forces, this is referred to as dynamic
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similarity. As, according to Newton’s law, force = mass × acceleration, the
following equation may be written for the prototype and the model:

Ppx = mpapx; Ppy = mpapy; Pp = mpapz

Pmx = mmamx; Pmy = mmamy; Pm = mmamz

The scale of forces can be written as

MPx = MmMlx

M2
t

(5.15a)

MPy = MmMly

M2
t

(5.15b)

MPz = MmMlz

M2
t

(5.15c)

For geometric similarity of the two formations

(Mlx = Mly = Mlz = Ml)MP = MmMl

M2
t

(5.16)

Substituting for Mm = MρMV = MρM3
l results in

MP = MρM4
l

M2
t

(5.16a)

or, after substituting for Ml/Mt = Mv,

MP = MρM2
l M

2
v (5.16b)

If in equation (5.15) MPx, MPy and MPz are constants (condition of propor-
tionality of total forces), the expression for dynamic similarity is obtained,
which then apart from kinematic similarity also contains proportional-
ity of the distribution of mass m in both formations. If both formations
are geometrically similar, equations (5.16), (5.16a) or (5.16b) express
their mechanical similarity, which includes their geometric, kinematic and
dynamic similarity.

Mechanical similarity may, therefore, be defined as follows: two for-
mations (prototype p and model m) are mechanically similar if they are
geometrically similar and if, for proportional masses of homologous points,
their paths described in proportional times are also geometrically similar.
The definition based on Newton’s law thus includes geometric similarity
of the two formations, the proportionality of times and the geomet-
ric similarity of the paths travelled (kinematic similarity), as well as the
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proportionality of masses, and thus also of forces (dynamic similarity).
Thus, for geometric similarity Ml is a constant, Mlx,Mly,Mlz and Mt are
constants for kinematic similarity, and Mm as well as MPx,MPy and MPz

are constants for dynamic similarity; and for mechanical similarity MPx =
MPy = MPz and Mlx = Mly = Mlz, and in addition Mt and Mm are naturally
constants.

It must be stressed that mechanical similarity always includes dynamic
(and thus also kinematic) and geometric similarity, whereas dynamic
similarity always includes kinematic but not necessarily geometric sim-
ilarity (as equations (3.14) and (3.15) demonstrate). This is particu-
larly important in hydraulic engineering, where geometric similarity often
cannot be adhered to (e.g. in models of rivers) and distorted mod-
els have to be used. However, the use of distorted models does not
exclude the possibility of attaining dynamic similarity (see above). In
the literature this distinction between mechanical and dynamic simi-
larity is often confused or not made at all. Obviously, if the condi-
tion is stated that the streamlines passing through homologous points
of the two dynamically similar formations must also be geometri-
cally similar, the distinction between mechanical and dynamic similarity
disappears.

5.5 General law of mechanical similarity in
hydrodynamics

5.5.1 Derivation of the law of mechanical similarity by
dimensional analysis

The motion of fluids under various conditions, the motion of solid bodies
in fluids, or the motion and interaction of both may be investigated using
scale models. The physical parameters that, in a general case, may influ-
ence the body and fluid motion are: for the body, a characteristic length d
(e.g. diameter of sediment) and its specific mass ρs; for the fluid, the spe-
cific mass ρ, the coefficient of viscosity μ, the coefficient of surface tension
σ , the bulk modulus K and the velocity of flow v; in addition, acceleration
due to gravity must also be taken into consideration. Lastly, the entire phe-
nomenon occurs in a medium of length l, width b and depth h (e.g. a river
channel).

The force acting on the body in the fluid flow can be expressed as:

P = c′μaρcKeσ f vibklnhpdxρygz (5.17)

where c′ is a constant and a, . . . , z are unknowns.
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The dimensions of the above quantities in the basic system of physical
units L, M and T are:

P − MLT−2σ − MT−2

μ− ML−1T−1v − LT−1

ρ,ρs − ML−3D,b, l,d − L

K − ML−1T−2g − LT−2

Rewriting equation (5.17) in terms of dimensions and following the proce-
dure in Section 5.2.1 we obtain three equations (for the exponents of M, L
and T) with 11 unknowns. Solving for c, i and n (i.e. the powers of ρ, l
and v) in terms of the remaining eight unknown powers, and substituting
into equation (5.17) results in

P = c′ρl2v2

(
μ

ρlv

)a( K
ρv2

)e(
σ

ρv2l

)f( gl
v2

)z(h
l

)p(b
l

)k(d
l

)x(
ρs

ρ

)y

(5.18)

or

P=ρl2v2φ

((
v2

gl

)
,

(
ρlv
μ

)
,

(
ρv2l
σ

)
,

(
ρv2

K

)
,

(
h
l

)
,

(
b
l

)
,

(
d
l

)
,

(
ρs

ρ

))
(5.18a)

Equation (5.18) is the general equation for the force acting on a body
in a fluid during their relative motion, both in the prototype and in the
model. It follows from the manner of deriving the equation that all expres-
sions in brackets are dimensionless numbers (this can easily be verified by
substituting the dimensions of the various parameters).

As it has been shown that for mechanical similarity MP = MρM2
l M

2
v

(equation 5.16), it follows that for mechanical similarity between the
model and the prototype the ratio of all corresponding dimensionless num-
bers in equation (5.18) for the prototype and the model must be equal
to one.

The condition

Mh

Ml
= Mb

Ml
= Md

Ml
= 1

expresses the condition of geometric similarity. The condition Mρs/Mρ = 1
contains the condition of the proportionality of masses.
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Further dimensionless numbers occurring in equation (5.18) are:

(a) P/(ρl2v2) – the Newton number (Ne) (see also Section 5.2.2). The New-
ton number is given by the ratio of resistance and inertia forces. As
P/l2 = p (i.e. specific pressure), Ne can be written in the form p/(ρv2),
which is the Euler number (Eu). Sometimes the square root of half the
reciprocal value is also used as the Euler number (i.e. v/

√
(2p/ρ)). As

pointed out in Chapter 4, the cavitation number σ (equation 4.122) is
a form of the Euler number.

(b) v/
√

(gl) – the Froude number (Fr). The same name and notation
(Fr) is sometimes used for the square of this ratio (v2/(gl)), particu-
larly in Russian and east European literature (see also Section 5.2.3).
The Froude number is derived from the ratio of gravity and iner-
tia forces; it can also be interpreted as the ratio of the veloc-
ity of flow to the celerity of a gravity wave (see Section 4.5).
(The ratio of velocities gives the traditional expression for the
Froude number (Fr), whereas the ratio of forces results in the
square (Fr2).)

(c) ρlv/μ = lv/ν – the Reynolds number (Re) (see also Section 5.2.2). The
Reynolds number is the ratio of inertia and viscous forces.

(d) ρv2l/σ – the Weber number (We). Again the square root of We is some-
times quoted as the Weber number. The Weber number is given by the
ratio of inertia and surface tension forces. The square root of the Weber
number represents the ratio of the velocity of flow and the celerity of
a capillary wave (see Section 4.5; see also the above comment on the
Froude number).

(e) ρv2/K – the Cauchy number (Ca). (Sometimes the term Cauchy num-
ber is used in reference to the elasticity of a rigid body with elas-
ticity modulus E instead of K.) The square root, which is called
the Mach number (Ma), is more often used in its place (the pres-
sure wave velocity is c = √

(K/ρ)); the Mach number is sometimes
also referred to as the Bairstow–Booth or Majevskij number. The
Mach number is thus given by the ratio of inertia and elasticity
forces.

Equation (5.18) can therefore be written as

Ne =
(

Fr,Re,We,Ma,
h
l
,

B
l
,

d
l
,
ρs

ρ

)
(5.18b)

The condition of mechanical similarity may now be expressed from
equation (5.18b) as
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MNe = 1 (5.19a)

MFr = 1 (5.19b)

MRe = 1 (5.19c)

MWe = 1 (5.19d)

MMa = 1 (5.19e)

Mh

Ml
= 1 (5.19f)

Mb

Ml
= 1 (5.19g)

Md

Ml
= 1 (5.19h)

Mρs

Mρ

= 1 (5.19i)

Equation MFr = 1 (equation 5.19b) expresses the Froude law of mechan-
ical similarity under the exclusive action of gravity; equally MRe = 1
(equation 5.19c) expresses the Reynolds law and applies in the case of
exclusive action of viscosity, MWe = 1 (equation 5.19d) is the Weber law
and applies in case of exclusive action of surface tension, and MMa = 1
(equation 5.19e) is the Mach law which is valid under the exclu-
sive effect of compressibility. Section 5.7 discusses the implications of
these laws.

It follows from equation (5.18) that for full mechanical similarity for a
real fluid (i.e. under the simultaneous effect of all types of forces) all of
equations (5.19a)–(5.19d) must be fulfilled, together with geometric sim-
ilarity and proportionality of masses. Only under these conditions can
equation (5.16) be satisfied, with equality of the Newton and Euler number
on the model and in prototype.

5.5.2 Derivation of the law of mechanical similarity in
hydrodynamics from the basic Navier–Stokes equations

The Navier–Stokes differential equations were introduced in Section 4.2 as
equations (4.7) or (4.7a):

du
dt

= X − 1
ρ

∂p
∂x

+ ν∇2u etc (4.7a)

Considering the equations as valid both for the prototype and the model,
we obtain for the force of gravity (X = g) and the x direction, using
corresponding scales, the equation
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Mv

Mt

du
dt

= MgX − Mp

(MρMl)∂p/∂x
+ MνMv

M2
l

ν∇2u

or (
Ml

MvMt

)
du
dt

=
(

MgMl

M2
v

)
X −

(
Mp

MρM2
v

)
∂p
∂x

+
(

Mν

MvMl

)
ν∇2u

For mechanical similarity between model and prototype all the multipliers
must be equal to one. Thus

Ml

MvMt
= MgMl

M2
v

= Mp

MρMl
= Mν

MvMl
= 1

Obviously, this procedure leads back to the already derived equations (equa-
tions 5.19a–5.19c), but it also yields a new condition:

Ml

MvMt
= 1 (5.20)

l/vt is another dimensionless expression analogous to fl/v (f is the fre-
quency), referred to as Strouhal number (St); the reciprocal vt/l is sometimes
(particularly in Russian literature) called the ‘homochronometry number’.

As, for steady flow

∂u
∂t

= ∂v
∂t

= ∂w
∂t

condition (5.20) will in this case be irrelevant. The Strouhal number thus is
associated with unsteady flow and processes. It represents also a measure of
the ratio of inertia forces due to the unsteadiness of the flow (local accelera-
tion) and the inertia forces due to changes in velocity from point to point in
the flow field (convective acceleration) (Munson et al. (1998)). In the study
of wake-train formation (a Karman vortex trail shed from a cylinder placed
in the flow), the square of the Strouhal number, with f denoting the fre-
quency of the wake, is sometimes referred to as the Richardson number of
the wake train.

The Navier–Stokes equations are equally valid for the flow past any body
as for the flow of liquid in a pipe or channel. The system of differential
equations thus expresses a whole class of phenomena with an infinitely
large number of solutions. However, dimensionless numbers obtained in the
above manner can only be the criteria of similarity if the initial equations
have an unambiguous solution. This can only be attained if the differen-
tial equations are limited by certain conditions so that, after solution, they
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give values of variables characterizing the given phenomenon. The bound-
ary conditions that must be added to the differential equations thus attain
the character of conditions of unambiguity of solution. These conditions
take into account the geometry and dimensions of the space in which the
given phenomenon occurs, the physical properties of the medium and, lastly,
the conditions determining the values of the variables at the limits of the sys-
tem. If the various phenomena within the limited group now differ from one
another only in scale, they fulfil the main presuppositions of the theory of
similarity.

Most practical cases deal with turbulent flow. It will, therefore, be
useful to note the consequences of applying the previously stated modifi-
cations of the Navier–Stokes equations in Section 4.3.3 to the similarity of
turbulent flow.

Recalling equation (4.33a) we can write:

dū
dt

= X −
(

1
ρ

)
∂p̄
∂x

+
(
μ

ρ

)
∇2ū +

[
∂

(
u′ū
∂x

)
+ ∂

(
u′v̄′

∂y
+ ∂

u′w̄′

∂z

)]
In the same manner as before we obtain

MSt = MFr = MEu = MRe = 1

but the last term in equation (4.33a) results in a further equation:

Mv′
Mv̄

= 1 (5.21)

In the theory of similarity, the dimensionless number v′/v is referred to as
the Karman number (Ka).

Equation (5.21) introduces the criterion of constant velocity scale for
mechanical similarity in turbulent flow (i.e. the condition that the scale of
velocity fluctuations should be equal to the scale of mean velocities).

Let us consider the case that inertia and external forces may be neglected.
The Navier–Stokes equation (4.7a) for steady flow and the x-axis would
then reduce to:

0 =−
(

1
ρ

)
∂p
∂x

+ ν∇2u

By the same process as before, this gives

Mp

MρMl
= MνMv

M2
l

= 1

and, therefore,
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MpMl

MμMv
= MLa = 1 (5.22)

pl/(μv) is the Lagrange number (La) and is the product of the Euler
(p/(ρv2)) and Reynolds (lvρ/μ) numbers.

Equation (5.22) (MLa = 1) is thus the consequence (rather than the
condition) of the existence of similarity.

The general equation

Eu = f (Re) (5.23)

has two special cases:

(a) f (Re) = c/Re, where c is a constant, i.e.

Eu = c
Re

(5.24)

(equation (5.24) with EuRe = pl/(vμ) = La = constant complies with
equation (5.22)); and

(b) f (Re) = constant, resulting in

Eu = constant (5.25)

The above applies to a situation where for steady flow and neglecting
the volumetric forces in the Navier–Stokes equation the viscous forces are
negligible in comparison with inertia:

u∂u
∂x

+ v∂u
∂y

+ w∂u
∂z

=−
(

1
ρ

)
∂p
∂x

Thus

Mv2

Ml

(
u∂u
∂x

+ v∂u
∂y

+ w∂u
∂z

)
= −Mp

MρMl

(
1
ρ

)
∂p
∂x

and

Mp

MρM2
v

= MEu = 1 (5.26)

which is equivalent to equation (5.25) applied to the model and the
prototype.
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Examples of equations (5.23)–(5.26) can be found in Section 4.4.1. The
Hagen–Poiseulle law for the distribution of velocity in laminar flow in
a pipe:

u = p1 − p2

4μl
(r2 − y2)

or the equation for head loss in laminar flow

hf = 32lνV
gD2

(4.40)

or the equation for the coefficient of friction in laminar flow

λ= 64
Re

(4.41)

are all examples of equation (5.24) (La = constant).
Equally, the fully developed rough turbulent flow in conduits with Re>

Resq, or equation (4.49), where the friction coefficient λ is independent of
the Reynolds number, are examples of equation (5.25) (Eu = constant).

From the modelling point of view, equation (5.25), excluding the effect
of viscosity (e.g. in the computation of λ) characterizes an automodelling
region where MEu = 1.

Let us now consider ∇2u in the last term of the Navier–Stokes equation:

∇2+u = ∂2u
∂x2

+ ∂2u
∂y2

+ ∂2u
∂z2

After adding and subtracting

∂2v
∂x∂y

+ ∂2w
∂x∂z

this results in

∇2u = ∂2u
∂x2

+ ∂

∂y

(
∂u
∂y

− ∂v
∂x

)
− ∂

∂z

(
∂w
∂x

− ∂u
∂z

)
+ ∂

∂x

(
∂v
∂y

+ ∂w
∂z

)
Introducing from continuity ∂v/∂y + ∂w/∂z = −∂u/∂x, and recalling the
definition of vorticity from Section 4.2.4 (ωxy = 1/2(∂v/∂x − ∂u/∂y), we
obtain

∇2u =−2
(
∂ωxy

∂y
− ∂ωxz

∂z

)
with similar expressions for the y- and z-axes, and ∇2v and ∇2w.
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As shown in Section 4.2, the potential flow of a viscous fluid is irro-
tational (equations 4.8–4.11), with ωxy = ωzy = ωzx = 0, and therefore also
∇2u,∇2v,∇2w = 0. This means that the Reynolds number is eliminated
from the conditions of similarity and only the Froude number (possibly
also the Strouhal number for unsteady flow) remains as a criterion. For
steady irrotational flow of a viscous liquid with a free surface (i.e. flow with
a velocity potential), similarity is thus governed exclusively by the Froude
law, which can also be expressed as

Eu = f (Fr) (5.27)

In the case of viscous fluid flow under pressure, the influence of gravity
may be included in the pressure differential and not connected physically
with the mass of the fluid. Mathematically this assumption may easily
be expressed in the Navier–Stokes equations by rewriting them for the
force field of gravity with the z-axis vertical and positive downwards. The
pressure term then becomes

− (1/ρ) ∂p∗/∂x =− (1/ρ) ∂(p − p′)/∂x =− (1/ρ) ∂(p − ρgz)/∂x

In the above statement p is the pressure intensity at an arbitrary point of
the cross-section during motion, and p′ = ρgz is the hydraulic pressure at
the same point at rest under otherwise equal conditions. If we now apply
the above-used procedure with the introduction of scales into the modified
Navier–Stokes equation, we find that only the Reynolds number (possi-
bly also the Strouhal number for unsteady flow) remains as a criterion of
similarity.

Using the Navier–Stokes equations as a basis for the derivation of the
law of mechanical similarity we have not only established the condition of
equality in the model and the prototype of the Strouhal, Froude, Reynolds
and Euler numbers, but have also identified two cases where the Euler num-
ber is a function of only the Reynolds number (or even where the Euler
number is a constant) (equations 5.22–5.26) or of only the Froude number
(equation 5.27). Obviously, the Weber and the Mach numbers have not been
considered in this section as the Navier–Stokes equations do not contain the
effects of surface tension or compressibility.

5.6 Approximate mechanical (dynamic) similarity

The condition of complete mechanical similarity requires that, while using
real fluids, equations (5.19a)–(5.19e) should be simultaneously satisfied.
However, it is practically impossible to obtain for the model fluids possess-
ing the necessary physical properties that comply with the given conditions.
If we choose the same liquid for the model as in the prototype, it is
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impossible to attain complete mechanical similarity since, for Mg = 1 (the
same gravitational acceleration acts on the model as in prototype) we obtain
from equation (5.19b) Mν = √

Ml, and for Mν = 1 (the same liquid in the
model and prototype) we obtain from equation (5.19c) Mν = 1/Ml. Both
these equations for Mν can be satisfied only for Ml = 1 (i.e. a model of the
same size as the prototype).

Hydraulic models thus work only with approximate mechanical (or
dynamic) similarity based on the ratio of those forces that determine the
type of motion (or which are predominant in the given situation).

Accordingly, the Reech–Froude, Reynolds, Weber or Mach law is then
chosen for the investigation. By working on the model according to one
main and determining law and neglecting the others, errors occur due to
scale effects, and the reduction of the model against reality must be chosen
to make these errors as negligible as possible in the given situation. These
limits of model reduction determine the limits of similarity or the limiting
boundary conditions for scaling procedure (for a more detailed analysis of
these limits, see Section 5.8.2 and Chapters 7–13, as appropriate).

There are, of course, cases where two or more forces are equally impor-
tant in the prototype (or the influence of which cannot be neglected); in this
situation special procedures have to be adopted (see e.g. Section 5.9).

Good knowledge of established physical laws, judgement and experience
all are important in selecting the appropriate method for a modelling prob-
lem. In making the compromises that are often needed in selecting scales
and the programme of tests, modelling becomes an art as well as a science.
A too rigid attitude based only on theory may lead to a rejection of a scale
model in a situation where even an imperfect model may be of substantial
benefit (Ackers (1987)). Model tests of different design problems are bound
to be associated with different confidence levels in the model–prototype
correlation (see Chapters 7–13). However, a lower level of confidence in
quantitative results does not necessarily negate the use of a physical model
but requires care and engineering judgement in the interpretation of model
data (Hay (1988)).

5.7 The main similarity laws

5.7.1 Froude law

The Froude law (first expressed by Reech and later independently by
Froude, and therefore sometimes also referred to as the Reech–Froude law)
represents the condition of mechanical (and dynamic) similarity for flow
in the model and prototype governed exclusively by gravity. Other forces,
such as the frictional resistance of a viscous liquid, capillary forces and the
forces of volumetric elasticity, either do not affect the flow or their effect
may be neglected. With certain limitations on the choice of model scales
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this is permissible, especially for free-surface flow (e.g. when modelling the
discharge over notches and weirs, the movement of long surface waves (see
equation (4.90)), hydraulic jumps, flow in short open-channel sections, etc.).

In the flow of a real (viscous) fluid, however, internal friction always acts
simultaneously with gravity. If the model is geometrically similar to the pro-
totype and the boundary conditions are also similar (e.g. inflow or outflow
conditions, wall roughness), then similarity not only between forces due
to gravity but also to a large extent between the resistances due to fric-
tion is ensured in many cases (see Sections 5.5.2, 5.8 and Chapters 7–13).
The Froude law is thus the most widely used similarity law in physical
modelling.

The basic equation for similarity under the exclusive or overwhelming
action of gravity was given by equation (5.19b) (MFr = 1); from this con-
dition and the definition of the Froude number as v/

√
(gl) the scale of

velocities can be determined for a chosen length scale Ml as

Mv = vp

vm
= M1/2

l M1/2
g (5.28)

As practically always the scale of acceleration Mg = 1 (g is the same on the
model and in prototype),

Mv = M1/2
l =

(
lp

lm

)1/2

(5.28a)

The scales of other parameters follow from continuity, identity of Euler
numbers and physical definitions:

for discharge: MQ = MvMA = M1/2
l M2

l = M5/2
l

for time: Mt = Ml

Mv
= M1/2

l

for frequency: Mf = 1
Mt

= M−1/2
l

for force ν:MP = MρM2
vM

2
l = MρM3

l

(for the same liquid in the model as in the prototype, Mρ = 1); thus:

for specific (unit) pressure: Mp = MP

MA
= Ml

for power: MN = MγMQMH = M7/2
l

for work(energy): Me = MNMt = M7/2
l M1/2

l = M4
l
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From the above it follows that the scale of the Reynolds numbers for Mν

1 will be MRe = MvMl = M3/2
l .

5.7.2 Reynolds law

Reynolds law expresses the criterion of mechanical (and dynamic) similarity
of the motion of two incompressible viscous liquids under the exclusive (or
predominant) effect of internal friction. It is valid, for example, in modelling
flow around bodies submerged in the liquid without surface waves, laminar
flow in conduits (see equation 4.41) or turbulent flow in a smooth conduit
(see equation 4.48), etc.

The basic equation has already been given by equation (5.19c) (MRe = 1)
from which the scale of velocities for Re = vl/ν and a chosen length scale is

Mv = MνM−1
l (5.29)

For the same fluid in the model and the prototype Mν = 1, and thus

Mv = M−1
l (5.29a)

The scales for the other parameters can be derived from equation (5.29) in
the same manner as in the previous paragraph.

It is opportune to note here that the coefficient of kinematic viscosity
ν depends on temperature and pressure; it decreases with increasing tem-
perature in liquids and increases with increasing temperature in gases. At
a pressure of 760 mmHg and temperatures of 0 ◦C, 10 ◦C and 20 ◦C, ν
for air is 1.33 × 10−5, 1.40 × 10−5 and 1.49 × 10−5 m2/s and ν for
water is 1.78 × 10−6, 1.31 × 10−6 and 1.01 × 10−6 m2/s, respectively. Air
compressed to 100 atm at 0 ◦C has ν = 1.33 × 10−7 m2/s and at 100 ◦C
ν=2.45×10−7 m2/s. At a temperature of 20 ◦C ν for mercury is 1.77×10−7,
petroleum 0.74 × 10−4, engine oil 3.8 × 10−4 and glycerine 6.8 × 10−4 m2/s.

5.7.3 Weber law

The Weber law represents the condition of similarity for the exclusive or
prevailing effect of capillary forces causing surface tension. This manifests
itself both on the liquid–gas interface and on the interface between two
different liquids by the formation of a (curved) membrane due to the effect
of molecular forces.

Surface tension decreases with rising temperature, and influences, for
example, the flow and shape of small nappes, and the formation of short
free-surface waves (equation 4.87).

Surface tension is given by the capillary constant σ , which acts on the unit
of length of the surface. For example, on a water surface above which there
is air, it is 7.29 × 10−2 N/m at a temperature of 20 ◦C.
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The basic equation for similarity with the exclusive effect of capillary
forces is given by equation (5.19d) (MWe = 1). Defining the Weber number
as ρv2l/σ results in the velocity scale

Mv =
(

Mσ

MρMl

)1/2

(5.30)

For the same fluid in the model and the prototype, Mρ = Mσ = 1; thus

Mv = M−1/2
l (5.30a)

From equation (5.30) the scales for all other parameters can again be
derived as in Section 5.7.1.

5.7.4 Mach law

The Mach law expresses the criterion of similarity for the exclusive or
prevailing effect of volumetric elasticity (compressibility) of the medium
(liquid). The modulus of compressibility (bulk modulus) K of a liquid is
given by the ratio of increase in stress to the reduction in volume (which
causes an increase in specific mass (density)). Thus

K = ρ�p
�ρ

Again, as in the preceding cases, the basic equation for this law of similar-
ity has already been stated by equation (5.19e) (MMa =1). For Mach number
Ma = v

√
(ρ/K) this gives for the velocity scale

Mv =
(

MK

Mρ

)1/2

(5.31)

or for Mρ = MK = 1

Mv = 1 (5.31a)

The scales for all other parameters can be derived as in previous paragraphs.

5.7.5 Comparison of the main similarity laws

It is interesting at this stage to compare the scales of some important param-
eters in geometrically similar models for the four similarity laws (Table 5.1).
In compiling Table 5.1 it was assumed that Mg = 1. The comparison clearly
demonstrates why modelling according to the Froude law is considerably



Development of physical models 183

Table 5.1

Scale Froude Reynolds Weber Mach

Mv M1/2
l M−1

l Mv M−1/2
l M1/2

σ M−1/2
ρ M1/2

K M−1/2
ρ

Mt M1/2
l M2

l M−1
ν M3/2

l M−1/2
σ M1/2

ρ Ml M1/2
ρ M−1/2

K

MQ M5/2
l MlMv M3/2

l M1/2
σ M−1/2

ρ M2
l M1/2

K M−1/2
ρ

Mp MlMρ M−2
l M2

μ M−′
ρ M−1

l Mσ MK

simpler than that according to the other laws. Assuming the same fluid in
the model as in the prototype, with Mρ = Mν = Mσ = MK = 1, the Froude
law is the only one where the velocities and the pressure intensities in the
model are smaller than in the prototype. Even for a different fluid in the
model it is difficult to find a suitable one that would reverse this conclu-
sion. Modelling according to the other three laws can thus often result in
considerable technical difficulties.

5.7.6 Distorted models

Any deviation from geometric similarity means that the model is distorted,
and because of this we can no longer speak of mechanical similarity but
only of full or approximate dynamic similarity (see Section 5.4).

By far the most common case of distortion is adopting a vertical scale
different from the horizontal one. This is practically always the case in river
and estuarine/coastal engineering when modelling a longish river stretch or
a large coastal area. Because of the physical laboratory limitations, the hor-
izontal scales Mb and Ml are rather large (usually 100<Ml < 1,000). The
scale of width is practically always the same as that of length (Mb = Ml),
although there can be exceptions to this (see Chapter 7). If the same scale
were adopted for the vertical scale (i.e. scale of depth Mh), the result-
ing Reynolds number of the flow would be too small for viscosity to be
neglected in a model operated according to the Froude law, i.e. Re<Resq

(see Sections 5.5.2 and 5.8.2). Therefore, a value of Mh <Ml is chosen to
satisfy the condition Eu = constant (equation 5.25).

Considering now the resulting velocity, discharge, time and pressure
intensity scales, with Fr=v/

√
(hg), we obtain (for Mg =Mρ =1 and Ml =Mb)

for velocity of flow: Mv = M1/2
h (5.32a)

for discharge:MQ = MvMA = M3/2
h Mb = M3/2

h Ml (5.32b)

for time:Mt = Ml

Mv
= MlM

−1/2
h M (5.32c)

for pressure intensity: Mp = Mh (5.32d)
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It is important to appreciate that, in the case of modelling parameters
varying with time, the Strouhal criterion requires a uniform time scale on
the model in all directions; therefore, for the scale of vertical velocities Mw

(velocity of rise and fall in tidal levels, settling of suspensions, lifting and
lowering of gates, etc.) we obtain

Mw = Mh

Mt
= MhM

1/2
h

Ml
= M3/2

h M−1
l (5.33)

A comparison of equations (5.32) and (5.33) demonstrates that in a
model where the vertical velocity components are important, distortion is
not acceptable (for Mw = Mv the two scales Mh and Ml must be equal).
Nevertheless, where we can assume with good approximation a hydro-
static pressure distribution in the vertical and where we can accept that
some details of the flow conditions will not be modelled correctly (e.g. the
modelling of eddies, spreading of jets, the flow around some bodies where
separation may occur in the model but not in prototype) (Kobus (1980)),
vertically distorted models are acceptable not only for cases of uniform and
non-uniform flow but also for unsteady flow conditions with relatively slow
vertical motion (e.g. fall and rise in tidal water levels) (see also Chapters 7,
11 and 12).

The above is only a brief general outline of the method of handling one
type of distortion in physical models; other problems associated with a
departure from geometric similarity (e.g. in roughness, sediment size and
shape) will be elaborated further in Chapters 7–13.

5.8 Some further dimensionless numbers and
limits of similarity

5.8.1 Some further dimensionless numbers

In the preceding text some of the dimensionless numbers important in
hydraulics were defined: the Newton, Euler, Froude, Reynolds, Weber
and Mach numbers (Section 5.5.1), and the Strouhal, Lagrange, Karman
numbers (Section 5.5.2). In Chapter 4 the densimetric Froude number
(equation 4.96) and the (gradient) Richardson number (equation 4.97), the
sediment transport parameter and the flow parameter (equations 4.100–
4.102), the mobility number (equation 4.103) and the cavitation number
(equation 4.122) were introduced. We have also seen that sometimes the
same number has several different names (Mach, Majevskij, Bairstow–
Booth – Section 5.5.2), different names may apply to a different power of
the same number (Mach–Cauchy, Strouhal–Richardson number of the wake
train – Section 5.5.2) or the same name is given to different powers of the
same number (Froude, Weber – Section 5.5.1). Although it would be helpful
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to standardize the notation for scale (model/prototype or prototype/model)
and the named dimensionless numbers, probably it is not feasible to achieve
this and we have fundamentally two choices (Novak (1984)): either to use
rigorously the original definitions in the literature, or to accept the inevitable
and whenever using a ‘named’ dimensionless number to define it clearly
and particularly to define the velocity (mean, local, shear, fall, etc.) and
the length (size, depth, diameter, grain size, etc.) parameters used. A good
example is the frequent use of the ‘densimetric Froude number’ with, for
example, the local velocity and a length term (equation 4.96), or the shear
velocity and grain diameter (equations 4.99–4.102), or the mean velocity of
flow and the grain diameter, etc.

The Kolf number (Kf) or circulation number (N�) are expressions of vor-
tex flow: N� =�d/Q, where � is the circulation = 2πc (c is the circulation
constant = vr – see Chapter 4) and Kf =�/vd =�/4N�.

The Mosonyi number (νv/(gl2)) is given by the ratio of viscous and grav-
ity forces; the ratio of the (sediment) fall velocity w and the shear velocity U∗
(see e.g. equations 4.106–4.109) is the Rouse number. The Galileo number
(gl3

/ν2), derived from (Re/Fr)2, eliminates the velocity term, and the liq-
uid parameter (also called the Morton number) (gμ4/(ρσ 3)), derived from
We3/(Fr2Re4), excludes both the velocity and length terms.

The Keulegan–Carpenter number is used in modelling the flow of
waves past cylindrical bodies, and is linked to the vortex-shedding pro-
cess; there are several versions of this number (which is essentially linked
to the Strouhal number (equation 5.20); see also Section 5.5.2) UT/D,
2πH/D, πH/L/(D/L) tanh(2πD/L), where U is the relative velocity
between body and fluid, T is the wave period, D is the body parameter
(diameter), H is the wave height and L is the wave length.

The Vedernikov number (Ved) is the Froude number multiplied by a
channel-shape factor ϕ( = 1 − RdP/dA) (for ‘wide’ channels ϕ = 1, and for
‘narrow’ channels ϕ = 0) and the exponent k of the hydraulic radius in
the uniform-flow equation (usually k = 2/3); it is used to express the con-
dition of stability of uniform supercritical flow ( − 1< Ved< 1) (see also
Section 13.2.3).

Schuring (1977) documents 57 named principal dimensionless numbers
used in modelling in various engineering disciplines, and many of these are
pertinent to hydraulic modelling; even this list is by no means complete,
particularly as Schuring does not include derived numbers. Some of the
numbers of importance quoted by Schuring, but not yet mentioned here,
are the Bingham (slow flow of viscoplastic material), Hedstrom (rapid flow
of viscoplastic material), Peclet (mass transfer by diffusion), Rossby (large-
scale atmospheric or oceanic motion), Schmidt (flow with momentum and
mass transfer) and Sherwood (mass transfer by convection) numbers.

In the treatment of debris flow, several dimensionless numbers obtained
by the ratio of collision stresses to other stresses are in use: the ratio to the
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grain friction stresses is the Savage number, to the liquid viscous stresses is
the Bagnold number, to the turbulent stresses is the mass number and to
liquid grain interaction is the reciprocal of the Darcy number.

Some of the above numbers will be discussed further in Chapters 7–13.

5.8.2 Some limits of similarity

The limits of similarity are the limiting boundary conditions for the scaling
procedure according to one of the laws of similarity (see Section 5.6). These
limits may be in the form of a limiting value of a dimensionless number (see
(a)–(c) below) or a limiting value of a hydraulic parameter (see (d), (e) and
(g) below), or stated as a limiting dimension (see (f) below):

(a) An obvious condition is that the regime of flow in a scale model and in
the prototype should be the same: laminar or turbulent (Re<Recr,Re>
Recr – see Section 4.4.1), uniform or non-uniform, steady or unsteady,
irrotational or rotational, subcritical or supercritical (Fr<1, Fr>1).

(b) The most frequent case in modelling is the situation where, when using
the Froude law, it is necessary to eliminate (or reduce to an insignificant
proportion) the effect of viscosity (Reynolds number). We have seen
already that this is automatically the case when the flow is irrotational
(Section 5.5.2, equation 5.27) or when (in pipe and open-channel flow)
Re>Resq (equations 4.49 and 5.25). Should we not be able to comply
with this condition, we can still obtain the same frictional head-loss
coefficient in the model as in the prototype but only by distorting the
relative roughness (see Figure 4.4 and Chapters 7 and 9).

(c) For cavitation to occur, the cavitation number (equation 4.122) must
fall to a critical value σ (see Section 5.6.5). Cavitation tunnels (see
Section 6.1.2) with free-water surface should operate with Re > 106.
Although in experimentation using the Froude law the value of the
Euler number is maintained automatically, for the cavitation number
special additional conditions will apply in order to model σc correctly
(see Chapter 13).

(d) Air entrainment in a flow of water requires a minimum value of veloc-
ity – the inception limit vi – which should also be exceeded in the model
(e.g. for plunging jets and siphons a value vi =0.8m/s is quoted) (Kobus
and Koschitzky (1991)) (see also Section 4.6.5 and Chapter 13).

(e) Surface tension is not often important in a prototype but can become
significant in models if they are too small. Although the critical values
of the Weber number are not as clearly defined as, say, those of the
Reynolds number (Peakall and Warburton (1996)), some guidance
about the limiting values has been quoted:

(i) In Section 4.5 it was stated that the minimum celerity with which a
surface wave may be propagated is c = 0.23m/s (equation 4.87),
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corresponding to a minimum wavelength (for gravity waves) of
L = 0.017m (equation 4.86); this results in a Weber number of
about 12.

(ii) From the propagation speed, one can postulate that a minimum
water depth is required in the model to eliminate surface-tension
effects. Kobus (1980) quotes a limit of 0.03 m (which can be
decreased by the addition of surface-active agents that increase
the Weber number); Novak and Čábelka (1981) quote a minimum
acceptable depth of 0.015 m.

(iii) For the correct reproduction of flow conditions (vortex formation)
at vertical intakes, the condition We> 120(We = ρv2l/σ ) has been
quoted (Ranga Raju and Garde (1987)).

(f) For modelling flow over notches, under gates or through orifices (see
also Chapter 13), Novak and Čábelka (1981) quote:

(i) The head on a sharp-edged notch should be at least 60 mm for
the shape of the nappe to be capable of extrapolation (Ghetti
and D’Alpaos (1977) quote 40 mm); for a head less than 20 mm
the overflow parabola of the free jet due to influence of capillary
tension is deformed almost into a straight line.

(ii) For flow under a gate the smallest height of its opening a for which
the shape of the outflow jet may be extrapolated is 60 mm and the
jet shape is independent of the head h for h>3.3a.

(iii) For discharge from a circular orifice of diameter D the smallest
size for which the jet shape can be extrapolated is D > 70mm,
and the jet is independent of the head for h > 6D. (The con-
ditions specified in (ii) and (iii) give a Reynolds number of the
order 105.)

(g) It is generally accepted that when using aerodynamic models (see
Section 5.10.2) the effect of compressibility (Mach number) is negligible
for air speeds below 50–60 m/s (Kobus (1980)).

In the above notes only some of the more frequently occurring limits of
similarity have been summarized; others – particularly those associated with
movable beds – are best dealt with in (the applied) Chapters 7–13.

5.9 Methods of modelling complex phenomena

It is sometimes difficult to decide in advance whether the influence of the
forces we want to eliminate as unimportant in the choice of criteria of
similarity is indeed negligible. Independent experimental work must then
determine whether the model scale was chosen correctly or whether in
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the model (or indeed the prototype) a complex phenomenon occurs that
is influenced simultaneously by several types of force.

The simplest method in this case is to investigate the problem using two
or more models of different size (i.e. a ‘family’ of models). If the results
from all the models are then plotted (e.g. the relationship of discharge and
head, Q = f (h)) after conversion to the prototype, we obtain a number of
experimentally determined points. These may lie on one curve – with a scat-
ter due to measurement errors – or they must be joined by two or more
curves, always one for each model; the latter case then shows a systematic
deviation signifying that similarity has not been obtained in the models.
When preparing experiments on two models, we must ensure that (after
conversion to the prototype) the experiments on both models include, at
least in part, values of variables within the same limits.

If the experiment is carried out on three models of different sizes, and
the systematic deviation appears only in the case of the smallest model,
whereas for the other two the dispersion is within experimental errors,
it may be concluded that in the smallest model the systematic error is
caused only by exceeding the limit of model similarity. We then exclude
it and continue to work with one of the larger models. However, if sys-
tematic deviation appears in all results and does not decrease with an
increase in the model size, we are in all likelihood faced with a com-
plex phenomenon in the prototype, and the safety of extrapolating from
the model to the prototype will be the smaller, the greater this systematic
deviation.

If deviations are considerable, separate experiments must be carried out
or attempts be made to determine the influence of one type of force by calcu-
lations and the results introduced into the experimental procedure. Froude’s
method of investigating the resistance of a towed ship is an example of
solving a complex phenomenon by model experiments.

In the resistance of a towed ship both gravity and viscosity apply, and
neither of the resulting forces may be regarded as subordinate. Gravity influ-
ences the shape resistance of the ship, which is proportional to the main rib
section and the square of the velocity of the wave formed by the move-
ment of the ship. Viscosity affects the frictional resistance of the water on
the wetted surface of the ship. The total resistance P is thus made up of
the shape resistance P1 (Froude law) and frictional resistance P2 (Reynolds
law): P = P1 + P2.

During the towing of the model ship the total resistance of the model Pm

may be ascertained for various shapes and draughts and different speeds of
towing. Froude proved that the tangential resistance of the surface of the
ship is practically the same as the resistance of a vertical towed board of
the same surface area and roughness as the ship surface. The board must
have a sharp leading edge and be thin enough for its shape resistance to be
negligible. From experiments with the board we may obtain the frictional
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resistance for a unit of area and calculate P2 for the model ship as well as
for the prototype. Therefore,

P1m = Pm − P2m

As the experiment has been carried out according to the Froude law

P1p = M3
l P1m

and for the total resistance of the prototype ship we obtain

Pp = M3
l (Pm − P2m) + P2p (5.34)

In equation (5.34) the values P2m and P2p are obtained by computation, and
Pm is obtained experimentally.

Froude’s method is only approximate, as in the prototype the frictional
forces P2 depend also on the shape and dimensions of the ship, but it demon-
strates the possibilities of separate experimental investigation of the various
parameters involved.

5.10 Analogue models

Analogues, or semi-direct models, have already been defined in Chapter 1 as
a system reproducing a prototype situation in a physically different medium.
The prerequisite for this type of modelling is that equations representing the
prototype and analogue model are similar expressions.

Consider the equation of changes in x with time:

d2x
dt2

+ adx
dt

+ bx + c = 0 (5.35)

where for t = Od2x/dt = dx/dt = 0 and x =−x0( =−c/b).
In equation (5.35) x could denote the oscillating water level (relative to

the reservoir level) in a hydroelectric power station surge tank (with auto-
matic turbine regulation) (Figure 5.1a); it could be the angle through which
a disc attached to a bar fixed at the other end turns in torsional oscillations
(Figure 5.1b); or it could stand for the voltage fluctuations after disconnect-
ing from a DC supply a circuit with resistance, capacitance and inductance
(Figure 5.1c).

Thus, the torsional vibrations of the bar become the analogue of the
water-level oscillations in the surge tank, and vice versa. We can therefore
use one to analyse the other. The surge tank is a hydromechanical analogue
of the bar, and the electric circuit is an electrohydrodynamical analogue of
the surge tank.
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Figure 5.1 Analogues (Novak and Čábelka (1981))

Similarly, an electrical resistance network may represent a groundwater
aquifer; here the voltage corresponds to water levels, the current to dis-
charge, the resistance to the reciprocal of transmissivity, and the capacitance
to storage capacity.

It is necessary to differentiate between an analogue model, which physi-
cally represents a flow situation, and an analogue computer, which uses an
electric circuit for the solution of simultaneous differential equations.

The developments in numerical modelling and in the power of (digi-
tal) computers have now, however, rendered analogue computers (and to
a certain extent analogue models) obsolete. Nevertheless, in special cases
analogue models are still useful, and a combination of analogue and digital
techniques may provide good and economical results.

Returning to equation (5.35) and using the procedures established in
Section 5.5.2 the following criteria, or ‘indicators’, of analogy can be
derived:

MbM2
t = MaMt = 1 (5.36)

Therefore, also

Mb
M2

a

= 1 (5.36a)

From the boundary conditions it follows that

Mh( = Mθ) = 1 (5.36b)

Equation (5.36) enables us to determine the numerical relationship between
analogous physical parameters; it is evident that a single system of units has
to be used throughout (Hálek (1965)).

Hydraulic analogues (Novak and Čábelka (1981)) utilizing the similarity
of flow patterns in a two-dimensional potential flow and in a thin-layered
viscous flow are often used together with flow-visualization methods to
study flow past obstacles or streamlines in seepage flow. Typical examples
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are horizontal or vertical thin-layer models, or so-called Hele–Shaw models.
In these models a viscous fluid flows in a thin slot between two smooth
plates with a small, constant velocity, giving laminar flow throughout.
Neglecting inertia forces, the velocities in the horizontal (x) and vertical (z)
directions (in the case of the vertical models) or in the horizontal (x,y)-plane
(horizontal models) are given by the equations

u = (a2g∂p)
(12νγ ∂x)

= (a2g∂h)
(12ν∂x)

= k∂h
∂x

(5.37)

v = a2g∂p
12νγ ∂y

= a2g∂h
12ν∂y

= k∂h
∂y

(5.37a)

where a is the distance between the plates and k is a constant.
Equations (5.37) and (5.37a) correspond to, for example, the equation

of laminar flow through a porous medium and, when combined with
continuity, satisfy the Laplace equation (4.11).

Hele–Shaw models using a fairly viscous fluid (e.g. glycerine) usually have
a slot thickness of about 2 mm and a length of 1–2 m, with overfalls at the
inlet and outlet simulating the boundary conditions, which may also be
time-dependent. Models using water have appreciably smaller thickness, of
about 0.1–0.3 mm. Figure 5.2 shows a vertical Hele–Shaw model used to

Elevation

Section A–A

Glass Foil

Inflow

Dve Outflow

AA

Figure 5.2 Hele–Shaw model (Novak and Čábelka (1981))
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study seepage flow under a foundation. A change in the space between the
plates could be used to simulate conditions of different permeabilities in
stratified soils. The flow between the plates must, of course, remain laminar
(i.e. Re = ua/ν < 500). Slot models are simple to construct and operate,
although care and accuracy in the positioning of the plates are required.

The use of Hele–Shaw models is limited to the solution of two-
dimensional flow problems. No such limitations apply to sand seepage
models, which, however, have disadvantages resulting from large capillary
elevation and difficulties in the determination of the free-water surface, and
problems of entrapped air. Uniform glass balls or pellets of up to 4 mm
diameter are sometimes used to overcome these difficulties.

The membrane analogy (Karplus and Soroka (1959)) can be used to study
the flow field around obstacles. A rubber membrane is fixed under uniform
tension in a metal ring. If placed in an inclined position, the lines of equal
elevation (broken lines in Figure 5.3) show the streamlines of parallel flow.
If a rod of similar cross-section as the shape of the body, whose effect on the
flow field is under investigation, is then pressed from below into the inclined
membrane, its deflections at various points give a very good indication of
the resultant streamlines (the full lines in Figure 5.3 indicate the resulting
flow net of streamlines and equipotential lines). By changing the orientation
of the body to the flow, an optimum position with no separation of flow can
be determined.

As mentioned earlier, electrical analogues may be best used for the solu-
tion of groundwater flow problems, particularly those with linear equations.

Figure 5.3 Membrane analogy (Hálek (1965))
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In principle, a two-dimensional model uses a conductor in the shape of
the considered porous medium, with the contours simulating the bound-
ary between the permeable and impermeable ground. The inlet and outlet
are simulated by electrodes (brass or copper). As the geometry of the result-
ing flow net is independent of the absolute value of the filtration coefficient
(conductivity – this follows from the Laplace equation) a variety of materi-
als may be used for the conductor (e.g. tin foil sheets, electrolytes, varnished
surfaces containing graphite powder, electroconductive paper). The flow
net is determined by using a probe to find lines of equal potential (see
Figure 5.4); a Wheatstone bridge is used with probe (4) moved along the
conductor until the galvanometer G indicates zero.

Direct analogues using linear resistors and capacitors can be used for the
analysis of groundwater resources.

Using air (or another fluid) instead of water in a scale model, or even in
the prototype (e.g. in a duct), is not an analogue in the strict interpretation
of the above definition, as both air and water flow are covered by the same
equations as long as compressibility (and capillarity) effects are excluded.

The use of aerodynamic models – basically subcritical wind tunnels –
for investigating problems governed by inertia and viscosity is straight-
forward and can offer some advantages (cost, measuring techniques) over
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Figure 5.4 Electrical analogue (Novak and Čábelka (1981))



194 Development of physical models

conventional hydraulic scale models; the main disadvantages of these
models are the difficulty of making three-dimensional flow visible and in
the difficulty of simulation of mixing flows.

The main problems in the use of aerodynamic modelling arise in cases
where a free-water surface is involved. If the position of the free-water sur-
face is known (or its exact level is not important) one can again use either a
tunnel model with the flow cross-section inverted about the water surface,
or, in a simpler way, substitute a plane ceiling for the free-water surface. If
the position of the water surface or water depths are not known (e.g. this
is the subject of the investigation), an iterative process for the placement of
the (glass) plane ceiling has to be adopted. This second interesting technique
of aerodynamic modelling of open-channel flow requires further elucida-
tion of similarity criteria, which is best discussed together with the general
discussion of physical modelling of open-channel flow in Chapter 7.
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Chapter 6

Tools and procedures

6.1 Laboratory installations

6.1.1 General laboratory installations

The planning, design and construction of a hydraulics laboratory –
especially of a large one – can be a complicated procedure requiring spe-
cialized knowledge.

Covered hydraulic laboratories usually have a closed water circuit; open
air installations, where water may be more quickly polluted, work with
direct water supply without circulation.

The closed water circuit consists of an underground supply reservoir,
a pumping station delivering water to high-head reservoirs (tanks), pipes
discharging water from the reservoirs through discharge-measuring devices
into flumes and models, and return channels delivering water back to the
supply reservoir (where the water must be occasionally replaced if polluted).

The overhead tank must be placed sufficiently high above the labora-
tory floor and is usually fitted with a very long overfall edge to preserve an
almost constant water level both during fluctuating water supply from the
pumps and during changes in the discharge on the models. The overhead
tank is usually permanent, built as part of the equipment of a hydraulic
laboratory and frequently supplies several models. This solution is eco-
nomical, but has the disadvantage that flows on separate models working
simultaneously and supplied by a joint distribution pipe may influence each
other. Therefore, separate tanks, or at least direct supply lines from the
tank, are sometimes built for every permanent flume or larger models.
It is also possible to supply individual models by pumps directly (with-
out using an overhead tank); in that case a substantial model inlet tank
is desirable.

In supply installations without circulation models are fed either by gravity
or by water pumped from rivers, reservoirs, canals, lakes, etc., with water
from the model discharged to the recipient.

Models built in the open should be protected against wind, rain and frost
using windbreakers and temporary roofing.
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The construction of models and work on them is greatly facilitated by
light bridges or cranes. Apart from free areas used for temporary mod-
els and forming part of every hydraulic laboratory, a variety of permanent
equipment (available commercially or built in-house) may be installed: fixed
and tilting flumes, high-pressure tanks, flumes for rating instruments for
velocity measurements, tanks for rating flow meters and specialized rigs (see
Section 6.1.2).

Fixed hydraulic flumes, usually used for two-dimensional models of
hydraulic structures, have vertical parallel lateral glass walls fitted into the
reinforced concrete or steel supporting structure of the flume. The horizon-
tal bed of the flume is usually of thick rolled steel sheet metal so that models
are easily anchored or openings provided for piezometers. The part of the
flume close to the inlet is sometimes higher than the rest to permit modelling
of the upstream water level for gates and spillways. At the end of the flume
a device for regulating the water level and a settling tank may be installed; a
wave generator could be provided at either end. Above the lateral walls are
rails for the longitudinal movement of measuring devices. Glass walls permit
filming or photographing of the flow in planes parallel to them (and the use
of a laser-Doppler anemometer – see Section 6.3.4). The usual dimensions
of this type of hydraulic flume are: length 6–20 m, height 0.5–1.0 m (in the
raised inlet part up to 2.0 m) and width 0.3–1.2 m. The discharge through
the flumes does not usually exceed 200 L/s (according to the dimensions of
its cross-section).

Flumes are usually placed on the floor of the laboratory, or occasion-
ally set below its level, and covered by removable boards. Longer hydraulic
flumes may be constructed as divisible with the outlet in the centre and
feeding from both ends; naturally the whole may also serve as only
one flume.

Flumes in which open-channel flow and wave phenomena are investigated
must be considerably longer than flumes for two-dimensional models of
hydraulic structures. Their length is usually more than a hundred times the
depth of water, i.e. 25–100 m and more, and the width should be not less
than five times the depth in order to minimize the influence of the lateral
walls on the flow.

Hydraulic flumes with adjustable slope (tilting flumes) are used for study-
ing the resistance of channels with various roughness, stability of movable
beds, sediment transport, etc. They are mounted on a stiff supporting struc-
ture, which may be rotated around a horizontal pivot. The longitudinal
slope of a tilting flume may be changed, usually by up to about 5%, with
the aid of hydraulic or mechanical jacks, cogwheel segments, suspensions,
etc. The width and height of these flumes are most frequently of the order
of 0.50 m and 10–40 m, respectively; but due to structural complexities,
smaller (although occasionally wider) flumes are often also in use. The hor-
izontal pivot may be in the centre of the flume or, more frequently, near
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the inlet end to simplify its connection to an inlet tank. The outflow may,
in this case, be through a telescopic pipe or chute. For sediment transport
studies it is advantageous if the tilting flume is fitted with an independent
circuit with an ejector for transporting the sediment back to the flume inlet,
or at least a separate circuit for intermittent sediment measurement. Even
though adjustable hydraulic flumes are expensive to install, they are essen-
tial for any hydraulic laboratory in which open-channel flow and sediment
processes are investigated. The costly construction of the tilting flume can
be avoided by placing an inclined false bed in a fixed horizontal flume or by
levelling a sediment bed to the desired slope by traversing the length of the
flume by a device with a regular vertical shift of a blade.

For the study of valves, bottom dam outlets, special energy dissipators,
outlet jets, etc., high-(pressure)-head installations with independent water
circuits are used. These may be a steel tower, 10–20 m high, in which a
constant water surface may be maintained and water withdrawn at various
heads, a tank placed high above the laboratory level, or a pressure tank of
sufficiently large dimensions.

Towing tanks and rating flumes or circular rating tanks with station-
ary water are used mainly for the rating of instruments measuring velocity
(current meters, etc.). Above the flumes a carriage with the attached rated
instrument moves at even, adjustable and measured speeds between 0.02
and 7 m/s. The flume dimensions must be sufficiently large so that the walls
do not influence the function of the rated device; its cross-section is usually
almost square and if used for rating field current meters at least 1.5 m by
1.5 m and 100 m or more long. Appreciably smaller dimensions will be suf-
ficient for rating laboratory instrumentation. If the flume is wide enough it
may be used also to measure the resistance of towed objects (e.g. models of
barges and ships).

Volumetric rating tanks are used for the rating of flow meters (notches,
venturimeters, orifices, bends, etc.). They are large watertight tanks, usually
underground, with straight perpendicular walls and accurate devices for the
measurement of the water level. The relationship between the volume and
water level in the tank is established by separate measurements.

6.1.2 Special laboratory installations

Aerated water flow and entrainment of air by a high-velocity flow with free
surface are studied using special flumes with an adjustable slope of up to
45◦ (exceptionally even larger) (Reinauer and Lauber (1996)).

To investigate cavitation phenomena, special cavitation tunnels (see
Figure 6.2) are used. These are hermetically sealed rigs with their own water
circuit. In tunnels used for investigating flow around submerged bodies
(turbine or pump impellers, ship propellers, etc.) the necessary low pres-
sure is attained by exhausters reducing air pressure in the space above the
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inlet/outlet water surface and by placing the test section at a sufficient height
above the downstream water level (Figure 6.1(a)). Another type of tank
(Figure 6.1(b)) is used for simulating absolute pressure at structures with
free surface flow (the Reynolds number should attain a value of around 106).

(a)

(b)

Figure 6.1 Cavitation tunnels (Novak and Čábelka (1981))
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Studies of waves and models of coastal engineering works with tides
and of estuaries with density-difference effects all require special laboratory
equipment.

Wave flumes are often considerably longer, wider and/or deeper than
normal laboratory flumes; sometimes they are also connected to a wind
tunnel for the study of the interaction of wind effects on waves. Wave
generators are usually in the form of a wedge, paddle or another body
of suitable shape, the motion of which is controlled (through gearboxes)
by variable-speed motors. Their controlled and programmed motion (often
using sophisticated software) can generate regular, irregular and pseudo-
random waves in wave flumes or in three-dimensional models. Irregular
waves or waves of variable steepness can also be produced by wind super-
imposed on waves produced by the regular movement of a wave generator.
For pseudo-random waves the generator reacts to a random electronic sig-
nal filtered in accordance with the required energy spectrum of the waves.
The pseudo-random sequence may be repeatable so that tests on different
designs can be undertaken under the same conditions.

To simulate an oblique rather than frontal approach of waves to a
structure or beach, wide wave basins with several wave generators, which
may be operated with a gradual shift in their movement creating a
random wave effect, are used. Wave basins with wave generators for multi-
directional waves consisting of computer-controlled steering of segmented
wave boards are used to investigate the effects of waves ranging from
unidirectional monochromatic waves to mixed sea states with a combi-
nation of sea and swell with different principal approach directions and
directional distribution functions (Gilbert and Huntington (1991), HR
Wallingford (1998)).

Wave generators can also be installed in flumes with a current and the
wave pattern superimposed on it. The inlet arrangement in this case is best
designed by trial and error to achieve the desired combination of current
and wave action in the test section; this should be sufficiently far removed
from either end of the flume not to be affected by the boundary conditions.

A wave absorber must be provided at the end of the flume opposite
the wave generator to prevent disturbing the generated waves and the test
section by wave reflection. This usually takes the form of a sloping, rough
(possibly porous) beach, but bales of steel wool, expanded metal, plastic
fibre, etc., have also been used successfully. The best design is again achieved
by undertaking preliminary experiments.

When studying the interaction of oscillatory flow with sediment move-
ment or structures, tunnels with pulsating flow under pressure can also be
used. It is important to realize that the vertical motion of orbiting particles
cannot be reproduced correctly in this type of flow without a free water
surface. Nevertheless, relevant results may be obtained, particularly when
studying oscillatory flow in the boundary layer.
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Tidal models, usually models of estuaries, need tide generators placed at
their seaward boundary. In principle, the many different generator designs
are of two types – gate-operated or pneumatic. The weir-type tide gener-
ator usually has one or several flap gates raised or lowered according to
the tidal movement reproduced on the model and always discharging the
excess inflow to waste (or the recirculating system). Modern servo-control
techniques permit an easy reproduction of whole cycles of tides by follow-
ing the movement of an eccentric cam or previously plotted curves of tidal
movement.

Figure 6.2 is a schematic diagram of a pneumatic tide generator. A tide
cam mechanism or automatic curve-reading apparatus or automated steer-
ing (1) is connected to a float and float-operated pot (2) through a
comparing, stabilizing and amplifying circuit (3); the output from this cir-
cuit operates an air-control valve (6) through a servo-amplifier (4) and
servomotor (5), which regulates the pressure in the tank (7) provided with
an air bleed valve (8) and connected to the suction side of a fan (9).

In some cases it is possible to concentrate on the maximum ebb and flood
flow rather than reproducing the whole tidal cycle. In this case steady-state
conditions may be used and it may even be possible to simulate the whole
cycle by means of a series of steady water levels.

In tidal models the reproduction of density currents may be important.
If freshwater effects are negligible in the prototype then salt water is usu-
ally reproduced by using freshwater on the model, as using salt water could
be costly and cause corrosion problems. If, however, the density difference
and stratification effects are important, then this is controlled on the model
by brine injection into the ‘seawater’ circulation. Salinity distribution in a
model may also be maintained by extracting at the model periphery the
surface layer of freshwater brought into the estuary by the modelled river.
The use of saline water in the model may require a different zero set-
ting for probes for water-level measurement using resistance to earth (see
Section 6.3.2).

3 4

56 8
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Figure 6.2 Tide generator (Novak and Čábelka (1981))
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Large water areas simulated by, for example, distorted tidal models some-
times require the simulation of the geostrophic acceleration of flow. This can
be achieved by using a number of rotating cylinders – Coriolis simulators
or Coriolis tops – placed in the fluid; by utilizing the Magnus effect, the
required additional acceleration on the model may thus be achieved (see
also Chapter 12).

For research of density currents and turbulent boundary-layer flows,
together with wave environment and possibly rainfall simulation, total
environmental simulators provided with sophisticated instrumentation have
been developed.

Model research of ice phenomena and their effects must be undertaken
in special laboratories adapted for the investigation of the thermal regime
and behaviour of rivers, reservoirs, lakes, etc., during frost, the study of
measures for the elimination or reduction of difficulties caused by ice dur-
ing the operation of hydraulic structures, and the study of the structure and
physical properties of ice of various types. Investigations are usually car-
ried out in covered and insulated concrete circulating flumes of rectangular
cross-section and with a sufficiently long, straight working section fitted
with observation windows. Water flowing in the flume is cooled by air (tem-
perature −10 ◦C to −20 ◦C), which is driven by a ventilator into the space
between the water level and the ceiling of the flume. Special tanks placed in
insulated rooms fitted with effective cooling devices for temperatures from
−15 ◦C to −25 ◦C and smaller cooling cells in which the temperature may
be reduced to −30 ◦C or even −60 ◦C are also used.

For debris-flow hazard assessment rheological models are required (see
also Section 8.5.1). To study debris flow in the laboratory special equip-
ment is sometimes used (Kaitna and Rickenmann (2007)) consisting of a
rotating drum that allows surges of materials ranging from viscous slurries
to granular flows to be generated and observed.

6.2 Physical models – types, construction,
materials

The following text provides a brief outline of physical models. For further
details, see, for example, Novak and Čábelka (1981).

6.2.1 Main types of physical models and their placing in
the laboratory

Scale models in hydraulic engineering fall into two main groups: river and
coastal engineering (including estuarine) models, and models of hydraulic
structures. Combinations of the two types and various models of a special
nature (e.g. aerodynamic models) may also be used.

River and estuary models are three-dimensional models of river reaches
with or without hydraulic structures. Geometric similarity is often not
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possible, and thus models are usually built with distorted scales: inclined,
narrowed, widened or, most frequently, as vertically distorted models with
fixed or movable beds. Models with a fixed bed are used mainly for stud-
ies of water levels and flow patterns without investigations of sediment
transport and local scour. Models with movable beds are used if sediment
transport, scour and deposition are involved.

Models of structures (see Chapter 13) are usually geometrically similar
to the prototype and can be three- or two-dimensional (sectional). Three-
dimensional models are used to study complicated flow in order to find
the hydraulically and economically most suitable solution, either for the
whole layout or for individual parts of the structure. Two-dimensional
models are used to investigate flow over spillways, stilling basins, etc.,
where the flow is either completely, or at least approximately, identi-
cal in all parallel (vertical) planes. A combination of three-dimensional
models and two-dimensional sections of the main part of the structure is
often used.

Models of rivers or hydraulic structures are placed either in specially con-
structed temporary tanks or watertight flumes on the laboratory floor or on
a raised platform (of prefabricated slabs placed on steel beams supported by
brick columns), or in permanent hydraulic flumes with perpendicular side
walls (see Section 6.1.1). Temporary flumes have the advantage over perma-
nent ones in that their walls may be suitably adapted to the outlines of the
modelled river reach (reducing to a minimum both the material and space
needed for the model) and provided with rails for instrument carriages. On
the other hand, fixed facilities may provide a more cost-effective arrange-
ment for a number of studies. A special laboratory space may be set aside
for aerodynamic models.

Some ‘semi-permanent’ large flumes are used for special river and flood
studies. For example, the EPSRC flood channel facility at HR Wallingford is
a channel for studying the interaction between flows in a river channel and
the flood plain (Knight and Sellin (1987)). The channel is 56 m long, 10 m
wide, with a discharge capacity of up to 1.1m3/s, and it has been used for
a managed research programme over 15 years.

The following constraints apply to the choice of model type, its scales and
its placing within the hydraulic laboratory:

(a) The limited space available in the laboratory influences the choice of
the horizontal model scale.

(b) The model positioning must allow for its economic construction and
operation, and for the installation of all auxiliary and measuring
devices.

(c) The flow circulation must be resolved; this means checking whether it is
possible to connect the inlet to the model to a sufficiently large labora-
tory distribution main without its operation being unduly influenced by
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other models attached to the same line, and selecting a suitable method
of measuring the model discharge. The outlet from the model to the
laboratory sump should be as short as possible.

(d) Recycling has to be considered for experiments with sediment.
(e) Possible changes in the construction of the model must be borne in

mind in the choice of the model site, method of construction and
material, as well as access for transport of material, measurements,
photographs, etc.

6.2.2 Inlets and outlets of models

The feeding installations of flumes and models in the laboratory normally
include supply pipes (from pumps or overhead tank – see Section 6.1.1)
with regulating valves, inlet tanks, discharge measurement and sometimes
also other special devices (e.g. for sediment supply).

The inlet tank, separated from the model proper by a flow straightener,
screen, damping grille or filter, must be sufficiently large. Various dampers
and baffles or sharp-crested weirs are used to spread the concentrated flow
at the inlet over the entire entry section of the model and/or direct it to
simulate the influence of the upstream reach. Baffles are usually made either
of wood, horsehair matting or perforated sheet metal, bricks or concrete
blocks. Filters usually consist of a wire-mesh frame filled with gravel, a
suitable choice of gravel grading ensuring the necessary velocity and flow
distribution in the inlet section of the model.

The model outlet is used only exceptionally for discharge measurement
(as the flow is usually directed from the outlet by a return channel into the
supply reservoir (sump) of the laboratory with a minimum of head loss).
It is provided with a device for setting or regulating, either manually or
automatically, the downstream water level on the model according to the
stage–discharge relationship. Manual control is suitable for experiments
with a constant discharge, while automatic control systems are used for
experiments with variable discharge or water level. A tailgate of the sim-
ple overflow type, more complicated venetian-blind-type gates, or various
other gates and valves may be used for the downstream control of water
levels.

Models with sediment transport and a sediment feeding device at the inlet
may have a settling tank or sediment separator at the outlet. Settling tanks
are used on mobile-bed models without independent sediment circulation;
the sediment is usually removed from the tank by hand or conveyor belt. In
models with automatic bed-load circulation, the water is separated from the
sediment transported from the model in a separator, with sediment falling
into a small container from which it can be transported hydraulically by an
ejector and returned back to the model inlet, where the excess water is again
separated.
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6.2.3 Materials and model construction

The material used varies according to the type and aim of the model study.
Wood (pinewood, cypress, larch, hardwood and marine plywood) is easily
shaped; its great disadvantages are its non-transparency and its changes in
volume and shape, due to warping and swelling, which are difficult to pre-
vent fully even with good impregnation of a surface coating, especially if the
model is operated for a long time. It is suitable mainly for the production
of some less important parts where minor deformations are acceptable, for
templates, temporary flumes, the shuttering of concrete parts, etc.

Metals, especially steel and non-ferrous metals, are used as sheets, plates,
pipes, angles, bars or casts. Steel is used for the construction of flumes and
for pipes, supports, simple model gates, etc. Non-ferrous metals are suitable
for more sensitive parts of accurate models and measuring devices, model
spillway surfaces, piezometers, etc., where corrosion or a protective coating
would be harmful. Metals are easily formed, machined, cut, welded or sol-
dered, and retain their shape and dimensions. Their non-transparency is a
drawback.

Plastics can be shaped using various techniques and are well suited for
pipes and thin-walled parts of all types of models, templates, models of
structures, etc. Glass-fibre models are formed in a cold state by placing
alternate layers of glass fibres and binding material on a previously prepared
surface. If transparent walls are required, perspex, which can be shaped and
pressed when heated, is used. The advantage common to all plastics is their
malleability and ease of machining, which is similar to that of hardwood.
They have the advantage over wood that they do not significantly change in
volume or shape in water or damp conditions, and they are not subject to
corrosion.

Complicated details of models requiring great accuracy are sometimes
made of wax or paraffin, which are easily workable and do not deform in
water. However, these materials are brittle, non-transparent and sensitive to
temperature. The material is cast in forms and worked after cooling. With
suitable additives that increase its brittleness, such material may be used to
simulate the ice cover on rivers or canals and the movement of ice flows.

Cement-based mortar is very suitable for the construction of models of
some structures and river reaches, as it is firm and, after hardening, changes
neither in volume nor shape. For models of structures, certain parts can
be fabricated separately and then assembled. In fixed-bed models of rivers
and coastal regions a thin layer of mortar placed on a gravel–sand or
brick foundation forms the firm bottom and banks. The mortar mixture
is shaped with the aid of templates made of wood, metal or plastic. Per-
manent flumes can also be made of reinforced concrete. A disadvantage of
concrete and mortar is their relatively great strength so that, after harden-
ing, additional small changes are not easily made. This disadvantage can be
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partly overcome by using masonry saws or a special mixture that has the
properties of cement mortar but hardens slowly.

Fine and slowly setting plaster can replace cement for various parts of
models. It is more brittle and softer than concrete but can be worked after
setting. Its instability in water is a disadvantage, but this can be reduced
by the use of various additives (e.g. saltpetre). Hardened plaster does not
change in volume or shape under damp conditions, but it does absorb water
and should, therefore, be coated with paint.

Glass is suitable for the construction of transparent pipes, side walls of
hydraulic flumes, inspection manholes and windows, small tanks, piezome-
ter tubes, etc. For complicated shapes or easily broken parts it is often
replaced by perspex.

Asphalt (bitumen) is used as a sealing material, mainly in river channels.
Rubber is used as packing between pipe flanges and sections of metal flumes
and models, for glass walls in hydraulic flumes, etc. Putty, hemp, and small
plastic or rubber hose are also suitable for packing joints. For larger areas,
sheets of plastic, varnished cloth or various types of coating are used as a
sealing material.

Sediment in movable-bed models is simulated by sand, gravel, coal, frag-
mented hollow bricks or roof tiles, pumice, granular Bakelite or other
plastics, treated hardwood, sawdust, etc., depending on the size and spe-
cific weight of the sediment required. For scour experiments it is sometimes
useful to reduce the cohesion of the material used by, for example, treat-
ing it with quicklime. For studies of scour in rocks with steep sides in the
plunge pools, low-cement-content mixtures of kaolin clay, chalk and sand
may be used.

The construction of models is based on detailed drawings done to a scale
chosen according to the complexity of the various parts and requirements
for accuracy. For river models with a fixed bed, not only the general lay-
out but also the channel cross-sections are drawn, the latter often in the
actual scale of the model; templates cut according to these drawings may be
divided into several parts. Sometimes it may be advantageous to use metal
wire or plastic bars bent into the required shape on movable pegs instead of
templates.

For river models with a movable bed a fixed bottom is constructed
sufficiently below the bed and the movable part is modelled on it using
removable templates; sometimes it is more suitable to model the bed using
‘negative cross-sections’ (i.e. inverted templates). Conventional surveying
techniques are used for the setting out of the model and/or its temporary
flume. The various parts and sections of the model must be easily posi-
tioned and correctly aligned; adjusting screws with metal plates as supports
may be used. The construction of model structures in the flume consists of
mounting its previously manufactured parts or templates and completing
the masonry and modelling work. Hollow objects and those made of light
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materials must either be anchored to the bottom of the flume or sufficiently
loaded to prevent floating when the flume has been filled.

To ensure similarity, the roughness of the model surfaces must be adjusted
(smoothed or roughened) by painting (or by coating with glue) and, if
required, sprinkling with graded sand or gravel of suitable size. Paving
can be simulated by forming the concrete with a roller. Vegetation in the
flood plains of river models is usually modelled later as part of the model-
validating tests, using wood, plastics, wire mesh, expanded metal, horsehair
matting, stones, etc.

6.3 Laboratory measuring methods and
instrumentation

6.3.1 General

The instrumentation used is based mainly on mechanical, electrical or opti-
cal devices and methods; thermal and acoustic principles and methods
are also important in measuring flow phenomena. A qualitative change
from mainly mechanical instrumentation is due to the widespread use
of electronics and modern measuring methods and techniques. Radio-
isotopes, transistors, microchip technology, video, lasers, etc., have accel-
erated the development of new and more accurate measuring devices, and
the use of computers, microprocessors and other data-processing techniques
has become part of the operation of almost any hydraulic laboratory.
Frequently, large models are controlled from special control rooms to
which the readings from the model instrumentation are also transmitted
for processing. When using a laser–Doppler anemometer, radiation tech-
niques, etc., safety regulations have to be borne in mind during the design
of experiments.

According to its purpose, hydraulic laboratory instrumentation may be
roughly divided into devices for the measurement of water levels (steady or
fluctuating) and movable bed levels (both below water and after termination
of the experiment on the dry model), discharge, velocity (and its fluctua-
tions), hydrodynamic pressures (and their fluctuation) and flow of mixtures
(sediment transport and suspensions carried by the liquid, air entrained by
the flow, etc.). Some of this instrumentation is commercially available, but
often it is developed in-house, particularly in large laboratories, with plenty
of scope for innovation.

Despite rapidly developing instrumentation techniques it is not necessary
to use sophisticated measuring devices where a simple instrument will do.
In the selection of instrumentation, the required accuracy is decisive, but
cost and ease of operation must also be borne in mind. Thus, the choice of
instrumentation is an inseparable part of the research methodology and the
formulation of project objectives.
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The following paragraphs give only a very brief summary of some
of the more basic and frequently used methods and instrumenta-
tion. For a comprehensive text on laboratory measurement in fluid
mechanics, including the treatment of measurement uncertainty and sig-
nal conditioning, discretization and analysis, see Goldstein (1996) and
Tavoularis (2005). For flow measurement techniques in the field, see
Herschy (1999).

6.3.2 Measurement of water levels and bed formation

6.3.2.1 Measurement of steady water levels

The simplest and most commonly used instrument for the measurement
of steady water levels is a point gauge; the required information is read
off the scale with an accuracy up to 0.1 mm (to facilitate its reading the
gauge may also have a battery-operated liquid crystal digital display). For
hydraulic flumes, gauges may be fitted on carriages, with vertical and trans-
verse motion of the gauge. Indication of the correctly set gauge position
is by a needle point, which may be straight (lowering of the gauge to the
water level to be measured) or a hook with the point directed upwards
(gauge approaching the water level from below). Contact of the point with
the water level may be observed by eye or indicated electronically. Some-
times the gauge is fitted with an ‘accuracy fork’ (i.e. two points set apart
at the maximum permitted error in the position of the measured water
level). If both points are fitted with an electrical indicator the gauge must
be set (or the water level regulated) so that always only one indicator
lights up.

Water levels in river models can be read in glass or perspex containers
connected to the model bed by flexible tubing.

When reading the water level in a reservoir, where an accuracy of about
2 mm will suffice, ordinary water gauges can be used.

6.3.2.2 Measurement of fluctuating water levels

Slowly fluctuating water levels may be measured in the same way as
steady ones; however, the gauge would have to be constantly observed,
and thus registration devices are most frequently used. Commercially pro-
duced, mechanically recording float gauges are usually unsuitable for use
on models, and laboratories produce their own, often with a simple pen
recorder attached. On large models, float gauges with transmitters and data
registration from several dispersed points on a single recorder are used. HR
Wallingford has developed an electronic float gauge based on measuring the
distance between the head of a transducer and the magnetic field produced
by a magnet mounted inside the float.
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Slowly fluctuating water levels may also be measured using a gauge
with a vibrating tip intermittently in contact with the water surface and
automatically adjusted by a servo-mechanism (e.g. the pointe vibrante gauge
developed by Neypric in Grenoble). HR Wallingford has developed a water-
level transmitter, which has a sharp-pointed vertical probe driven by a
servo-system that maintains the probe tip at a depth of about 0.1 mm
below the surface. The impedance between the probe and a remote elec-
trode forms one arm of a bridge network, which is balanced when the probe
tip is at the correct depth. Any change in water level varies the immer-
sion depth of the probe, causing an error signal to be produced from the
bridge. The amplified signal applied to a servo-motor drives the probe to
follow the water surface. The slider of a potentiometer coupled to the
probe picks off a voltage proportional to the water level, which can be
recorded in digital or analogue form. The accuracy of measurement is about
0.2–0.5 mm.

To measure rapidly fluctuating water levels, instruments with capaci-
tance gauges are often used, where the length of the submerged part of the
gauge is the measure of the instantaneous position of the water level. The
gauge diameter should be less than 1 mm.

Twin-wire stainless-steel probes may also be used; the electrical conduc-
tivity between the wires is linearly related to their depth of submersion,
and thus to the wave height. The accuracy of the instrument is about
0.5 mm. Another possibility is a resistance gauge, with either low (a thin
wire) or high (about 50,000 ohm) resistance (non-conducting rod with a
thin metal band).

For the measurement of directional wave characteristics in wave basins,
Delft Hydraulics developed a special directional wave gauge; its princi-
ple is based on cross-correlation analysis of three mutually orthogonal
components at one location. The gauge combines the two horizontal veloc-
ity components and the free-surface displacement in order to determine
the directional-spreading distribution function. The output of the process-
ing program consists of wave heights, the energy-density spectrum and a
directional-spreading parameter as a function of frequency.

The position of the water level may also be ascertained by measuring
the hydrostatic pressure (see Section 6.3.5). It may also be ascertained
photographically by means of a camera placed either at an angle above
the model or at the water level; photographs are taken through the glass
wall of the model or flume on which a scale or a coordinate net is
drawn. Strongly fluctuating water levels are best recorded using high-
speed cameras. Stereophotogrammetry may be used to record the entire
water level surface with local changes (near piers, etc.). The ‘starry sky’
procedure records wave orbits in models of harbours; it consists of pho-
tographing, with an exposure of one wave period, the reflection by the
water surface of numerous points of light on the ceiling above the model.
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The trace of the light reflection provides a good measure of the horizontal
water-surface movements, which affect the movement of ships about their
moorings.

6.3.2.3 Measurement of bed levels

After draining the model, the bed level may be measured using a nor-
mal point gauge. In three-dimensional models the point gauge is used to
find contour lines on the movable bed; simultaneously, a white thread is
placed on the contour line and the whole is then recorded photographically.
Stereophotogrammetric methods may be used to measure the bed formation
on larger models.

The bed levels may also be measured using profilographs, which are
obtained by means of a wheel moving over the bed, fixed to a well-balanced
arm of a recorder that makes a pantograph trace of the measured section to
the required scale.

Measuring the bed level under flowing water during the experiment
is relatively complicated because observation of the instruments is hin-
dered by light diffraction. In addition, the approach of the tip of a
gauge to the movable bed may disturb the scour formation. In simple
experiments, thin rods fixed to a normal gauge can be used. For more
accurate and sophisticated measurements, an optical instrument without
bed contact is best. It consists of a fork fitted to a normal gauge, with
both ends carrying a small light source and bent towards each other to
form a right angle. The gauge is shifted vertically until the reflection of
the light emitted by both sources, and observed through a tube close
beneath the water surface, merges into one point on the movable bed.
The device is then at a certain constant distance from that part of the bed
surface.

In bed-profile transmitters (bed profilers) a beam of infrared radiation is
reflected by the bed; alternatively, where the bed material is of very low
reflectivity, a conductivity probe may be used. Both instruments maintain a
constant distance (about 15 mm) above the bed.

An example of a two-dimensional profiling system that can be used
with a variety of bed materials, both above and below water, is a pro-
filer developed by HR Wallingford. The probe consists of a steel tube
with a rack engaging the gear wheel of a servo-motor in the instrument
carriage, which drives the probe up and down; at the bottom of the
probe is a very lightweight ‘finger’ sensor, the position of which is mea-
sured optically. The whole system is computer controlled, with two screen
displays – one to set the required parameter for the measurement and the
second to display the position of the probe and the profile measurements.
The system works with a resolution of ±1mm horizontally and ±0.5mm
vertically.
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6.3.3 Measurement and regulation of discharge

6.3.3.1 Measurement of discharge

The most accurate method of determining the discharge is to measure the
liquid weight or volume delivered over a certain time into specially rated
tanks, but this method is rarely used during model investigations.

Various weirs and notches built into fixed or mobile measuring tanks
are the most common laboratory discharge measurement devices. Most fre-
quently, a right-angled Thomson triangular (V-notch) weir is used; for larger
discharges a rectangular or compound weir is more suitable, and for very
small discharges a very narrow rectangular (slit) weir, a triangular weir with
a small angle, or a proportional weir (with a linear relationship between the
discharge and the overfall head) is used. The head above the weir crest is
measured using a point gauge, usually situated in a small well connected to
the measuring tank. The required tank sizes, the upstream position of the
gauge for measuring the head above the crest, and details of the weir plates
with appropriate discharge coefficients are given in standard specifications.
If these are not followed, the tank (with inlet and baffles, etc.) must be
rated before use and the rating checked from time to time. Measuring weirs
need a spacious tank and cause loss of head, but they are simple, reliable
and accurate.

Discharge can be measured by using devices based on the principle of
contracting the flow and measuring the resulting pressure differences with
a differential manometer. The most common instrumentation of this type
can be a venturimeter, orifices or nozzles fitted into the pipe supplying the
model.

Venturimeters cause relatively low head loss, but show low sensitivity for
relatively small discharges (discharge is directly proportional to the square
root of the pressure difference) and must be placed in a long straight pipe
(if not rated at the place of use). According to specifications, for an ori-
fice in a pipe of diameter D a straight length of at least 20D upstream
and 5D downstream is required. The disadvantage of unequal sensitivity
for greater ranges of discharges can be eliminated by installing batteries of
parallel venturimeters of various diameters.

Nozzles and orifices are shorter than venturimeters but cause greater pres-
sure losses. A shortened venturimeter with the contraction in the shape of a
standard nozzle and the downstream expansion to a smaller pipe diameter
than the original one combines the advantages of both. In all these devices
great attention must be paid to pressure tappings; usually a number of open-
ings (or a narrow slit) are connected to an annulus to which the manometer
is fitted.

The venturi-flume or the Parshall flume (where a hydraulic jump is cre-
ated by contraction) use the venturimeter principle for open-channel flow.
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Bend discharge meters utilize the differences in hydrodynamic pres-
sures on the concave and convex walls of (usually 90◦) pipe bends. These
meters (as well as venturimeters, nozzles and orifices, if placing and con-
struction does not agree with specifications) must always be rated, and
whenever possible the rating should be done under the actual operating
conditions.

Watermeters are used only occasionally in a hydraulic laboratory. Small
discharges are sometimes measured by means of rotating discharge meters
(rotameters with a rotating float in a divergent glass pipe).

Induction (electromagnetic) discharge meters are based on the principle
that, during the flow of conductive liquids between the poles of a magnet,
an electromotive force arises that is directly proportional to the vector
product of the intensity of the magnetic field and the velocity of movement
of the conductor; accuracies of a few per cent are achievable by commercial
instruments but in-situ calibration is desirable.

Under laboratory conditions, discharge may also be determined using
ultrasonic flow meters, utilizing high-frequency pressure waves in Doppler
and time-of-flight meters in pipes, and by the dilution method, especially
in open-channel flow. In the latter, for a certain time a known and con-
stant quantity of electrolyte (dye, isotopes) is added to measured flow in
one cross-section, and the conductivity (colour, radiation intensity) recorded
in another cross-section sufficiently distant from the dosing section for the
measured and dosed liquid to mix completely. The discharge is then assessed
on the basis of the mixing law. Alternatively, the salt-velocity method may
be applied, during which the electrolyte is added either once in a slug or
periodically. Dilution methods are used only exceptionally in the laboratory,
and mostly only when other aims are pursued as well.

For methods for measuring velocities, from which discharge may be
established, see Section 6.3.4.

6.3.3.2 Regulation of discharge

When modelling rivers and estuaries it may be necessary to change the
inflow to the model with time. In this case, metal templates or cams simu-
lating, for example, a modelled flood wave and moving at a constant speed
given by the time scale can be used. The cams control the movement of a
waste weir in the inlet measuring tank, thus changing the head on the fixed
measuring weir.

Another method of discharge regulation involves maintaining a constant
water level in the measuring tank (which is ensured by fixed weirs spilling
to waste) by regulating the inflow to the model by the movement of the
actual discharge weir (usually of the proportional type), which is controlled
in the same way as above. The motor driving the inlet weir can also be
remotely controlled electronically (e.g. simply by signals from a punched
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tape with a light source and a photo cell). The movement of the template
or signals from an electronic control may also be used to control the move-
ment of a valve, the characteristics of which are ascertained by independent
measurements.

Software exists for variable-discharge pumped systems and control of hot
water and/or saline injection (e.g. when simulating cooling water outfalls).
Servo-control devices with feedback from a sensor to the control device may
also be used, as appropriate.

6.3.4 Measurement of flow velocity

A simple method of measuring local velocities is by determining the velocity
from the velocity head with the aid of various types of Pitot tubes. The mag-
nitude of the velocity head h (for small velocities measured on an inclined
or differential manometer) is found from the pressure difference at two or
more points on the measuring device submerged in the flow. The most com-
mon type of device is the standard Prandtl tube, a Pitot tube shaped so that
the coefficient in the equation v = c

√
(2gh) is c = 1. The Prandtl tube mea-

sures velocity correctly only when used against the direction of flow with
a deviation of up to 15◦. Spherical and cylindrical probes and gauges con-
sisting of four or five Pitot tubes turned in various directions and suitable
for measuring the velocity vector are also used. Pitot tubes, as well as other
probes if differing from thoroughly tested types, must be rated before use
and used only within the rated range. Probes with specially tested attach-
ments are required for the measurement of high velocities (Schwalt and
Hager (1993)).

A widely used velocity-measuring device working on a mechanical prin-
ciple is the current meter. For model investigations it is important that
its propeller should be as small and as sensitive as possible, two oppos-
ing demands that require careful construction and a contactless impulse
transmitter. Miniature current meters of 4–12 mm diameter for use in the
velocity range 0.03–3 m/s have been developed. For most laboratory types
the method of registration permitting the measurement of both the mean
and ‘instantaneous’ local velocities is based on the principle that, during
the propeller rotation, the distance between a fixed electrode and the rotat-
ing propeller blade (or the cogs of a collector) changes, causing changes in
electrical properties; the resulting impulses are recorded on an analogue or
digital counter and/or plotter.

A small spring-loaded disc deflected by the pressure produced by the flow-
ing liquid (i.e. a miniature vane flow meter) may also be used for velocity
measurement. Accurate rating of the device before use is essential.

A general picture of the flow, the direction and magnitude of the veloci-
ties, and the turbulence characteristics may be gained by flow-visualization
techniques.
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Simple photographic methods are often quite cost-effective. The direction
of flow is easily determined by means of cotton threads on a thin wire or
by introducing grains of pumice, aluminium powder, etc., into the flow; in
aerodynamic models burning sawdust or sparks are used as tracers of flow
patterns. For two-dimensional flow it is also possible to judge the velocity at
various points from the length of the recorded trace and the exposure time.
In models with a free water surface, small floats carrying a light source may
be used; the model is placed in a darkened room and the paths of the floats
are recorded on the photographic plate by interrupted exposure (the expo-
sure time and the intervals between exposures usually being 1 second). After
the experiment the model is lit up and photographed on the same plate.

In the rather laborious cinematographic method, the flow pattern is usu-
ally made visible with the aid of an emulsion of vaseline oil dissolved in
chlorobenzol and dyed with white oil colour. The mixture forms spherical
particles of diameter of about 1–2 mm. From the difference of the coor-
dinates of individual spheres on successive frames, recorded using a high-
speed camera, the instantaneous velocity and other required parameters
may be calculated. If the flow is recorded in two directions simultaneously
(e.g. with the aid of a mirror inclined at 45◦) then all velocity components
may be recorded. The film record is usually assessed with using the corre-
sponding reduction coefficients of length and depth and from a time scale
determined from the film record of a light source connected to an alternating
current of known frequency. High-speed videos, where the timing between
frames is known, and digital image processing are also used.

Associated with flow-visualization techniques is the rapidly developing
technique of particle image velocimetry (PIV), which uses a laser beam con-
verted to a planar sheet of light and a camera producing an image of part
of the illuminated flow. Three-dimensional flow vectors can be measured by
recording particle images on two cameras.

A widespread method of measuring flow velocity and turbulence parame-
ters is the hot-wire and hot-film anemometry (see e.g. Resch (1970)). Probes
with an electrically heated thin wire or, preferably (for use in water), a
heated metal film supported on a ceramic subplate are used on the principle
that the rate of heat loss of the sensor heated to a higher temperature than
that of the ambient fluid is proportional to the velocity of the medium at the
point of measurement. This cooling results in a change in the resistance of
the heated element, which becomes an indirect measure of the velocity. In
a constant-current anemometer the change in resistance causes a change
in voltage, which is measured and recorded. In a constant-temperature
anemometer a feedback circuit keeps the temperature constant and the
fluctuating current gives rise to fluctuating voltage, which is again the out-
put measure. The instrument may be provided with a linearizer, which
modifies the amplified output from the anemometer so that it is propor-
tional to velocity. The linearized voltage is then recorded on an analogue
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recorder or sampled at set intervals and stored in digital form on tape or
diskettes.

Thermistors can be used to measure very small velocities (several mil-
limetres per second). Their disadvantages compared with a hot-wire probe
are the difficult compensation of temperature influences and the large time
constant.

While hot-wire and film anemometry require clean water free of
suspended particles, the opposite is the case for instrumentation using a
laser beam or sound for measuring local velocity and turbulence. One
of the most widely used modern research tools is the laser–Doppler
anemometer (LDA) (see e.g. Durst et al. (1976)), which is based on the fact
that the crossing of two coherent light beams causes an interference pattern,
which is displaced by the movement of scattered particles suspended in the
fluid flow. The great advantage of LDA is that it is non-intrusive, i.e. there is
no interference with the flow field (in fixed systems only). The anemometer
consists of a light source (laser), a beam splitter and focusing lens (transmis-
sion optics), light-collecting optics, a photo-detector and a signal processor.
A frequency shift of the light in one of the laser beams allows the mea-
surement of both positive and negative values of the velocity component.
The basic version measures velocities and turbulence in one direction only;
more advanced instrumentation is available for simultaneous measurement
in two and three directions. The LDA can be used to study the flow in
glass-walled flumes, with all the instrumentation outside the flume, or on
three-dimensional models, where an optic probe is placed in the flow (in
this case the measurement point is typically 80–100 mm from the probe).
The flow will probably need to be seeded, especially for a fibre-optic link
system, which operates in a back-scatter mode, where the signals are weaker
than for forward scatter, which can be used in a fixed LDA system. A cer-
tain amount of experimentation is needed to establish the correct seeding
with neutrally buoyant particles; titanium dioxide particles approximately
1–2μm in diameter are commonly used. A single-component system can
measure turbulence intensity, a two-component system can measure tur-
bulence intensities in two directions and one Reynolds stress term, and a
three-component system measures all the Reynolds stress components (see
Section 4.3.3).

The acoustic Doppler velocimeter (ADV) (e.g. Garcia et al. (2005), Muste
et al. (2007), Nortek (1996)) uses acoustic sensing techniques to measure,
with little disturbance, three velocity components of seeding particles in
the flow as they pass through a remote sampling volume. The instrument
has three main components: the measuring probe, the conditioning probe
and the processing module. The acoustic sensor has three receiving trans-
ducers mounted on short arms around the transmitting transducer at 120◦

azimuth intervals and intercepting the transmit beam at 50–100 mm below
the sensor. The cylindrical measuring volume is 3–9 mm long and has a
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diameter of about 6 mm; the ADV is able to record velocities up to 2.5 m/s
at a sampling rate of about 25 Hz. The fairly robust and relatively inexpen-
sive ADV can be used with different orientations of the measuring head to
sample the flow up to 5 mm from a solid boundary. The accuracy quoted
in the literature is 0.25% ±2.5mm/s. The calibration (and operation) of
the probe should be checked at regular intervals using the built-in checking
system.

The electromagnetic flow meter (see Section 6.3.3) has been developed as
a velocity meter for use both in the field and the laboratory. Two orthogonal
pairs of electrodes in a single sensor give two-axis velocity measurements.
In the laboratory version, discus and/or spherical sensors are available in
sizes of 32 and 20 mm. The system consists of a sensor and electronics that
drive the coil detecting signals and convert them into an analogue or digital
output. The manufacturers quote an accuracy for the mean velocities of
1% ±5mm/s and lower accuracy for instantaneous readings.

6.3.5 Measurement of hydrodynamic pressure

Hydrodynamic pressure is most frequently measured by means of simple
glass or perspex tube manometers connected to a piezometric opening by
rubber or plastic tubing. The manometers are usually placed next to each
other on a panel with a grid showing the position of the piezometers so
that the value of the pressure head on the model can be read directly. The
accuracy of measurement (reading of meniscus) is increased by drawing a
line on the panel behind the axis of the glass tube manometer, which should
be at least 10–15 mm diameter to reduce the influence of surface tension
(for a diameter of 10 mm the capillary elevation of the water in the tube is
still about 3 mm) and/or by using inclined manometers. The details of the
actual piezometer opening are very important: its axis must be perpendicu-
lar to the surface where the pressure is being measured, the orifice diameter
must be relatively small (1–1.5 mm), its edge must not be too rounded and
there must be no projection into the flow. The surface around the opening
should be smooth up to a distance of at least 50 times the diameter of the
piezometer.

Apart from the most frequent simple tube manometers, various fluid
manometers, micromanometers and differential manometers with water,
mercury, alcohol, etc., are used.

Membrane or other mechanical manometers, or manographs, are more
suited for field work. Under laboratory conditions they are used only
for measuring relatively high pressures, where the fluid manometer is less
suitable.

Pressure transducers for measuring pressure fluctuations are important
for investigations involving negative pressures, especially close to cavitation
phenomena, and for the study of pressure fluctuations caused by strongly
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turbulent flow acting on hydraulic structures; pressure transducers may
also be used to measure water depths. Most transducers are based on
the action of pressure on an elastic membrane, which must be without
(or with only a small) plastic deformation or hysteresis. Deformation of
the membrane is most frequently transformed into changes in electrical
resistance, capacitance or induction, which are measured (e.g. on an oscillo-
graph). Tensometers can also be used as pressure transducers. All pressure
transducers may also be used for measuring water depth.

6.3.6 Measurement of two-phase flow

The measurement of the hydraulic characteristics of mixtures of solids and
liquids is important in particular in the study of the hydraulic transport
of solids through pipelines and for the operation of such systems. The
discharge of the mixture is measured by one of the methods used for the car-
rying fluid, most frequently by volumetric or weight measurement. Orifices,
nozzles or venturimeters are also used. In homogeneous suspensions of fine
particles, greater throttling may be permitted in the measuring section than
for thick mixtures or mixtures with coarser particles. Bend meters have been
found suitable, as have electromagnetic meters, which do not influence the
flow of the mixture.

The mean velocity of flow is ascertained by measuring the discharge, or
by salt-velocity and chemical-dilution methods. The velocity of particles in
the flow of a mixture may be measured by the cinematographic method or
with the aid of radioisotopes.

The important measurement of the mixture concentration is carried out
by volumetric or weight measurement (at the delivery end of the pipe), either
as continuous measurement, or as local values of the concentration by moni-
toring and recording the passage of waves or radiation through the mixture.
The distribution of the concentration at various points in the flow can be
determined by a special probe.

During work on river models with a movable bed, various types of
sediment-dosing equipment are used (conveyors, screws or vibrators, tak-
ing either dry or wet material from a container with an adjustable opening).
The grain distribution, geometric characteristics and specific weight of bed
load and suspended sediment are usually determined before as well as after
the experiment.

When working with a mixture of air and liquid two problems are of
paramount interest, i.e. the quantity of air passing through the measuring
cross-section and the size of the air bubbles. The quantity of air drawn into
the water flow (e.g. by an aeration pipe) can easily be measured by stan-
dard means (e.g. by an orifice placed in the aeration vent). To measure
the quantity of air entrained by the liquid in a conduit (air concentra-
tion), radiation may be used in the same way as for mixtures of solids
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and liquid. The measurement is based on the fact that gamma radiation
is absorbed in the same way whether it passes through a mixture of two
fluids (e.g. water–air) or two independent layers of the same fluid. A radia-
tion source is attached to one side of the conduit and a Geiger counter fixed
to the other. If this meter is rated by measuring the absorption of various
layers of the liquid at rest (or flowing without aeration), the quantity of
air entrained in the form of bubbles by the flow of liquid can be measured
directly.

The quantity of air contained in a certain vertical of aerated water flow
with a free water surface may be ascertained by measuring the hydrostatic
pressure acting on the channel bed and comparing the specific weight of
the mixture with the specific weight of liquid alone, or, for a known dis-
charge of liquid without air, by measuring the discharge of the mixture
(which can be determined from the depth of the aerated flow and the
mean velocity found by integration from point measurements), or by special
probes.

The size of the air bubbles and their velocity and direction are best
measured by cinematographic or photographic methods.

6.4 Mathematical models – tools

Several software packages are available that permit the procedures men-
tioned in Chapters 2 and 3, and indeed many others, to be performed
directly without the need for programming. All that is necessary is
to call up the appropriate subroutine and input the necessary parame-
ters; the output will be the required result. For example, the software
will produce a spline function approximation from a set of data pairs
(x1, y1), (x2, y2), . . . , (xn, yn), while a numerical integration procedure will
show that

∫ 3

1 e−x
√

1 + 3x2 ln (1 + 2x)dx = 1.491938830 (i.e. to nine decimal
places). In addition, as many zeros as required can be found for functions
like f (x) = tan hx − 2sinx. Matrices with numerical entries can be manip-
ulated to form sums and products, and when the matrices are n × n their
determinants, eigenvalues and eigenvectors can be found, while large sys-
tems of linear algebraic equations can be solved. The Runge–Kutta (rk4)
procedure and the Runge–Kutta–Fehlberg (rkf45) procedure will automat-
ically integrate initial-value problems over an interval a ≤ x ≤ b using a
specified step length, after which the results can either be printed out or plot-
ted. Furthermore, in the rkf45 procedure, the step length will be adjusted
to maintain a prescribed accuracy throughout the interval of integration.
These procedures can also be programmed to perform composite opera-
tions, such as using the output of one procedure as the input to a different
one (e.g. typically, the output from an rkf45 procedure over an interval
a ≤ x ≤ b can be used to find its Fourier series representation over the same
interval).
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However, in addition to purely numerical software of the type just
described, which will perform standard procedures on numerical data, there
is another type of software called computer algebra software, which per-
forms symbolic operations. Here, a ‘symbolic operation’ means that if, for
example, an expression like x/(1 + x3) is given as an input, the software
is capable of simplifying it into its partial fraction form and giving as its
output the result

x
(1 + x3)

= x + 1
3(x2 + x + 1)

− x
3(x + 1)

, (6.1)

where the variable x has been treated as a symbol, and not as a number.
Also, when given a function f (x) = x + 1/x, the software can expand it
as a series about a prescribed point, e.g. x = 4 to a prescribed number of
terms, so if an expansion up to the term in (x − 4)3 is required, the output
will be

x+ 1
x

= 17
4

+ 15
36

(x−4)+ 1
64

(x − 4)2 − 1
256

(x − 4)3 +O
(
(x − 4)4) (6.2)

where the last term indicates the order of the first term to be omitted from
the expansion.

The term ‘computer algebra software’ is slightly misleading, because
not only does such software perform symbolic algebraic operations like
the ones just described, but it also manipulates matrices (treating their
elements as symbols), solves systems of linear algebraic equations and
inequalities, as well as performing a very wide range of other symbolic
operations (e.g. integration and finding symbolic solutions of differential
equations). By way of example, when such software is given the differential
equation

y′′ + 2y′ + y = x sin x, (6.3)

it will produce the general solution

y(x) = C1e−x + C2xe−x − 1
2

x cos x + 1
2

cos x + 1
2

sin x, (6.4)

where C1 and C2 are arbitrary constants, and if it is also given the initial
conditions y(0) = 0 and y′(0) = 0, it will produce the particular solution

y(x) =−1
2

e−x − 1
2

xe−x − 1
2

x cos x + 1
2

cos x + 1
2

sin x. (6.5)
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As an example of matrix multiplication and the expansion of determinants,
when symbolic algebra software is given the matrices

A =
[

a b
c d

]
and x =

[
x1

x2

]
,

it can produce algebraic results like

Ax=
[

ax1 + bx2

cx1 + dx2

]
, xTAx=ax2

1 + (b+c)x1x2 +dx2
2, det[A] =ad−bc

and

det [A − λI] = aλ2 − (a + d)λ+ ad − bc.

where the elements of A, x and the parameter λ are all treated as symbols,
and not as numbers.

Symbolic algebra software also allows numerical values to be assigned to
symbols, and so it can produce numerical results that can be plotted using
one of several different coordinate systems, such as Cartesian or polar coor-
dinates. The output from such systems can also be combined with tables,
text and numerical plots to produce documents in which the mathematics is
displayed in standard printed form.

Of the three types of software mentioned in Chapters 2 and 3, only
MAPLE® (a registered trademark of Waterloo Maple Inc.) is an example
of purely symbolic algebra software. Its extremely large set of special func-
tions and procedures, coupled with its ease of use, and its ability to be
programmed and to allow symbols to be assigned numerical values, makes
it extremely versatile and valuable for both symbolic and purely numerical
work. MAPLE® has a good graphical output, as can be seen in Figure 3.14,
which was produced by MAPLE®, and the software can be used for mod-
elling and simulation. Furthermore, because text and diagrams can be com-
bined in its output, along with mathematical expressions in standard form,
it is capable of producing high-quality printed documents. The instruction
manuals provided by MAPLE® are useful but not ideal when learning to
take advantage of its full potential. Straightforward, and more detailed and
very helpful, accounts of the capabilities and use of MAPLE® can be found
in the books by Cornil and Testud (2001), Garvan (2002) and Heck (2003).

Initially, the other software mentioned in Chapters 2 and 3, namely
MathCAD® and MATLAB®, was designed for accurate and flexible numer-
ical computation with high-quality graphics and text output. They offer a
wide range of standard numerical procedures that can be combined to form
complex composite procedures. However, as the importance and power of
computer algebra software have developed, the last decade has seen each of



222 Tools and procedures

these software packages enhanced by having the capability of adding to
them a large number of computer algebra procedures.

MathCAD® (a registered trademark of MathSoft Inc.) is designed spe-
cially for engineering use; it has many specialist add-on software procedures
for use in different branches of engineering, and while its computer algebra
capabilities are not as extensive as those of MAPLE®, they are more than
adequate for most engineering purposes. MathCAD® allows tables to be
printed out, and mathematics to be printed in standard form and combined
with high-quality graphics and text to produce good-quality documents.
The instruction manuals provided for MathCAD® are extensive and explain
its many features in detail, while also providing examples of their use.

MATLAB® is somewhat different, because its structure is such that it per-
forms its numerical computations by arranging results in a special way that
makes use of matrices. MATLAB® has been designed to give highly accu-
rate numerical results, and it has various supplementary software packages,
called Toolboxes, one of which is the Symbolic Algebra Toolbox that gives
it symbolic algebra capabilities, while another is the Partial Differential
Equation Toolbox that performs very flexible and highly accurate finite-
element calculations. Its graphical output is excellent, and the fact that
it can be combined with text and equations in standard form enables it
to produce documents of a very high quality. The instruction manuals
provided for MATLAB® are valuable and extensive, as they list all of its
capabilities, but they are not ideal when learning to use MATLAB®. Use-
ful books explaining how to use MATLAB®, together with applications,
include those by Biran and Breiner (1999), Knight (2000) and Part-Enander
and Sjoberg (1999).

There are other powerful symbolic algebra packages, such as MATH-
EMATICA® (a registered trademark of Wolfram Research Inc.), although
only MAPLE® and MATLAB® software has been used in connection with
Chapters 2 and 3. Chapters 7–13 deal with various computer packages
appropriate for the specified applications.

6.5 Procedures during work with models

The following remarks refer mainly to applied research when models are
used to solve design problems of engineering works.

Preparatory work for hydraulic modelling consists of two parts, theo-
retical and practical. In the theoretical preparation, the type of model to
be used (physical, mathematical or hybrid), model scales and the degree
of schematization are determined, and the content, extent and procedure
of the research prepared. For physical models the practical preparation
includes the choice of materials, the location, design, construction, link-
up of the models with the water circuit of the hydraulic laboratory and
instrumentation to be used.
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The main aspects of the design of any physical model are the fulfilment
of the appropriate criteria of similarity (see Chapter 5), while observing
the limiting conditions, and taking into account the required accuracy of
the results and the economy of the investigation. The model should be as
large as possible for sufficient accuracy of results, but economy requires the
smallest possible model that still satisfies the limiting similarity conditions
and accuracy of results scaled up to the prototype. Experience gained from
modelling similar problems is of great importance.

For mathematical (computational) models a survey of available computa-
tional models and software and the choice of the most appropriate one for
the given problem – or the need to develop a new model – has to be made.

Field data, including topography, geology, hydrology, morphology and
details of vegetation, must be carefully studied prior to any model inves-
tigations. The proposed operation of hydraulic structures during various
construction stages as well as after completion should be noted.

Model studies should be conducted well ahead of construction, as their
results must reach the client in time to be incorporated in the design. Mod-
els of construction stages should not be dismantled too soon, as they can
contribute substantially to the solution of hydraulic problems encountered
during the course of construction in the field.

The relationship between investigator and client should be one of partner-
ship, particularly at the conceptual design stage, and close contact should
be maintained throughout the investigation.

After agreeing the terms of reference, the researcher proposes the method
of investigations, taking into account the existing data (field information),
the availability of laboratory space and equipment, and/or of the neces-
sary software, and the cost of the study. The consideration of the required
accuracy of the results of investigation is an important element of the
decision-making process at this stage.

The calibration and validation of any model is a vital part of the work;
e.g. before ‘running’ river-engineering models their (adjustable) roughness
and morphological features have to be calibrated.

In model investigations of engineering works, several alternative solutions
suggested by the designing engineer and/or by the researcher are stud-
ied. Flow patterns, velocities, discharges, scour and other parameters are
observed and measured. After analysis of the preliminary results the most
suitable alternative is chosen and tested in detail. The results are processed
qualitatively, graphically and/or numerically, but rarely analytically, because
they are usually valid only for the investigated case and cannot be general-
ized. This does not mean, however, that a generally valid result could not
be obtained from a series of similar experimental studies (e.g. for scour
downstream of stilling basins).

After completing the experimental work and processing the results, a final
report is prepared. This should include the original aims of the study, basic
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technical data, the results of a literature survey, the method of research
used, a description of the experimental installations, procedure and results,
as well as the scientific, technical and economical contribution of the con-
ducted study. The final report of the investigation of a proposed hydraulic
structure must contain not only the recommendations for a more effective
design, as documented by graphs, photographs and tables, but also an anal-
ysis of the possible application of the obtained results to similar cases and
the extent of their validity. In well-founded cases, and where technically pos-
sible, the final report should also recommend follow-up field investigations
and a check of the agreement between the prototype and the model; for this
it is advisable to propose the necessary measuring devices to be installed in
the field.
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Chapter 7

Modell ing of open-channel
systems

7.1 Introduction

The purpose of the present chapter is to introduce the basic concepts and
methods used in fixed boundary, open-channel system modelling.

In order to understand fully the developments in the present chapter, a
number of basic notions regarding the classification and solution of par-
tial differential equations (PDEs) should be mastered by the reader. It is
strongly advised to study Chapter 2, more specifically Section 2.2 on the
classification of PDEs, Sections 2.5 and 2.7 that deal with the initial- and
boundary-conditions requirement, as well as Section 2.8 for an understand-
ing of the method of characteristics. Reading Sections 2.10 and 2.12, where
the shallow-water equations are covered in detail, also provides useful
background reading.

The mathematical developments in this chapter make extensive use of
linear algebra, a number of the basic aspects of which are recalled in the
Appendix to Chapter 2.

Moreover, it is assumed that the reader is aware of the developments
presented in Chapter 4; Sections 4.2–4.4 are necessary background read-
ing. Further general reading in hydraulics and computational hydraulics
is included in the references in Chapters 2–4. A deeper analysis of the
open-channel-flow equations and the kinematic wave equation in non-
prismatic channels can be found in Guinot (2008). For background
reading on the physical modelling of open-channel flow (Section 7.5), see
Chapter 5.

7.2 Mathematical description of open-channel
processes

7.2.1 Governing assumptions – notation

Most existing models of open-channel flow are based on the following
assumptions.
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A1. The longitudinal dimension of the channel is much larger than its
transverse (horizontal and vertical) dimensions. Consequently, the flow
variables may be assumed to depend only on the longitudinal coordi-
nate and to be homogeneous within a given channel cross-section. If
this is not the case, an assumption is made to provide a relationship
between the average value and the point variations of the variable over
the cross-section (see Section 7.2.2 for such an example).

A2. The curvature of the streamlines is negligible in the horizontal and verti-
cal planes. Consequently, the vertical and transverse components of the
acceleration vector are negligible and the pressure field can be assumed
to be hydrostatic within a given cross-section.

A3. The local slope of the channel is much smaller than unity. Therefore,
the cosine of the angle between the bottom level and the horizontal is
close to unity.

A4. The flow is turbulent. Consequently, the regular head loss is assumed
to be proportional to the square of the flow velocity (see Sections 4.3.3
and 4.4.1 for more details and the justification of such an assumption
on the basis of Reynolds’ equations).

A5. In the range of pressure considered, the water can be assumed to be
incompressible. Consequently, the (constant) water density does not
appear in the final forms of the continuity and momentum equations.

In what follows, the channel is assumed to be prismatic, i.e. the shape of
the cross-section is assumed to be constant with x. This has the particular
consequence that the relationship between A and Y is identical for all x. The
geometry of the channel is illustrated in Figure 7.1. The reader is referred
to the list of notation in the preliminary pages of this book for a better
understanding of the developments hereafter.

The open-channel-flow equations are derived from the two basic assump-
tions of conservation of mass and conservation of momentum (or energy).

B z 

zb 

b(x, z) 

z

x

S0 

1

zb = – h

Y
z 

A 
η

η

Figure 7.1 Definition of the geometry and variable notation
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Background reading can be found in Section 4.3. Steady-state continu-
ity, energy and momentum conservation are covered in Section 4.3.1,
while non-uniform and unsteady flow in open channels are dealt with in
Section 4.4.3.

7.2.2 The Saint Venant equations

7.2.2.1 The continuity equation

The continuity equation for open-channel flow is derived by writing the con-
servation of mass for a control volume extending from x to x + dx between
times t and t + dt. Conservation of mass implies the following equation

m(t + dt) − m(t) = F(x) − F(x + dx) (7.1)

where m(t) is the mass contained within the control volume at t and F(x)
(also known as the flux) is the mass that passes at x between t and t + dt.
Note that m is the product of the density ρ and the volume of the slice. The
volume of the slice is given by the product of A(t) and dx. Consequently, the
following equalities hold:

m(t) = ρA(t)dx (7.2a)

F(x) = ρQ(x)dt (7.2b)

Substituting equations (7.2a) and (7.2b) into equation (7.1) leads to

[ρA(t + dt) − ρA(t)]dx = [ρQ(x) − ρQ(x + dx)]dt (7.3)

Noting that A(t +dt)−A(t)=∂A/∂tdt and Q(x)−Q(x+dx)=−∂Q/∂xdx,
simplifying by dt, dx and ρ leads to

∂A
∂t

+ ∂Q
∂x

= 0 (7.4)

Note that the water density can be eliminated from the equation only
because assumption (A5) allows the mass m to be written as the product of
the volume A dx and the (uniform) density ρ. Conversely, assumption (A5)
is accountable for the simplicity of equation (7.2b) that allows the mass
flux to be expressed as the product of the volume discharge and the (uni-
form) density ρ. Also note that, under the assumption of steady-state flow,
equation (7.4) simplifies into equation (4.14), presented in Section 4.3.1.1.
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7.2.2.2 The momentum equation

The momentum equation is obtained by applying Newton’s second law of
motion to the same slice of length dx as in Section 7.2.2.1. The momentum
balance can be written as

M(t + dt) − M(t) = F(x) − F(x + dx) + Sdt (7.5)

where M(t) is the momentum of the fluid contained within the slice of length
dx at the time t, F(x) (also known as the momentum flux) is the amount of
momentum transported by the flow over the time interval dt at the abscissa
x, and S is the sum of the external forces exerted on the control volume
between t and t + dt.

The momentum M(t) is the product of the mass contained within the
control volume and the average flow velocity

M(t) = ρAVdx = ρQdx (7.6)

where V is the average flow velocity over the cross-section. The momentum
flux is defined as

F(x) =
t+dt∫
t

∫
A

ρũ2dAdt = ρdt
∫
A

ũ2dA (7.7)

where ũ is the point value of the flow velocity. If the flow velocity is uniform
over the entire cross-sectional area, then ũ = V and equation (7.7) becomes

F(x) = ρdt
∫
A

V2dA = ρdtAV2 = ρ
Q2

A
dt (7.8)

In practice, the non-uniform character of the velocity distribution over the
cross-section is accounted for by a coefficient β

F(x) =βρ
Q2

A
dt (7.9)

If the flow velocity is uniform over the entire cross-section, β=1. Otherwise,
β >1.

The external forces applied to the control volume are the following:

1 Pressure forces exerted on the upstream and downstream sides of the
control volume. The sum of the pressure forces on the upstream and
downstream sides of the control volume is
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P(x) − P(x + dx) =−∂P
∂x

dx (7.10)

Assumption (A2) of a hydrostatic pressure distribution leads to the fol-
lowing expression for the pressure force P(x) exerted on the upstream
edge of the control volume:

P(x) =
∫
A

p(x, z)dA =
η∫

zb

p(x, z)b(x, z)dz =
η∫

zb

ρg(η− z)b(x, z)dz

(7.11)

Noting that the water density ρ can be taken out of the integral
owing to assumption (A5), using the assumption of a prismatic cross-
section allows equation (7.10) to be simplified as follows. The auxil-
iary variable ξ = z − zb is introduced, allowing equation (7.10) to be
rewritten as

P(x) = ρg

Y∫
0

(Y − ξ )b(x, ξ + zb)dξ (7.12)

In the case of a prismatic channel, b is a function of ξ alone and the
dependence on x vanishes. Equation (7.12) is used in Section 7.2.2.3 to
derive the non-conservation form of the equations.

2 Reaction of the bed. Assumption (A2) of negligible vertical accelera-
tions implies that the vertical projection of the external forces exerted
on the control volume is negligible. The external forces, the vertical
component of which is not negligible, are (i) the weight of the control
volume, and (ii) the reaction of the bottom (see Figure 7.2). Since the
reaction of the bottom is exerted in the direction orthogonal to the bed
of the channel, the following equality holds:

Rx = RzS0 (7.13)

where Rx is the x-component of the bottom reaction. Moreover, as the
sum of the vertical components of the forces is zero

Rz − mg = 0 (7.14)

where g is the gravitational acceleration and Rz is the vertical compo-
nent of the bed reaction. Consequently, the x-component of the bed
reaction is given by

Rx = mgS0 = ρgAS0dx (7.15)
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x x + dx 

mg

R

Rx

Rz

Figure 7.2 Definition of the weight of the control volume and the bed reaction. The dotted
arrows indicate the horizontal and vertical components Rx and Rz of the bed
reaction

3 Friction forces (see Section 4.4.1 for background reading on friction
processes and their mathematical formulation). Friction is exerted in
the direction tangential to the bed. From assumption (A3) of a nearly
horizontal bed, friction can be assumed to be exerted in the x-direction
only. The bed friction force Fb exerted on the control volume is pro-
portional to the length of the control volume. It is usually written in
the form

Fb =−mgSe =−ρgASedx (7.16)

where Se is defined as the slope of the energy line (i.e. the friction-
induced head loss per unit distance). Indeed, comparing equations (7.15)
and (7.16) leads to the conclusion that Se has the dimension of a slope.
From assumption (A4) of a turbulent-flow regime, Se is usually assumed to
be proportional to the square of the flow velocity. The most widely used
formulations are the Chezy, Manning and Strickler friction laws (see also
equations (4.62) and (4.63)):

Se = |V|V
C2R

= |Q|Q
A2C2R

(Chezy) (7.17a)

Se = n2 |V|V
R4/3

= n2 |Q|Q
A2R4/3

(Manning) (7.17b)

Se = |V|V
K2

StrR4/3
= |Q|Q

A2K2
StrR4/3

(Strickler) (7.17c)

where C, KStr and n are the so-called Chezy, Strickler and Manning’s friction
coefficients, and R is the hydraulic radius, defined as

R = A
P′ (7.18)
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where P′ is the wetted perimeter. Note that KStr and n are the inverse of
each other. All the formulae above may be written in the form Q = ConvS1/2

e ,
where Conv is called the conveyance.

Substituting equations (7.6), (7.7), (7.10), (7.12) and (7.15) into equa-
tion (7.5), and simplifying by ρ, dt and dx, we obtain

∂Q
∂t

+ ∂

∂x

(
β

Q2

A
+ P
ρ

)
= (S0 − Se)gA (7.19)

The quantity βQ2/A + P/ρ is known as the impulse.

7.2.2.3 Conservation and non-conservation form

Equations (7.5) and (7.20) can be rewritten in vector form as

∂U
∂t

+ ∂F
∂x

= S (7.20)

where the vector variables U, F and S are defined as

U =
[

A
Q

]
,F =

[
Q

βQ2/A + P/ρ

]
,S =

[
0

(S0 − Se)gA

]
(7.21)

Equation (7.20) is known as the conservation form of the open-channel-
flow equations. Another convenient form of equation (7.20) is the so-called
non-conservation form

∂U
∂t

+ A
∂U
∂x

= S (7.22)

where the matrix A is defined as the Jacobian matrix of F with respect to U:

A = ∂F
∂U

(7.23)

Equation (7.22) is the vector extension of the scalar, first-order quasilinear
equation (2.35) presented in Section 2.4. Note that equations (7.20) and
(7.22) are equivalent only because the channel is assumed to be prismatic.
Consequently, if U is a constant, both Q and A are constant and F is con-
stant. If the channel is non-prismatic, the variations in the geometry of the
cross-section must be accounted for in the space derivative of the impulse.
In the case of a non-prismatic channel, the full expression of the derivative
of F with respect to x is

∂F
∂x

=
(
∂F
∂U

)
x=Const

∂U
∂x

+
(
∂F
∂x

)
U=Const

(7.24)
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The extra derivative in equation (7.24) would lead to modifying the
source term S in equation (7.22). The complete expression of the modi-
fied source term for a non-prismatic channel, provided in Guinot (2008),
is rather complex and its detailed derivation is beyond the scope of the
present text.

The expression of the Jacobian matrix A is given by

A =
[

0 1
c2 −βV2 2βV

]
(7.25)

where the quantity c is defined as

c2 = d(P/ρ)
dA

(7.26)

Note that the total derivative d is used in equation (7.26) because there
is a one-to-one relationship between P and A. Indeed, A is an increasing
function of the water depth Y, because an infinitesimal increase dY in the
water depth generates an increase dA in the cross-sectional area given by

dA = BdY (7.27)

As the width B of the free surface is strictly positive, the function A(Y)
is monotonically increasing. Moreover, an infinitesimal increase dY in the
water depth induces an infinitesimal pressure increase dp = ρgdY over the
entire channel cross-section. Therefore, the infinitesimal increase d(P/ρ) is
given by

d(P/ρ) = gAdY (7.28)

As A is strictly positive, P/ρ is also a monotonically increasing function
of Y, and the relationship between P/ρ and Y is also one-to-one. Con-
sequently, P/ρ and A are related by a one-to-one relationship, and using
the total derivative as in equation (7.26) is meaningful. Besides, substitut-
ing equations (7.27) and (7.28) into equation (7.26) leads to the following
expression for c

c =
(

gA
B

)1/2

(7.29)

In most applications, the coefficient β is assumed equal to unity. In this
case, the expression of A simplifies to

A =
[

0 1
c2 − V2 2V

]
(7.30)

β = 1 is assumed to hold in what follows.
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7.2.2.4 Alternative writing for the non-conservation form

The conservation and non-conservation forms (7.20) and (7.22) use the
cross-sectional area A and the discharge Q as state variables. Unless the
geometry is very simple, such variables may not be very convenient to use
because they cannot be measured directly. For practical purposes the water
depth Y (or the free-surface elevation η) and the mean flow velocity V are
easier to use. This leads to defining a new vector variable V = [Y,V]T.
Noting that dA = BdY and dQ = AdV + VdA = AdV + BVdY allows the
variations in U = [A,Q]T to be related to those in V by

dV =
(
∂U
∂V

)−1

dU =
[

1/B 0
−V /A 1/A

]
dU =

[
1/BdA

1/AdQ − V /AdA

]
(7.31)

Multiplying equation (7.22) by (∂U/∂V)−1 yields(
∂U
∂V

)−1
∂U
∂t

+
(
∂U
∂V

)−1

A
∂U
∂V

(
∂U
∂V

)−1
∂U
∂x

=
(
∂U
∂V

)−1

S (7.32)

Using the definition (7.31) leads to

∂V
∂t

+ A′ ∂V
∂x

= S′ (7.33)

where A′ and S′ are defined as

A′ =
(
∂U
∂V

)−1

A
∂U
∂V

=
[

V A/B
g V

]
(7.34a)

S′ =
(
∂U
∂V

)−1

S =
[

0
(S0 − Sf )g

]
(7.34b)

The shallow-water equations (4.69) and (4.70) presented in Section 4.4.3
arise as a particular case of equation (7.33) when the channel is assumed to
be horizontal, rectangular and infinitely wide (then A/B = Y) and when the
motion is frictionless.

7.2.2.5 Characteristic form

The derivation and the characteristic form of scalar, first-order PDEs and
their solution properties are covered in Section 2.8. The reader is referred
to this section prior to reading what follows. The characteristic form of
the vector equation (7.20) is obtained by rewriting equation (7.22) in the
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vector base formed by the eigenvectors of A. This amounts to diagonaliz-
ing the matrix A. To do so, equation (7.22) is multiplied by K−1, where K
is the matrix formed by the right eigenvectors r1 and r2 of A. As seen in
Section 2.5.1, the eigenvalues and eigenvectors of A are

λ1 = V − c, λ2 = V + c (7.35a)

r1 =
[

1
V − c

]
, r2 =

[
1

V + c

]
(7.35b)

Note that the eigenvalues of A are real and distinct, which, from the def-
initions given in Chapter 2, indicates that the system (7.22) is hyperbolic.
Consequently, it can be rewritten in the form of two characteristic equa-
tions, i.e. two first-order differential equations valid along two different
trajectories in the (x, t)-plane. From equation (7.35b), the matrices K and
K−1 are defined as

K =
[

1 1
V − c V + c

]
,K−1 = 1

2c

[
V + c −1
c − V 1

]
(7.36)

Multiplying equation (7.22) by K−1, using the property K K−1 = I (where I is
the identity matrix) leads to

K−1 ∂U
∂t

+ K−1AK K−1 ∂U
∂x

= K−1S (7.37)

As mentioned in Chapter 2, the matrix K−1AK is the expression of A in the
basis of eigenvectors of A. Consequently, it is diagonal. Equation (7.37) can
be rewritten as

∂W
∂t

+�K−1 ∂W
∂x

= S′′ (7.38)

where W, � and S′′ are defined as

dW = d
[

W1

W2

]
= 1

2c

[
(V + c)dA − dQ
(c − V)dA + dQ

]
(7.39a)

�=
[
λ1 0
0 λ2

]
=
[

V − c 0
0 V + c

]
(7.39b)

S′′ = 1
2c

[
(Se − S0)gA
(S0 − Se)gA

]
(7.39c)

The vector W, defined in differential form by equation (7.39a), is called the
vector of Riemann invariants. W1 and W2 are, respectively, the Riemann
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B = constant

Y

Y

B = (tan 1 + tan 2) Y
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θ θ

θ
θ

Figure 7.3 Definition of a rectangular (a) and a triangular (b) channel

invariants associated with the eigenvalues λ(1) and λ(2). Note that equa-
tion (7.38) is equivalent to the following set of differential equations

dW1

dt
= S′′

1 for
dx
dt

= λ(1) (7.40a)

dW2

dt
= S′′

2 for
dx
dt

= λ(2) (7.40b)

If the geometry of the channel is simple enough, equation (7.39a) can be
integrated to provide an exact definition of the Riemann invariants W1 and
W2. Particular expressions of the Riemann invariants are provided hereafter
for the case of a rectangular and a triangular channel (Figure 7.3).

1 Rectangular channel. The width B is independent of Y and the follow-
ing relationships hold:

A = BY (7.41a)

Q = BYV (7.41b)

c = (gY)1/2 (7.41c)

Substituting equations (7.41a)–(7.41c) into equations (7.39a) and
(7.39c) leads to

dW1 = V + c
2c

BdY − 1
2c

d(BYV) = V + c
2c

B
2c
g

dc − B
2c

(YdV + VdY)

= V + c
2c

B
2c
g

dc − B
2c

(
c2

g
dV + 2c

g
Vdc

)
= Bc

2g
d(2c − V)

(7.42a)

S′′
1 = (Se − S0)

gBY
2c

= (Se − S0)
Bc
2

(7.42b)
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Note that, in deriving equations (7.42a) and (7.42b), the relationship
Y = c2/g and its differential form dY = 2c/gdc are used. Substituting
equations (7.42a) and (7.42b) into equation (7.40a) and simplifying by
Bc leads to

d
dt

(V − 2c) = (S0 − Se)g for
dx
dt

= V − c (7.43)

A similar reasoning leads to the following definition for the second
Riemann invariant:

d
dt

(V − 2c) = (S0 − Se)g for
dx
dt

= V − c (7.44)

The Riemann invariants can then be redefined as

W1 = V − 2c (7.45a)

W2 = V + 2c (7.45b)

Note that the flow state can be determined uniquely from these two
invariants, since

V = 1
2

(W1 + W2) (7.46a)

c = 1
4

(W2 − W1) (7.46b)

Using the relationship Y = c2/g, A = BY and Q = AV allows the flow
variables to be computed uniquely from the values of W1 and W2.

2 Triangular channel. The width B is proportional to the water depth Y.
Denoting by θ1 and θ2 the angles between the left and right banks and
the vertical, the following relationships hold:

A = By
2

Y = 1
2

( tan θ1 + tan θ2)Y2 (7.47a)

Q = 1
2

( tan θ1 + tan θ2)Y2V (7.47b)

c =
(

gY
2

)1/2

(7.47c)
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Substituting equations (7.47a)–(7.47c) into equations (7.39a)–(7.39c)
and simplifying as in the case of a rectangular channel leads to

d
dt

(V − 4c) = (S0 − Se)g for
dx
dt

= V − c (7.48a)

d
dt

(V − 4c) = (S0 − Se)g for
dx
dt

= V − c (7.48b)

Quite remarkably, the expression of the Riemann invariants does not
depend on the slope of the embankments – just as it is independent of
the width in the case of a rectangular channel. There, again, the flow
state can be determined uniquely from these two invariants, since

V = 1
2

(W1 + W2) (7.49a)

c = 1
8

(W2 − W1) (7.49b)

Note that, if the flow is near to uniform conditions, S0 ≈ Sf and S′′ ≈ 0.
Equations (7.40) then simplify to

W1 = Const1 for
dx
dt

= V − c (7.50a)

W2 = Const2 for
dx
dt

= V + c (7.50b)

Thus, W1 and W2 are constant, or invariant, along the trajecto-
ries dx/dt = V ± c, and hence the term ‘Riemann invariant’ used to
designate them.

7.2.2.6 Physical interpretation of the characteristic form – flow
regimes

The characteristic equations (7.40) and the particular cases (7.43)–(7.44),
(7.48) and (7.50) can be interpreted as follows (see Section 2.5):

1 The space and time variations in the flow variables result from the prop-
agation of two waves at speeds V −c and V +c. The trajectories of these
waves in the (x, t)-plane are called characteristics (see Figure 2.2).

2 The propagation speeds of the waves are obtained by superimposing the
flow velocity V on the celerity ±c of the waves in still water (Figure 7.4).
In a coordinate system moving at the same speed as the water molecules,
the two waves travel at the same speed in opposite directions (see
Figure 2.2).
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x 

t 

dx /dt = v – c

dx /dt = v + c

dx /dt = v

Figure 7.4 Definition of the characteristics in the (x, t)-plane. The lines dx/dt = V ± c are
the characteristic lines. The line dx/dt = V represents the trajectories of the
water molecules

3 Along each of the two characteristics, a Riemann invariant can be
defined, that obeys a first-order ordinary differential equation, also
called a ‘characteristic equation’. Each of the two Riemann invariants
can be defined uniquely from the flow variables. Conversely, the flow
variables can be determined uniquely provided that the two Riemann
invariants are known.

4 In the case of uniform flow conditions, or in the case of frictionless
motion over a horizontal bottom, both Riemann invariants are constant
along the characteristic lines.

5 The domain of dependence and the domain of determinacy (see
Section 2.7) of the solution are delimited by the two characteristics in
the (x, t)-plane (see Figure 2.2(a–b) for the definition of the domain of
dependence and the region of influence).

The ratio V/c is the Froude number Fr:

Fr = V
c

(7.51)

Depending on the magnitude of the Froude number, the flow is said to be
subcritical, critical or supercritical (Figure 7.5).

1 Subcritical flow, |Fr|< 1. In such a case, the flow velocity |V| is smaller
than the propagation speed c of the waves in still water and the
two wave speeds λ(1) and λ(2) have opposite signs (Figure 7.5(a)). The
two waves (and therefore the two Riemann invariants) propagate in
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x 

t dx/dt = V – c

dx/dt = V + c

(a) 

x 

t dx/dt = V – c

dx/dt = V + c

(c)

x 

t dx/dt = V – c

dx/dt = V + c

(b)

Figure 7.5 Definition of subcritical flow (a), critical flow (b) and supercritical flow (c)

opposite directions. The flow conditions in the channel are influenced
by the points located upstream and downstream.

2 Critical flow, |Fr|=1, i.e. if |V|=c. Then, one of the two characteristics
is vertical in the (x, t)-plane (Figure 7.5(b)). In practice, critical condi-
tions cannot be maintained over long channel reaches and are met only
over very restricted regions of space that reduce to points.

3 Supercritical flow, |Fr|> 1. Under such conditions, |V| is larger than c
and both waves travel in the downstream direction (Figure 7.5(c)). Note
that Figures 7.5(b–c) are drawn for a positive V.

7.2.2.7 Initial- and boundary-condition requirement

Consider a channel reach extending from x = 0 to x = L, over which the
open-channel-flow equation (7.20) is to be solved for t> 0 (Figure 7.6). As
inferred in Section 7.2.2.6 from the characteristic form (7.41), the solution
at time t is determined uniquely provided that the two Riemann invariants
W1 and W2 are known at all points of the segment [0,L]. The solution
domain may be divided into three subregions.

Region A is defined in Section 2.4.1 as the domain of determinacy of the
point located at the intersection of the characteristics dx/dt = V + c passing
at (0, 0) and the characteristic dx/dt=V − c passing at (L, 0). As mentioned
in Section 2.4.1, U can be computed uniquely in subregion A provided that
the flow conditions (in the form [A, Q]T, [Y, V]T or any combination of
these) are known at all points of the segment [0, L] at t =0. In other words,
initial conditions must be supplied for the flow variables over the entire
computational domain.

Region B is located on the left-hand side of the characteristic dx/dt =
V + c passing at (0, 0) in the (x, t)-plane. Consider a point M in this region
(Figure 7.7). For U to be determined uniquely at M, W1 and W2 must be
known. Several possibilities arise.
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B C 

Figure 7.6 Solving the open-channel flow equations over a domain [0, L] × [0, t] in the
(x, t)-plane. Definition of the three subregions of the solution domain. The
bold lines indicate the domain boundaries
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P 

Figure 7.7 The various possible flow configurations at the left-hand boundary: (a) super-
critical flow, entering the domain; (b) subcritical flow; (c) supercritical flow,
leaving the domain

1 The flow is supercritical at the left-hand boundary, entering the domain
(Figure 7.7(a)). In this case, both W1 and W2 are conditioned by the
flow at the left-hand boundary, and the flow variables at M are not
influenced by the flow inside the domain. Consequently, the knowledge
of U at the boundary at all times suffices to the uniqueness of U at M.
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2 The flow is subcritical at the left-hand boundary (Figure 7.7(b)). The
characteristic dx/dt=V −c passing at M comes from inside the domain.
Consequently, the value of W1 at M is determined by the flow condi-
tions inside the domain. In contrast, the characteristic dx/dt = V + c
comes from the boundary. Therefore, the Riemann invariant W2 must
be prescribed at the boundary. Let P be the intersection between the
characteristic dx/dt = V + c and the boundary line x = 0. As the flow is
subcritical at P, the characteristic dx/dt = V − c that passes at P comes
from inside the domain. Therefore, the Riemann invariant W1 at P is
determined entirely from the flow conditions inside the domain. The
missing information on W2 must be supplied as a boundary condition,
in the form of a prescribed A, Q, Y, V or any relationship between two
independent variables (e.g. a stage–discharge relationship).

3 The flow is supercritical, leaving the domain (Figure 7.7(c)). In this
case, both characteristics leave the domain and the two Riemann invari-
ants are entirely influenced by the flow conditions inside the domain.
Even at the boundary, the flow conditions are entirely determined by
what happens inside the domain. Therefore, no boundary condition is
needed.

A similar reasoning for the right-hand boundary leads to the following
general conclusion: at each boundary of the domain, the number of bound-
ary conditions required to ensure the uniqueness of the solution is equal to
the number of characteristics entering the domain.

7.2.3 The diffusive wave approximation

7.2.3.1 Assumptions – governing equation

The so-called diffusive wave approximation is a simplified version of the
complete open-channel equations introduced in Section 7.2.2. It is obtained
by neglecting the inertial terms ∂Q/∂t and ∂(Q2/A)/∂x in the momen-
tum equation (7.19). Introducing this simplification in the non-conservation
form (7.22) and using the relationship dA = BdY leads to

B
∂Y
∂t

+ ∂Q
∂x

= 0 (7.52a)

∂h
∂x

= S0 − Se (7.52b)

Equations (7.52a) and (7.52b) can be combined to provide a scalar equa-
tion in Q. This is done as follows. Differentiating equations (7.52a) and
(7.52b) with respect to x and t respectively leads to
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∂B
∂x

∂Y
∂t

+ B
∂2Y
∂x∂t

+ ∂2Q
∂x2

= 0 (7.53a)

∂2Y
∂x∂t

= ∂

∂t
(S0 − Se) =−∂Se

∂t
(7.53b)

Eliminating ∂2h/∂x∂t from equations (7.53a) and (7.53b) leads to

b
∂Sf

∂t
+ 1

b
∂b
∂x

∂Q
∂x

− ∂2Q
∂x2

= 0 (7.54)

The time derivative of Se is rewritten as

∂Se

∂t
= ∂Se

∂Q
∂Q
∂t

+ ∂Se

∂Y
∂Y
∂t

= ∂Se

∂Q
∂Q
∂t

− 1
B
∂Se

∂Y
∂Q
∂x

(7.55)

Substituting equation (7.55) into equation (7.54), and then using equa-
tion (7.52a) to eliminate the water depth Y from the resulting equation
leads to

B
∂Se

∂Q
∂Q
∂t

+
(

1
B

dB
dY

∂Y
∂x

− ∂Se

∂h

)
∂Q
∂x

− ∂2Q
∂x2

= 0 (7.56)

This equation can be rewritten in the form of an advection–diffusion
equation

∂Q
∂t

+ λ
∂Q
∂x

− D
∂2Q
∂x2

= 0 (7.57)

where D and λ are defined as

D =
(

B
∂Se

∂Q

)−1

(7.58a)

λ=
(

1
B

dB
dY

∂Y
∂x

− ∂Se

∂Y

)
D =

1
B

dB
dY

∂Y
∂x

− ∂Se
∂Y

B ∂Se
∂Q

(7.58b)

Substituting the classical friction formulae (7.17a)—(7.17c) into (7.58),
noting that V = Q/A leads to

D = C2A2R
2 |Q|B (Chezy) (7.59a)

D = A2R4/3

2n2 |Q|B (Manning) (7.59b)

D = K2
StrA

2R4/3

2 |Q|B (Strickler) (7.59c)
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In most situations the energy-line slope Se is a decreasing function of the
water depth Y, and therefore ∂Se/∂y<0. For a rectangular channel obeying
the wide-channel approximation, R ≈ Y and dB/dY = 0. Then it is easy to
check that, under the assumption of Manning’s or Strickler’s friction law,
equation (7.58b) simplifies to

λ= 3
2

V (Chezy) (7.60a)

λ= 5
3

V (Manning, Strickler) (7.60b)

Once the equation (7.57) in Q has been solved, the water depth profile
can be retrieved by integrating equations (7.52) from the initial or boundary
conditions, and the flow state is then determined uniquely.

7.2.3.2 Solution properties, initial- and boundary-condition
requirements

The advection–diffusion equation (7.57) can be rewritten using the charac-
teristic form as

dQ
dt

= D
∂2Q
∂x2

for
dx
dt

= λ (7.61)

This equation is interpreted as follows: the discharge signal is trans-
ported at a speed λ given by equation (7.58b). At the same time it is
subjected to diffusion, the intensity of which is determined by the coeffi-
cient D, the expression of which is given by equation (7.58a). Consequently,
the discharge profile is smoothed out as it travels downstream. As the
diffusion process occurs in the direction of both positive and negative
x, a perturbation in the flow conditions at a given point is transmit-
ted (although with some damping) in the direction of both positive and
negative x.

In contrast with the full Saint Venant equations detailed in Section 7.2.2,
the diffusive wave approximation always allows for the propagation (via
diffusion) of the discharge signal in the upstream direction. This propa-
gation mechanism, however, is due to diffusion, which is totally different
from the wave propagation of two independent Riemann invariants at
work in the full Saint Venant equations. In the diffusive wave approxima-
tion the distinction between subcritical and supercritical flow conditions is
meaningless.

As equation (7.58) is a parabolic equation, its solution over a domain
[0, L] requires that the initial condition Q(x, t = 0) be known over all
the domain and that boundary conditions be specified at all times at each
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end of the domain (see Chapter 2 and, more specifically, Sections 2.2
and 2.5).

7.2.4 The kinematic wave approximation

7.2.4.1 Assumptions – governing equation

The so-called kinematic wave approximation is obtained as a further sim-
plification of the diffusive wave approximation. If the channel slope is steep
enough, or if the flow is very shallow, ∂Y /∂x may be neglected compared to
the bottom slope S0. In this case, the momentum equation (7.52b) is further
simplified to

Se = S0 (7.62)

If equation (7.62) holds, there is a one-to-one relationship between A and
Q for a given x. The two components of U (or V) not being independent of
each other any more, assuming that equation (7.62) holds is equivalent to
writing an equation in the form

Q = Q(A) (7.63)

A particular consequence of this is that the flow conditions are known
uniquely provided that one of the variables A and Q is known. It is then
sufficient to write (and solve) a single scalar equation in A and Q over the
domain of interest.

Substituting equation (7.63) into the continuity equation (7.4) leads to

∂A
∂t

+ ∂Q(A)
∂x

= 0 (7.64)

It must be kept in mind that, in the general case, Q is not a function of
A alone but also of the parameters that define the geometry of the channel
(the bottom slope, the friction coefficient, etc.). Consequently, the derivative
of the discharge may be expanded as

∂Q
∂x

=
(
∂Q
∂A

)
x=Const

∂A
∂x

+
(
∂Q
∂x

)
A=Const

(7.65)

Substituting equation (7.65) into equation (7.64) yields the following
equation in non-conservation form:

∂Q
∂t

+ λ
∂Q
∂x

= S (7.66)
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where λ and S are defined as

λ=
(
∂Q
∂A

)
x=Const

(7.67a)

S =−
(
∂Q
∂x

)
A=Const

(7.67b)

When the hydraulic properties of the channel are constant with x (i.e. if
the friction coefficient, bottom slope and shape of the channel are identical
all along the channel), the source term S is zero.

In a rectangular channel obeying the wide-channel approximation (Y<<

B, so that R ≈ Y), it is easy to check that λ is given by

λ= 2V (Chezy) (7.68a)

λ= 5
3

V (Manning, Strickler) (7.68b)

7.2.4.2 Solution properties, initial- and boundary-condition
requirements

As shown in Chapter 2, equation (7.66) is equivalent to the following
characteristic formulation:

dQ
dt

= S for
dx
dt

= λ (7.69)

In contrast with the diffusive wave approximation, the kinematic wave
approximation does not incorporate diffusion effects. Indeed, the source
term S is only accountable for local, geometrical effects such as the varia-
tions in the bottom slope S0, in the friction coefficient or in the geometry of
the channel. No second-order derivative in A is incorporated in this term.
Also note that, for a prismatic channel with constant bottom slope and
friction coefficient, S = 0 and equation (7.69) reduces to

Q = Const for
dx
dt

= λ (7.70)

Under such conditions, the discharge signal propagates downstream with-
out attenuation. This is a fundamental difference from the diffusive wave
approximation that allows for the smearing of the hydrograph as it trav-
els downstream. Another fundamental difference from the diffusive wave
approximation is the impossibility of the kinematic wave approximation
to account for backwater effects, because there is only one wave propa-
gating from upstream to downstream at the speed λ. As in the diffusive
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wave approximation, the kinematic wave approximation leaves no room
for notions such as subcritical or supercritical flow, because there is only
one wave, always travelling in the downstream direction.

The solution is determined uniquely provided that the initial condition
is known at all points of the domain at t = 0 and that Q (or A) is known
at all times at the upstream boundary of the domain. As the characteristics
propagate in the downstream direction, the flow conditions at the down-
stream boundary of the solution domain are determined entirely by the flow
conditions inside the domain. Consequently, no condition is needed at the
downstream boundary.

7.2.5 Summary

Three main models are used in open-channel flow modelling: the Saint
Venant equations, the diffusive wave approximation and the kinematic
wave approximation. The solutions of these equations exhibit rather
different behaviours, as illustrated in Figure 7.8.

The Saint Venant equations account for continuity, inertial effects, fric-
tion, and the influence of the bottom and the free-surface slope. The solution
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Figure 7.8 Behaviour of the solution for the Saint Venant, diffusive wave and kinematic
wave models. (a) Saint Venant: propagation of two waves with possible deforma-
tion and attenuation. (b) Diffusive wave approximation: propagation of a single
wave with diffusion in the upstream and downstream directions. (c) Kinematic
wave approximation: propagation of a single wave without diffusion. Wave tra-
jectories in the (x, t)-plane (bottom), schematic behaviour of the flow variables
in the physical space (top). Dashed line: initial profile. Solid line: profile at t> 0.
Solid arrows: wave propagation. Block arrows: diffusion
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of these equations is composed of two waves, propagating at two different
speeds V + c and V − c (Figure 7.8(a)). Because the propagation speeds are
functions of the local flow conditions, the shape of the wave is most often
altered during propagation. The presence of a source term in the equations
allows for the damping of the waves via friction, and their local damp-
ing or amplification due to channel geometry variations. The Saint Venant
equations allow backwater effects to be accounted for.

The diffusive wave approximation is a simplified form of the Saint
Venant equations. It is based on the assumption that inertial effects can
be neglected. It is therefore applicable to the modelling of slow transients
with small flow velocities. The solution of the diffusive wave approxima-
tion is subjected to the combined influence of advection at a propagation
speed different from that of the flow and diffusion of the discharge signal
(Figure 7.8(b)). As diffusion acts in the direction of both positive and neg-
ative x, the diffusive wave approximation allows backwater effects to be
accounted for. In contrast, it does not allow for the simulation of very rapid
flows, where the flow regime may become supercritical.

The kinematic wave approximation results from a further simplifica-
tion of the diffusive wave approximation. It is suitable for the simulation
of shallow-water flows over steep slopes, where the slope of the energy
line becomes equivalent to that of the channel bottom and where iner-
tial effects can be neglected because the flow velocity remains reasonably
small. The solution of the kinematic wave equation is made of a single
wave travelling downstream at a speed different from that of the flow
(Figure 7.8(c)). As there is only one wave, travelling in a single direction,
the kinematic wave approximation does not allow backwater effects to be
accounted for.

Note that in all three models, the propagation speed of the wave(s) is not
equal to the flow velocity in the general case.

7.3 Computational models of open-channel flow

7.3.1 General

7.3.1.1 Numerical modelling as a three-step process

The three models presented in Section 7.2 provide a mathematical descrip-
tion of open-channel flow processes in the form of PDEs. Solving such
PDEs exactly for real-world problems with arbitrary channel geometries
and initial and boundary conditions is impossible. All the existing soft-
ware packages for open-channel-flow modelling use numerical techniques
to solve approximations of the governing PDEs, thus providing an approx-
imation of the exact solution. The numerical solution process comprises
three steps:
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1 Derive approximations of the governing PDEs using discretization
techniques such as the finite-difference, finite-volume of finite-element
approach (see Section 3.9). In this operation the governing PDEs are
transformed into systems of algebraic equations using standard interpo-
lation (see Section 3.2) and/or integration (see Section 3.4) techniques.
The discretization process consists of replacing the original problem,
where the solution of the governing PDEs is a function of continu-
ous time and space variables, with a much simpler problem, where
the solution is sought only at predefined points at predefined times.
Figure 7.9 illustrates the effect of dicretization on the representation of
a river reach.

2 Solve the systems of algebraic equations obtained in the previous step
using standard numerical techniques for root finding (see Section 3.3),
integration (see Section 3.4) or matrix inversion (see Section 3.5).

3 Interpolate the so-obtained numerical solution onto the computational
grid and convert it to flow variables that can easily be interpreted by
the model’s user.

Each of these steps induces approximations and, consequently, is a source
of inaccuracies in the solution process. A number of elementary precau-
tions that allow the main sources of error to be minimized are mentioned
hereafter.

7.3.1.2 Discretization of the geometry

The discretization of the governing equations requires that the geometry of
the channel, as well as the initial and boundary conditions, be specified by
the modeller. In commercially available software packages, the specification
of the variations in W(x, z) at all computational points is not needed. Rather,
the user is requested to provide the geometry at a number of key points
along the channel, the geometry being interpolated (in general linearly) at
the remaining computational points. The accuracy with which the geometry
is described in the computational model to a large extent influences the
accuracy of the modelling results. It is of particular importance that the

x ii – 1 i + 1i – 2 i + 2

x

Figure 7.9 Discretization of a channel reach. Real-world channel (left), discretized channel
(right)



250 Modelling of open-channel systems

A 

B 

C 

Real channel 

Model interpolation 

Cross-section 

A 

B 
C 

D 

E 

Figure 7.10 Two possible options for cross-section definition near a sudden widening
and narrowing in a channel. Top: Option 1 (moderately accurate). Bottom:
Option 2 (more accurate)

computational points be located in such a way that the variations in the
channel geometry, such as the gradients of the river width in plan view and
in a vertical cross-section, be captured as accurately as possible.

Figure 7.10 illustrates two possible options for the description of sudden
channel-width variations.

Option 1 requires the definition of only three profiles, in comparison with
five profiles in Option 2. However, Option 1 has the drawback that the inter-
polated geometry in the model leads to an underestimation of the volume
available for plan storage within the reach [ABC]. From a mathematical
point of view, Option 1 leads to an underestimate of the average value of
B over the segment [ABC]. The consequence of underestimating the stor-
age is an overestimate of the average propagation speed c= (gA/B)1/2 of the
waves in still water in the model compared to reality. A more physical inter-
pretation of this is that, less storage being available in the modelled channel
than in the real one, the modelled channel reacts faster than the real one to
hydraulic transients, with a subsequent overestimation of the propagation
speeds of the waves. In Option 2, the larger number of profiles allows the
total storage in plan view to be better approximated than in Option 1.

Figure 7.11 illustrates two possible approaches to cross-section discretiza-
tion. Although Option 1 (Figure 7.11, top) allows the total cross-sectional
area of the reach to be represented correctly at full bank flow (because the
area lost under the segment [AB] is compensated for by the area gained
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Figure 7.11 Two possible options to cross-section discretization. Top: Option 1 (moder-
ately accurate). Bottom: Option 2 (more accurate)

above [BC]), it fails to provide a correct description of the variations in A
and/or B for intermediate or small values of Y. Moreover, Option 1 leads
to underestimating the wetted perimeter, with a subsequent underestima-
tion of the energy slope Se. In this respect, Option 2 (Figure 7.11, bottom)
allows the variations in A, B and R with Y to be represented in a much
more accurate fashion.

7.3.1.3 Numerical parameters

Cell size, time step. As mentioned in Section 3.9, the numerical solution
of a PDE requires that a cell size �x and a time step �t be defined by
the user. There exists a fundamental contradiction between time efficiency
that requires that the number of computational operations be as small as
possible (therefore requiring large values of �x and �t) and the accuracy of
the numerical solution (which requires that �x and �t be kept as small as
possible). In most engineering applications of modelling systems the choice
of �t and �x is the result of a trade-off between these two contradictory
requirements. The modeller should keep in mind that:

1 The larger �t and �x, the larger the truncation error (i.e. the difference
between the real PDE to be solved and the approximate PDE that results
from the discretization). Moreover, the truncation error is a function of
both �t and �x. Consequently, reducing only �t or �x alone in order
to reduce computational times allows only part of the truncation error
to be removed. Substantial gains in model accuracy can be obtained
only by decreasing both �x and �t.
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2 The key factor in the performance of numerical schemes for hyperbolic
problems (see Sections 7.3.2 and 7.3.3 for examples of such schemes) is
the Courant number Cr, defined as

Cr = λ�t
�x

(7.71)

where λ is the propagation speed of the wave. Optimal solution qual-
ity is achieved when the Courant number remains reasonably close
to unity. Consequently, reducing both �x and �t allows the qual-
ity of the numerical solution to be improved but only provided if the
Courant number remains fairly constant (i.e. if �x and �t are reduced
in the same ratio). Moreover, explicit numerical schemes are subjected
to the so-called Courant, Friedrichs and Lewy (CFL) stability con-
straint |Cr| ≤ 1 (see Section 3.9.5), which precludes the time step from
exceeding a maximum permissible value.

3 Large time steps and/or cell sizes induce additional error in the
interpolation of non-linear flow variables, with mass- or momentum-
conservation problems as a possible consequence. Such an issue is
easily illustrated by examining the equivalence between the variations
in the channel cross-sectional area A and the water depth Y. For an
infinitesimal variation dY in the water depth, the variation dA in the
cross-sectional area is given by dA = BdY. Consequently,

∂A
∂t

= B
∂Y
∂t

(7.72)

Discretizing equation (7.72) between two consecutive time levels n and
n + 1 using a first-order approach leads to

An+1 − An

�t
= Bn+1/2 Yn+1 − Yn

�t
(7.73)

where the superscripts n and n + 1 indicate the time levels at which the
variable is sought. The superscript n+1/2 for B indicates that B is estimated
in an average sense between the time levels n and n + 1. The following
estimates may be proposed

Bn+1/2 = Bn (explicit) (7.74a)

Bn+1/2 = Bn+1 (implicit) (7.74b)

Bn+1/2 = (Bn + Bn+1)/2 (semi-implicit) (7.74c)

If B is not constant (i.e. if the channel is not rectangular), the three formu-
lae above lead to three different estimates. Equation (7.74c) remains exact if
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the width of the channel varies linearly with Y, but in any other case it also
fails to verify equation (7.73). In other words, the modelling result becomes
dependent on the choice of the flow-state variables, which of course should
not be the case. Even if the shape of the channel is defined as a piecewise
linear function as illustrated in Figure 7.12, the estimate (7.74c) fails to pro-
vide the correct average value of B if Y varies over more than one interval
where W is defined as a piecewise linear function. However, the smaller �t,
the smaller the difference between the estimates (7.74a)—(7.74c) and the
more accurate the discretization of the equivalence (7.74).

As a consequence, the possible mass- and/or momentum-conservation
errors that may arise from solving the equations in non-conservation form
or for non-conservative variables are minimized when the cell size and time
step are reduced.

Time- and space-centring coefficients. A number of the numerical schemes
used in open-channel-flow modelling and presented in Sections 7.3.2–7.3.4
use time- and space-centring coefficients. Such coefficients may have a major
influence on the behaviour of the numerical solution. As a broad rule,
increasing the time-centring coefficient strengthens the implicit character
of the numerical scheme and makes the solution more stable by adding
numerical diffusion. However, the robustness of the computational process
is increased at the expense of solution accuracy, with numerical diffusion
smoothing out rapid transients. The reader is referred to Sections 7.3.2–
7.3.4 for an analysis of the influence of such coefficients on the behaviour
of the various schemes presented.

Iteration convergence criteria. The second step in the numerical solution
process (see 7.3.1.1)) consists of solving the systems of algebraic equations
obtained in the discretization step. Such systems being non-linear, their solu-
tion requires iterative procedures (see e.g. Newton–Raphson’s method in
Section 3.3, or Gauss–Seidel’s method in Section 3.5). The iterative process
is usually controlled using two types of parameters.

1 Iteration stop criteria. One or several iteration accuracy criteria may be
defined, whereby the degree of accuracy of the solution is assessed. The
iterations are stopped when the iteration accuracy criteria reach a pre-
defined accuracy threshold, usually prescribed by the modeller. Typical
iteration accuracy criteria are (i) the difference between the values taken
by the flow variables at two successive iterations, and (ii) the residual
of the system of equations to be solved.

2 Maximum number of iterations. In some situations, the iteration stop
criteria defined by the modeller may prove to be too severe and to
yield very time-consuming calculations, especially in the case of very
fast transients, with strong changes in the flow variables within a given
time step, inducing subsequent changes in the coefficients of the matrix
systems to be solved. This is why a number of commercially available
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modelling software packages allow a maximum number of iterations to
be specified by the user. When the number of iterations made by the iter-
ative procedure reaches the predefined maximum number of iterations,
the iterations are stopped even if the iteration stop conditions specified
in (1) above are not fulfilled.

Note that specifying iteration stop criteria that are too large may yield
exactly the same problems regarding mass and/or momentum conservation
as using too large a time step and/or cell size in the discretization step. As
is usual in computational engineering, increased computational rapidity is
often achieved at the expense of solution accuracy.

7.3.2 The method of characteristics

7.3.2.1 Treatment of internal points

The method of characteristics (MOC), initially applied by Courant, Isaacson
and Rees (Courant et al. (1952)) to the equations of gas dynamics, uses the
characteristic form (equations 7.40) of the Saint Venant equations. Except
in the case of very simple channel geometry and initial and boundary condi-
tions, where analytical solutions can be derived (Abbott (1966)), it is almost
never possible to derive analytical solutions to the system (7.40) for real-
world geometries or arbitrary initial and boundary conditions. The system
(7.40) is integrated approximately using the finite-difference formalism (see
Section 2.6.3 and Figure 2.7 for an outline of finite differences). It is shown
in Section 3.9.5 how the characteristic form of a scalar PDE can be used to
derive a solution to it. The present subsection generalizes the approach to
the 2 × 2 set of equations (7.40).

The computational grid is defined as in Figure 7.12.
Space and time are discretized into computational points and time lev-

els, respectively. The cell size �xi+1/2 is defined as the difference between
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Figure 7.12 Definition of the method of characteristics. The four possible options for the
foot Fk of the characteristic dx/dt = λk
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the abscissae of the points i and i + 1. The computational time step �t is
defined as the difference between the time levels n and n + 1. The flow vari-
ables are assumed to be known at all points i at the time level n (circles
in Figure 7.12). The purpose is to compute the flow variables at the time
level n. Remember from Sections 7.2.2.5 and 7.2.2.7 that the vector U is
known uniquely at any given point in the (x, t)-plane, provided that the
two Riemann invariants W1 and W2 are known at this point. Computing
the solution at the point i for the time level n then translates to comput-
ing the two Riemann invariants. This is achieved via numerical integration.
Equations (7.40) are discretized as

Wn+1
ki − Wk(Fk)

�t
= S′′n+1/2

k , k = 1,2 (7.75)

where the subscript i and the superscript n + 1 indicate that Wk is sought
at the time level n + 1 at the point i. The superscript n + 1/2 denotes an
average value between the time levels n and n + 1. Fk is the foot of the
kth characteristic dx/dt = λk, that is, the intersection of the characteristic
dx/dt = λk with one of the lines t = tn or x = xi±1. Multiplying equation
(7.75) by �t and rearranging leads to

Wn+1
ki = Wk(Fk) + S′′n+1/2

k �t, k = 1,2 (7.76)

The Riemann invariant Wk can be computed uniquely at (i, n + 1)
provided that Wk(Fk) and S′′

k can be estimated. This is done as follows.

1 Estimating Wk(Fk). As Fk is, in general, not located at a computational
point, the value of Wk must be interpolated. The most widely used
interpolation techniques are the first-order (or linear) and second-order
(or parabolic) interpolation methods. Note that Holly and Preissmann
(1977) also proposed a two-point, third-order interpolation technique
whereby both the solution variables and its space derivative are propa-
gated simultaneously. A first-order interpolation technique leads to the
following formulae

Wk(Fk) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

tk − tn

�t
Wn

ki−1
+
(

1 − tk − tn

�t

)
Wn+1

ki−1
if Fk ∈ [AB]

xk − xi−1

�xi−1/2
Wn

ki
+
(

1 − xk − xi−1

�xi−1/2

)
Wn

ki−1
if Fk ∈ [BC]

xk − xi

�xi+1/2
Wn

ki+1
+
(

1 − xk − xi

�xi+1/2

)
Wn

ki
if Fk ∈ [CD]

tk − tn

�t
Wn

ki+1
+
(

1 − tk − tn

�t

)
Wn+1

ki+1
if Fk ∈ [DE]

(7.77)
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Noting that tn+1 − tn = �t, introducing the definition of the Courant
number leads to

Wk(Fk) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

Crk
Wn

ki−1
+
(
1 − 1

Crk

)
Wn+1

ki−1
if Crk ≥ 1

CrkWn
ki−1

(1 − Crk)Wn
ki

if 0 ≤ Crk ≤ 1
−CrkWn

ki+1
+ (1 + Crk)Wn

ki
if − 1 ≤ Crk ≤ 0

− 1
Crk

Wn
ki+1

+
(
1 + 1

Crk

)
Wn+1

ki+1
if Crk ≤−1

(7.78)

where Crk is defined as

Crk =

⎧⎪⎪⎨⎪⎪⎩
λk

�t
�xi+1/2

if λk ≤ 0

λk
�t

�xi−1/2
if λk ≥ 0

(7.79)

Note that for Crk = −1, 0 and +1, the characteristic dx/dt = λk passes
at B, C and D, respectively, and equations (7.78) give the exact solu-
tion. When the absolute value of the Courant number is smaller than or
equal to unity (second and third equations in system (7.78)), Wk can be
determined directly from the known values of the flow variables at the
time level n. Conversely, when the absolute value of the Courant num-
ber is larger than unity (first and fourth equations in system (7.78)),
the estimate of Wk(Fk) uses the unknown values of the flow variables at
tn+1. This makes the numerical scheme implicit.

2 Estimating S′′n+1/2
k . In equations (7.75) and (7.76), S′′n+1/2

k should be seen
as an average value of the right-hand side of equation (7.40) between
the foot Fk of the characteristic and the point (i, n + 1). A widespread
option is as follows:

S′′n+1/2
k = (1 − θ )S′′

k(Fk) + θS′′n+1
ki

(7.80)

where S′′
k(Fk) may be interpolated in the same way as Wk using equa-

tions (7.78). The parameter θ is a so-called implicitation parameter.
For θ = 0, S′′

k can be computed directly from the known values at the
time level n, thus providing an explicit estimate of the source term. For
θ > 0, S′′n+1/2

k is a function of the unknown flow variables at the point i
at the time level n + 1.

3 Estimating the wave celerities λk. For equations (7.79) to be applicable,
the wave celerities λk must be calculated numerically. The following
formulae may be used:
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λk = λki
n (7.81a)

λk = �xi+1/2λki−1
n +�xi−1/2λki+1

n

�xi−1/2 +�xi+1/2
(7.81b)

λk =
{

[Crkλki−1
n + (1 − Crk)λki

n] (1 − θ ) + θλki
n+1 if Crk ≥ 0[

(1 + Crk)λki
n − Crkλki+1

n
]
(1 − θ ) + θλki

n+1 if Crk ≤ 0
(7.81c)

Equation (7.81a) is the simplest option. It may lead to inaccuracies in
the neighbourhood of critical points (i.e. near transitions from subcritical to
supercritical flow), where one of the celerities λk changes sign. This draw-
back is eliminated to some extent in equation (7.81b), where λk at point i
is estimated as the result of a linear interpolation between the points i − 1
and i + 1. In equation (7.81c), λk is estimated as the average between the
foot of the characteristic and the point (i, n + 1). While equations (7.81a)
and (7.81b) provide explicit estimates for λk, equation (7.81c) assumes an
implicit character via the implicitation coefficient θ .

7.3.2.2 Treatment of boundary points

The treatment of supercritical flow is straightforward, as it involves pre-
scribing both Riemann invariants (i.e. both A and Q, or both Y and V) for
a supercritical inflow and none for a supercritical outflow. Consequently,
for the sake of clarity and conciseness only the treatment of a left-hand
boundary under subcritical conditions is detailed hereafter. The treatment
of right-hand boundaries may be inferred from symmetry considerations.

Remember that, under subcritical conditions, the characteristics
dx/dt = λ1 and dx/dt = λ2 leave and enter the domain, respectively. Conse-
quently, W1(F1) and S′′n+1/2

11 can be determined by applying equation (7.76)
for i = k = 1

Wn+1
11

= W1(F1) + S′′n+1/2
1 �t (7.82)

where the Riemann invariant W1 at the foot F1 of the first characteristic and
the average source term are estimated according to equations (7.78) and
(7.80) for i = k = 1:

W1(F1) =
⎧⎨⎩−Cr1Wn

k2 + (1 + Cr1)Wn
k1 if − 1 ≤ Cr1 ≤ 0

− 1
Cr1

Wn
k2 +

(
1 + 1

Cr1

)
Wn+1

k2 if Cr1 ≤−1
(7.83a)

S′′n+1/2
1 = (1 − θ )S′′

1(F1) + θS
′′n+1
11 (7.83b)
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The missing piece of information is provided in the form of a bound-
ary condition. In practice, the following types of boundary condition
are used.

1 Prescribed water level η or depth Y. Prescribing η or Y is equivalent
to prescribing A and B. Consequently, the celerity c = (gA/B)1/2 of the
waves in still water is known. For instance, in the case of the rectangular
and triangular channels presented in Section 7.2.2.5 (see Figure 7.3),
one has from equations (7.41c) and (7.47c)

cb = (gYb)1/2 (rectangular channel) (7.84a)

cb = (gYb/2)
1/2 (triangular channel) (7.84b)

where the subscript b indicates the prescribed value at the boundary.
As the celerity c of the waves in still water is a combination of the
two Riemann invariants W1 and W2, prescribing c = cb is equivalent to
prescribing a known relationship between W1 and W2. Taking again the
example of the rectangular and triangular channels, one obtains from
equations (7.46b) and (7.49b)

Wn+1
21 − Wn+1

11 = 4cb (rectangular channel) (7.85a)

Wn+1
21 − Wn+1

11 = 8cb (triangular channel) (7.85b)

Equations (7.82) and (7.85) form a 2 × 2 system of algebraic
equations that can be solved uniquely for Wn+1

1 and Wn+1
2 .

2 Prescribed velocity V. Prescribing a velocity Vb at the left-hand bound-
ary is equivalent to prescribing a combination of W1 and W2. It can
be seen from equations (7.46a) and (7.49a) that for a rectangular or
triangular channel

Wn+1
11 + Wn+1

21 = 2Vb (7.86)

There, again, equations (7.82) and (7.86) form a 2 × 2 system that
can be solved uniquely for Wn+1

11 and Wn+1
21 .

3 Prescribed discharge Q. Prescribing a discharge Qb at the left-hand
boundary is equivalent to prescribing the product of A and V, which
in turn is equivalent to prescribing a combination of W1 and W2. In
the case of the rectangular and triangular channels, substituting equa-
tions (7.41) and (7.47) into equations (7.46b) and (7.49b), respectively,
yields
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Qb = BYbVb = B
g

c2
bVb (rectangular channel) (7.87a)

= B
32g

(
Wn+1

21 − Wn+1
11

)2 (
Wn+1

11 + Wn+1
21

)
Q = 1

2
( tan θ1 + tan θ2)Y2

bVb

= 1
2

( tan θ1 + tan θ2)
(

2c2
b

g

)2

Vb (triangular channel) (7.87b)

= tan θ1 + tan θ2

212g2

(
Wn+1

21 − Wn+1
11

)4 (
Wn+1

11 + Wn+1
21

)
4 Prescribed stage–discharge relationship. Such a relationship can be

written in the form

f (Qb, ηb) = 0 (7.88)

From equations (7.84) and (7.87), it is easy to see that equation (7.88)
can also be rewritten in the form

f2(Wn+1
11 ,Wn+1

21 ) = 0 (7.89)

7.3.2.3 Algorithmic aspects

From a practical point of view, the calculation process that allows the flow
variables at the time level n + 1 to be computed from the known vari-
ables at the time level n and the boundary conditions at tn+1 is a three-step
process.

1 Sweep the domain from i = 1 to i = M (the number of calculation
points in the computational domain). For each i compute the Riemann
invariants Wn

ki, k = 1,2, from the known flow variables at the time
level n.

2 Use equations (7.76)–(7.81) to compute the Riemann invariants
Wn+1

ki at the internal points (from i = 2 to i = M − 1) and solve
equations (7.82)–(7.89) to compute the Riemann invariants Wn+1

k1 and
Wn+1

kM at the domain boundaries. The sequence is the following: for
each internal point i, (i) determine the wave celerities using one of
equations (7.81), (ii) use equation (7.79) to compute the Courant num-
ber for each wave, (iii) estimate the Riemann invariant at the foot of
each characteristic using equation (7.78) and the average source terms
S′′n+1/2

k using equation (7.80), and (iv) use equation (7.76) to compute
the Riemann invariants Wk at the next time level.
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3 Use the so-obtained values of Wn+1
ki to compute the flow variables (Un+1

i

or Vn+1
i depending on the choice of state variables made).

The number of operations involved in step 2 is strongly dependent on
the options chosen for the determination of the celerities λk and the aver-
age source term S′′n+1/2

k as well as the numerical values chosen for the
computational time step and cell size. Two options may be considered:

Option 1: purely explicit method. A purely explicit calculation at inter-
nal points is possible provided that the following conditions are
satisfied: (i) the computational time step is restricted in such
a way that the absolute value of the Courant number Crk for
both waves (k = 1 and k = 2) remains smaller than unity for
all i, (ii) the implicitation parameter θ is set to zero in the esti-
mate (7.80) of the source term, and (iii) equation (7.81a) or
(7.81b) is used in the estimate of the wave celerities. It is easy
to check that this combination of options is indeed the only
one that allows the Riemann invariants at the time level n + 1
to be computed directly from the known values at the time
level n.

Option 2: implicit method. Any other choice for the estimate of the wave
speed, source term or a time step leading to Courant numbers
larger than unity leads to relating several unknown values of
the Riemann invariants within the same equation. In this case,
the calculation procedure becomes iterative. Then, steps 2 and
3 of the above algorithm must be repeated until convergence.
In the first iteration, an initial guess must be provided for the
unknown values of Wk, λk and S′′

k at the time level n + 1. The
most commonly used option consists of using the current value
at the known time level.

In this option, the computational rapidity of the method
depends to a large extent on the convergence criteria and the
maximum number of iterations defined by the user (see Section
7.3.1.3 – Iteration convergence criteria). Specifying severe con-
vergence criteria allows the convergence of the solution to be
increased, but at the expense of computational rapidity.

7.3.2.4 Behaviour of the numerical solution

The degree of accuracy of the numerical solution obtained using the MOC
is basically conditioned by two factors: (i) the nature of the interpolation
method used, and (ii) the numerical value of the Courant number. The
influence of these two parameters is briefly discussed hereafter.
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First-order interpolation methods are essentially monotone. In other
words, whatever the numerical values of the Riemann invariants that are
used as a basis for interpolation in equations (7.78), the result of the inter-
polation always lies between the minimum and maximum values used as a
basis for the interpolation. Consequently, no undershooting or overshoot-
ing is possible, and first-order interpolation methods tend to introduce a
smoothing in the solutions by adding numerical diffusion, an effect also
known as ‘amplitude error’ (Cunge et al. (1980)). In contrast, second- and
higher-order interpolation techniques are essentially non-monotone, with
the consequence that the result of the interpolation may lie outside the ini-
tial range of the variables. From a practical point of view, this results in
oscillations in the neighbourhood of strong gradients and steep fronts in the
flow variables. This effect, also called ‘phase error’ (Cunge et al. (1980)), is
the result of numerical dispersion.

As mentioned in Section 7.3.2.1, particular values of the Courant num-
ber such as 0 and ±1 yield the exact solution because in such cases the
foot of the characteristic is located at a computational point and the inter-
polation formulae give the exact solution. Since the celerities of the two
waves are different in the general case, no value can be found for �t to
make the Courant number equal to unity for both waves at the same time.
Consequently, at least one of the two waves is either subjected to damping
or under/overshooting in the interpolation process. When a second-order
interpolation is used, numerical dispersion is usually the strongest when the
Courant number is around 1/2. When a first-order interpolation is used,
numerical diffusion is zero for Cr = 0, around its maximum for Cr = 1/2,
vanishes again for Cr = 1 and increases with Cr for values of Cr larger than
unity. Such considerations, however, refer to the amount of numerical dif-
fusion introduced within a single time step. When the computational time
step is decreased, the number of time steps needed to simulate a given period
increases, with the consequence that the numerical smoothing process is
repeated a larger number of times. Although the amount of numerical dif-
fusion brought within a given time step decreases with �t, this may result in
a strong degradation of the quality of the numerical solution when �t tends
to zero (Guinot (1998)).

A final recommendation concerns the use of the interpolation equa-
tions (7.78). Each of these four equations is to be used within a well-defined
range for the Courant number. Attempting to use any of these equations
outside its range of applicability yields numerical instabilities in the calcu-
lation of the corresponding Riemann invariant, with the entire numerical
solution becoming unstable as a final result. In particular, when the explicit
MOC (given by the second and third equations in system (7.78)) is used, the
computational time step should be kept sufficiently small for the absolute
value of the Courant number of both waves to remain smaller than or equal
to unity.
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7.3.3 Preissmann’s scheme

7.3.3.1 Treatment of internal points

The Preissmann scheme (Preissmann (1961), Preissmann and Cunge
(1961a), (1961b)) uses two time levels and two points in space in the
discretization of the governing equations. Although the scheme may be
used with equal success to solve the conservation form (equation 7.20),
the non-conservation forms (equations 7.22 or 7.33) or the characteris-
tic form (equation 7.40) of the Saint Venant equations, most industrial
implementations concern the non-conservation form of the equations. The
computational grid is defined as in Figure 7.13.

The space and time derivatives of U are estimated as

∂U
∂x

≈ (1 − θ )
Un

i+1 − Un
i

�xi+1/2
+ θ

Un+1
i+1 − Un+1

i

�xi+1/2
(7.90a)

∂U
∂t

≈ (1 −ψ)
Un+1

i − Un
i

�t
+ψ

Un+1
i+1 − Un

i+1

�t
(7.90b)

Substituting equations (7.90) into equation (7.22) and rearranging gives

an+1/2
i+1/2 Un+1

i + bn+1/2
i+1/2 Un+1

i+1 = cn+1/2
i+1/2 (7.91a)

an+1/2
i+1/2 = 1 −ψ

�t
I − θ

�xi+1/2
An+1/2

i+1/2 (7.91b)

bn+1/2
i+1/2 = ψ

�t
I + θ

�xi+1/2
An+1/2

i+1/2 (7.91c)

cn+1/2
i+1/2 =Sn+1/2

i+1/2 +
[

1 −ψ

�t
I+ 1 − θ

�xi+1/2
An+1/2

i+1/2

]
Un

i +
(
ψ

�t
I− 1 − θ

�xi+1/2
An+1/2

i+1/2

)
Un

i+1

(7.91d)
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n + 1
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x/U
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t
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n
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t/U∂ ∂ ∂
θ

θ

∂

Figure 7.13 Preissmann’s scheme. Definition of the discretization of the space derivative
(a) and the time derivative (b). Circles: known values at the time level n.
Crosses: unknown values at the time level n + 1
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where I is the identity matrix and the subscript and superscript i + 1/2 and
n + 1/2 indicate that A and S are to be estimated in an average sense over
the ‘box’ delimited by (i, n), (i + 1, n), (i + 1, n + 1) and (i, n + 1) in
the (x, t)-plane. Equation (7.91a) yields a 4 × 4 system that must be solved
for the unknowns A and Q at the points i and i + 1 at the time level n.
Substituting the expression (7.25) for the matrix A into equations (7.91b)–
(7.101d) leads to

an+1/2
i+1/2 =

⎡⎢⎢⎣
1 −ψ

�t
− θ

�xi+1/2

θ (u2 − c2)n+1/2
i+1/2

�xi+1/2

1 −ψ

�t
− 2θ un+1/2

i+1/2

�xi+1/2

⎤⎥⎥⎦ (7.92a)

bn+1/2
i+1/2 =

⎡⎢⎢⎣
ψ

�t
θ

�xi+1/2

θ (c2 − u2)n+1/2
i+1/2

�xi+1/2

ψ

�t
+ 2θ un+1/2

i+1/2

�xi+1/2

⎤⎥⎥⎦ (7.92b)

cn+1/2
i+1/2 =

[
0

(S0 − Se)gA

]n+1/2

i+1/2

+

⎡⎢⎢⎣
1 −ψ

�t
− 1 − θ

�xi+1/2

(1 − θ )(u2 − c2)n+1/2
i+1/2

�xi+1/2

1 −ψ

�t
− 2θ un+1/2

i+1/2

�xi+1/2

⎤⎥⎥⎦

×
[

A
Q

]n

i

+

⎡⎢⎢⎣
ψ

�t
− 1 − θ

�xi+1/2

(1 − θ )(u2 − c2)n+1/2
i+1/2

�xi+1/2

ψ

�t
− 2θ un+1/2

i+1/2

�xi+1/2

⎤⎥⎥⎦[ A
Q

]n

i+1

(7.92c)

Substituting equations (7.92) into the vector equation (7.91a) leads to the
following two scalar, algebraic equations

D(1)
i+1/2A

n+1
i + E(1)

i+1/2Q
n+1
i F(1)

i+1/2A
n+1
i+1 + G(1)

i+1/2Q
n+1
i+1 = H(1)

i+1/2, i = 1, . . . , M − 1
(7.93a)

D(2)
i+1/2A

n+1
i + E(2)

i+1/2Q
n+1
i F(2)

i+1/2A
n+1
i+1 + G(2)

i+1/2Q
n+1
i+1 = H(2)

i+1/2, i = 1, . . . ,M − 1
(7.93b)

Equations (7.93) provide 2M − 2 equations in
[
An+1

i , Qn+1
i

]
, for a total

number of unknowns equal to 2M. The missing two pieces of information
must be taken from the boundary conditions.

7.3.3.2 Treatment of boundary points

The treatment of boundary points is examined only for subcritical flow con-
figurations. In this case, exactly one boundary condition must be supplied
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at each end of the channel. For the sake of conciseness, only the treatment
of the left-hand boundary (i = 1) is detailed hereafter.

1 Prescribed water level η or depth Y. Prescribing η or Y is equivalent to
prescribing a known value Ab for A at the point i = 1:

An+1
1 = Ab (7.94)

2 Prescribed velocity. Prescribing a known velocity VL at the left-hand
boundary is achieved by specifying that the following relationship
should hold:

VLAn+1
1 − Qn+1

1 = 0 (7.95)

3 Prescribed discharge. Prescribing a known discharge QL at the left-hand
boundary yields the straightforward condition:

Qn+1
1 = Qb (7.96)

4 Prescribed stage–discharge relationship. A stage–discharge relationship
may be expressed in the form:

Qn+1
1 = f (An+1

1 ) (7.97)

As the function f is non-linear in the general case, solving equa-
tion (7.97) usually requires iterative procedures. A widespread
approach consists of linearizing the relationship (7.97) between the
known time level n and the unknown time level n + 1:

Qn+1
1 ≈ Qn

1 + (An+1
1 − An

1)
dQ
dA

= Qn
1 + (An+1

1 − An
1)

dQ
dη

(
dA
dη

)−1

(7.98)
= Qn

1 + An+1
1 − An

1

B
dQ
dη

Rearranging equation (7.98) yields

Bn+1/2Qn+1
1 −

(
dQ
dη

)n+1/2

An+1
1 = Bn+1/2Qn

1 −
(

dQ
dη

)n+1/2

An
1 (7.99)

where dQ/dη and B must be estimated in an average sense between the
time levels n and n + 1.
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7.3.3.3 Algorithmic aspects

The coefficients D to H in equations (7.93) involve averaged values of V, c
and Se between the points i and i + 1 and the time levels n and n + 1. The
following, general approximation is proposed :

Vn+1/2
i+1/2 = (1 − θ ′)

[
(1 −ψ ′)Vn

i +ψ ′Vn
i+1

]+ [(1 −ψ ′)Vn+1
i +ψ ′Vn+1

i+1

]
θ ′

(7.100a)

cn+1/2
i+1/2 = (1 − θ ′)

[
(1 −ψ ′)cn

i +ψ ′cn
i+1

]+ [(1 −ψ ′)cn+1
i +ψ ′cn+1

i+1

]
θ ′

(7.100b)

Sn+1/2
ei+1/2

= (1 − θ ′)
[
(1 −ψ ′)Sn

ei
+ψ ′Sn

ei+1

]
+
[
(1 −ψ ′)Sn+1

ei
+ψ ′Sn+1

ei+1

]
θ ′

(7.100c)

Another approach consists of computing V, c and Se using interpolated
values of A and Q, that is,

Vn+1/2
i+1/2 = V

(
An+1/2

i+1/2 ,Q
n+1/2
i+1/2

)= Qn+1/2
i+1/2 /A

n+1/2
i+1/2 (7.101a)

cn+1/2
i+1/2 = c

(
An+1/2

i+1/2 ,Q
n+1/2
i+1/2

)= [gAn+1/2
i+1/2 /B

(
An+1/2

i+1/2

)]1/2
(7.101b)

Sn+1/2
ei+1/2

= Se

(
An+1/2

i+1/2 ,Q
n+1/2
i+1/2

)
(7.101c)

An+1/2
i+1/2 = (1 − θ ′) [(1 −ψ ′)An

i +ψ ′An
i+1

]+ [(1 −ψ ′)An+1
i +ψ ′An+1

i+1

]
θ ′

(7.101d)

Qn+1/2
i+1/2 = (1 − θ ′)

[
(1 −ψ ′)Qn

i +ψ ′Qn
i+1

]+ [(1 −ψ ′)Qn+1
i +ψ ′Qn+1

i+1

]
θ ′

(7.101e)

The most frequently used options consist of using θ ′ =ψ ′ = 1/2, or θ ′ = θ

and ψ ′ = ψ . A similar approach may be used for the estimate of B and
dQ/dη in equation (7.99).

The solution algorithm between the time levels n and n+1 can be broken
down into the following sequence.

1 For each interval [i, i + 1], compute the coefficients in equations (7.93)
using the estimates (7.100) or (7.101). In the first iteration, the
unknown variables at tn+1 are assumed to be equal to their
previous value at tn. Incorporate the boundary conditions using
equations (7.94)–(7.99) depending on the nature of the boundary con-
dition. If equation (7.99) is used, B and dQ/dη are taken equal to their
values at tn for the first iteration.

2 Solve the 2M × 2M system of algebraic equations for An+1
i and Qn+1

i

(i = 1, . . . ,M). As shown in Cunge et al. (1980) and Abbott and Minns
(1998), the vector of unknowns can be arranged in such a way that
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the system to be solved is pentadiagonal. Standard matrix-inversion
techniques may be used, one of the most efficient ones for such nar-
row bandwidth systems being the so-called ‘double-sweep algorithm’
(Abbott and Minns (1998), Cunge et al. (1980)).

3 Use the solutions An+1
i and Qn+1

i (i = 1, . . . ,M) to update the coeffi-
cients in equations (7.93) and (7.99) using equations (7.100) or (7.101)
depending on the option retained.

Steps 2 and 3 must be repeated until convergence. In practice, three or
four iterations prove to be sufficient in most situations.

7.3.3.4 Behaviour of the numerical solution

The parameter ψ influences the centring of the estimate of the time deriva-
tive with respect to x. If ψ is set to 0, the time derivative is estimated using
the numerical solution at the point i, which yields an increased stability
of the waves with negative celerities and makes the waves with positive
celerities less stable. Conversely, setting ψ to 1 gives full weight to the
point i + 1, thus enhancing the stability of the solutions travelling with
positive wave speeds and decreasing the stability of solutions travelling at
negative celerities. As solving the Saint Venant equations under subcritical
conditions implies dealing with two waves travelling in opposite directions,
optimal stability for both waves is achieved for ψ=1/2. Departing from the
symmetrical value ψ=1/2 increases the stability of one wave, while decreas-
ing the stability of the other, with the risk of making the entire solution
unstable. For this reason it is strongly advised to use ψ = 1/2 in standard
channel-flow-modelling applications.

Increasing the implicitation parameter θ increases the stability of the
numerical solution. For the standard configuration ψ = 1/2, values of θ
smaller than 1/2 yield unconditionally stable solutions (i.e. the numerical
solution is unstable whatever the numerical value of the Courant number),
while values of θ larger than or equal to 1/2 yield stable solutions. When
θ = ψ = 1/2, the analytical solution is obtained for the waves, the abso-
lute value of the Courant number of which is unity. If the absolute value of
the Courant number is different from unity, numerical dispersion appears
and the solution exhibits spurious oscillations near steep fronts and rapidly
varying flow variables. Increasing the value of θ leads to increased numeri-
cal diffusion, leading to a more stable solution with a stronger damping of
rapid transients.

The Preissmann scheme in its original version is not equipped to deal with
transcritical flow simulations (e.g. a channel with supercritical inflow and
subcritical outflow), because in such configurations the number of equations
to be solved does not match the number of unknowns (Meselhe and Holly
(1997)). Recent developments (Johnson et al. (2002)) allow the Preissmann
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scheme to be used for the simulation of critical points and hydraulic jumps
by combining equations (7.93) appropriately depending on the direction of
propagation of the waves.

7.3.4 Abbott–Ionescu’s scheme

7.3.4.1 Treatment of internal points

The Abbott–Ionescu scheme uses a staggered, regular grid (Abbott and
Ionescu (1967)). The water depth Y (or the cross-sectional area A) is sought
at the points i, i + 2, i + 4, etc., while the flow velocity V (or the dis-
charge Q) is sought at the points i − 1, i + 1, i + 3, etc. (Figure 7.14).
A consequence of the staggered character of the scheme is that the deriva-
tives of Y (or A) and V (or Q) with respect to x cannot be approximated
at the same points. Therefore, the governing equations must be rewrit-
ten in such a way that the space derivative of only one of the variables
appears in each equation.

i – 1 i i + 2 x 
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i + 1 

n + 1 

n

Δx 

Δt 
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θ∂ ∂
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∂ ∂
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θ

θ

Figure 7.14 Definition of the Abbott–Ionescu scheme. Derivatives of Y or A (top), deriva-
tives of V or Q (bottom). Triangles: computational points for A or Y . Circles:
computational points for Q or V. Solid markers: known values at time level n.
Dashed markers: unknown values at time level n + 1
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Several variants may be proposed for this scheme.

1 Original scheme (Abbott and Ionescu (1967)). The scheme was
originally presented for the solution of the non-conservation form
(equation 7.33), which can be rewritten as

B
∂Y
∂t

+ BV
∂Y
∂x

+ A
∂V
∂x

= 0 (7.102a)

BV
∂Y
∂t

+ A
∂V
∂t

+ (c2 + V2)B
∂Y
∂x

+ 2Q
∂V
∂x

= (S0 − Se)gA (7.102b)

The derivative ∂V/∂x can be eliminated by multiplying equa-
tion (7.102a) by 2V and subtracting the resulting equation from
equation (7.102b). The derivative ∂Y/∂x can be eliminated by multiply-
ing equations (7.102a) and (7.102b) by c2 +V2 and V, respectively, and
subtracting them from each other. The following system of equations is
obtained:

− BV
∂Y
∂t

+ A
∂V
∂t

+ (c2 + V2)B
∂Y
∂x

= (S0 − Se)gA (7.103a)

− gA
∂Y
∂t

+ Q
∂V
∂t

+ (QV − c2A)
∂V
∂x

= (S0 − Se)gQ (7.103b)

Equation. (7.103a) is discretized at the point i + 1 using the following
estimates of the derivatives:

∂Y
∂t

≈ 1
2

(
Yn+1

i − Yn
i

�t
+ Yn+1

i+2 − Yn
i+2

�t

)
(7.104a)

∂V
∂t

≈ Vn+1
i+1 − Vn

i+1

�t
(7.104b)

∂Y
∂x

≈ (1 − θ )
Yn

i+2 − Yn
i

2�x
+ θ

Yn+1
i+2 − Yn+1

i

2�x
(7.104c)

Equation (7.103b) is discretized at the point i using the following
estimates for the derivatives:

∂Y
∂t

≈ Yn+1
i − Yn

i

�t
(7.105a)

∂V
∂t

≈ 1
2

(
Vn+1

i−1 − Vn
i−1

�t
+ Vn+1

i+1 − Vn
i+1

�t

)
(7.105b)

∂V
∂x

≈ (1 − θ )
Vn

i+1 − Vn
i−1

2�x
+ θ

Vn+1
i+1 − Vn+1

i−1

2�x
(7.105c)
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Substituting equations (7.104) and (7.105) into equations (7.103a)
and (7.103b), respectively, yields a system in the form

D(1)
i+1Y

n+1
i + E(1)

i+1V
n+1
i F(1)

i+1Y
n+1
i+2 = G(1)

i+1, i = 1, . . . ,M − 1 (7.106a)

D(2)
i Vn+1

i−1 + E(2)
i Yn+1

i F(2)
i Vn+1

i+1 = Gi, i = 1, . . . ,M − 1 (7.106b)

2 Solution in pseudo-conservation form (DHI (2005)). In some commer-
cially available software packages such as Mike 11 (DHI (2005)), the
following set of equations is solved:

B
∂Y
∂t

+ ∂Q
∂x

= 0 (7.107a)

∂Q
∂t

+ ∂

∂x

(
Q2

A

)
+ gA

∂Y
∂x

= (S0 − Se)gA (7.107b)

The continuity equation is discretized around the point i using the
following estimates:

∂Y
∂t

≈ Yn+1
i − Yn

i

�t
(7.108a)

∂Q
∂x

≈ (1 − θ )
Qn

i+1 − Qn
i−1

2�x
+ θ

Qn+1
i+1 − Qn+1

i−1

2�x
(7.108b)

The momentum equation is discretized around the point i + 1 using the
following estimates:

∂Q
∂t

≈ Qn+1
i+1 − Qn

i+1

�t
(7.109a)

∂(Q2/A)
∂x

≈ (1 − θ )

Qn
i+1Q
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i+1
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i+1Q
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An+1
i+2
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i+1Q

n+1
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i
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(7.109b)

∂A
∂x

≈ (1 − θ )
An

i+2 − An
i

2�x
+ θ

An+1
i+2 − An+1

i

2�x
(7.109c)

which yields a system similar to (7.106). Note that using the value of Q at
the point i+1 alone in equation (7.109b) does not yield a full discretization
of the term ∂(Q2/A)/∂x = Q2∂(1/A)/∂x + 2V∂A/∂x. Equation (7.109b) is
actually an approximation for the quantity Q2 ∂(1/A)/∂x. Consequently,
the term 2V ∂A/∂x is absent from the discretized momentum equation.

Denoting by M the total number of points in the computational grid, M
flow variables must be computed at the time level n+1 (remember that only
one flow variable, either Y or Q, must be computed at each computational
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point). However, the momentum or continuity equations can be written only
for the points i=2 to i=M−1 because the discretization uses three adjacent
points in space. Consequently, one boundary condition must be specified at
each end of the domain.

7.3.4.2 Treatment of boundary points

As mentioned in Cunge et al. (1980), prescribing the water level η(t) or
the discharge Q(t) at the domain boundaries is straightforward. The only
necessary condition is that the grid should be designed in such a way that
boundaries where the discharge is to be prescribed are materialized by a
Q-computational point, and boundaries where the water level η (or depth
Y or cross-sectional area A) is to be prescribed are materialized by a
Y-computational point.

Difficulties arise when the boundary condition is a combination of both
Y and Q (or V), as is the case with stage–discharge relationships. In essence,
a stage–discharge relationship Q = Q(η) or Q = Q(Y) implies that both Q
and Y are known at the same point. The staggered nature of the Abbott–
Ionescu scheme, however, makes this impossible. This difficulty may be
eliminated by interpolating linearly the rating curve between two successive
Y-computational points, as proposed by Verwey (1971). Another option
(DHI (2005)) consists of defining the point M as a Y-computational point
and writing a simplified continuity equation for this point:

Yn+1
M − Yn

M

�t
An+1/2

M = 1
2

(
Qn

M−1 − Qn
b

�x
+ Qn+1

M−1 − Qn+1
b

�x

)
(7.110)

where Qb is the discharge at the point M. Qn
b is known from the previous

time step, but Qn+1
b is still to be determined. The system is closed using a

linearization of the rating curve:

Qn+1
b = an+1/2Yn+1

M + bn+1/2 (7.111)

7.3.4.3 Algorithmic aspects

Whatever the option retained for the treatment of internal points, the system
to be solved is a tri-diagonal system (Abbott and Minns (1998), Cunge et al.
(1980)) that can be solved using standard inversion techniques such as the
double-sweep algorithm.

The solution sequence is iterative. At each iteration, the following steps
must be made:

1 Compute the coefficients in the discretized equations. In equa-
tions (7.103) and (7.107), the average value of the free-surface width
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B between the time levels n and n + 1 must be estimated at the Y- and
V-points. The following estimates may be used:

Bn+1/2
i = (1 − θ )B(Yn

i ) + θB(Yn+1
i )(Y − point) (7.112a)

Bn+1/2
i+1 = 1 − θ

2

[
B(Yn

i ) + B(Yn
i+2)
]+ θ

2

[
B(Yn+1

i ) + B(Yn+1
i+2 )

]
(V − point)

(7.112b)

The hydraulic radius that is necessary in the calculation of the slope
of the energy line may be interpolated in the same way. At the beginning
of the first iteration, the solution at the time level n+1 is not yet known
and the known value at the time level n must be used instead.

2 Solve the four-diagonal system (7.106) using any standard matrix-
inversion technique. One of the fastest techniques known to date
is the double-sweep algorithm (Abbott and Minns (1998), Cunge
et al. (1980)).

3 Update the coefficients as in step 1 using the newly computed solution
at the time level n + 1 and repeat steps 2 and 3 until convergence.

7.3.4.4 Behaviour of the numerical solution

For θ =1/2, the Abbott–Ionescu scheme is exactly centred in time and does
not induce any numerical diffusion. However, it is dispersive and yields
unphysical oscillations in the numerical solution, irrespective of the value
of the Courant number. In contrast with the Preissmann scheme, the
Abbott–Ionescu scheme is dispersive even for Cr = 1.

Just as for the Preissmann scheme, increasing the value of θ for the
Abbott–Ionescu scheme strengthens the implicit character of the scheme and
introduces numerical diffusion, the effect of which is to make the numerical
solution more stable, at the expense, however, of accuracy.

7.3.5 Modelling of structures and junctions

The equations and algorithms detailed so far deal only with single reaches,
over which the Saint Venant equations are applicable at all points. The
equations are not applicable across structures (sills, weirs, gates, bridges
with local section narrowing, etc.). Standard modelling practice consists of
breaking down the channel into two elementary channels, one upstream and
the other downstream of the structure (Figure 7.15a). From an algorithmic
point of view, the classical-flow equations remain applicable within each of
the reaches and the structure is considered as a boundary for each of the
elementary channels, hence the term ‘internal boundary’.

A similar problem arises in the modelling of branched-channel networks,
where the confluence of a main channel with a tributary may be represented
as an internal boundary between three elementary channels (Figure 7.15b).
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Figure 7.15 Representation of (a) structures and (b) channel branching as internal bound-
ary conditions. Top: physical situation. Bottom: algorithmic representation in
the solution algorithm

Consider first the case of a structure (Figure 7.15a). If the flow is subcriti-
cal in the channel, one characteristic enters the domain at each of the points
A and B, and therefore one boundary condition must be prescribed at each
of these points. Consequently, two equations must be provided in order to
close the system. These two equations are the continuity equation across the
structure and the formula for the head loss across the structure:

QA = QB + Qout (7.113a)

ηA + V2
A

2g
= ηB + V2

B

2g
+�H (7.113b)

where Qout is the discharge lost (e.g. by overspilling in the case of lateral
weirs, or discharge diversion across irrigation gates, etc.) and �H is the
head loss across the structure. In most cases this system is linearized with
respect to Q and Y and incorporated in the matrix system to be solved.

Consider now the case of a junction (Figure 7.15b). For the sake of
simplicity, only three channels are represented in Figure 7.15b, but the
considerations hereafter remain valid for an arbitrary number of channels
joining at the same point. Under subcritical flow, one characteristic leaves
each of the elementary channels at the points A, B and C, while one char-
acteristic enters each of the channels. Consequently, the number of internal
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boundary conditions needed to close the system is equal to the number of
channels at the junction. The first, obvious, condition is continuity:

J∑
k

εkQk = 0 (7.114)

where J is the number of channels at the junction (in Figure 7.15b, J = 3),
Qk is the discharge in the kth channel connected to the junction and εk is
a topological indicator, which is equal to +1 if the junction is considered
as an upstream boundary to the channel k and to −1 if the junction is
considered to be the downstream boundary of the channel. The remaining
J − 1 conditions are provided in the form of an assumption of equal water
levels across the junctions:

η1 = η2 = · · ·= ηJ (7.115)

Equation (7.115) yields J − 1 independent equations, which, together with
equation (7.114), suffice to close the system. Note that the assumption of
equal heads may also be used:

η1 + V2
1

2g
= η2 + V2

2

2g
= · · ·= ηJ + V2

J

2g
(7.116)

Note, however, that the option (7.116) introduces an extra complication
in the treatment of boundary conditions compared to the straightforward
condition (7.115) because of the non-linearity introduced by the term V2

k .
From a general point of view, internal boundary conditions involve the

determination of both A and Q (or Y and V) at the same boundary points.
Consequently, the treatment of structures and junctions is easier to imple-
ment algorithmically when the solution scheme is collocated (i.e. when
the two independent flow variables A and Q or Y and V are computed
at the same points, as in the MOC and in Preissmann’s scheme) than when
the numerical scheme is staggered (e.g. the Abbott–Ionescu scheme).

7.3.6 Modelling of dry beds and small depths

The treatment of small depths and dry beds is often a source of inaccuracy, if
not numerical instability, in the numerical solution of the open-channel-flow
equations. Three main issues are described hereafter: (i) problems arising
from the discretization of naturally shaped channels, (ii) the non-uniqueness
of the relationship between the discharge and the water depth in the dis-
cretized equations, and (iii) unphysical computational results induced by
coarse dicretizations.
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The first difficulty lies in that, in natural channels, the channel width B(Y)
tends to zero when the depth Y tends to zero. In most computational codes,
the equations are solved for Y and the continuity equation is discretized as

Bn+1/2
i

Yn+1
i − Yn

i

�t
=−

(
∂Q
∂x

)n+1/2

i

(7.117)

where the superscript n + 1/2 denotes the average value of the variable
between the time levels n and n + 1. Solving equation (7.117) for Yn+1

i gives

Yn+1
i = Yn

i − �t

Bn+1/2
i

(
∂Q
∂x

)n+1/2

i

(7.118)

The free-surface width Bn+1/2
i may be approximated using explicit,

implicit or semi-implicit equations such as (7.74) or (7.112). All options,
even the semi-implicit ones, lead to initialize Bn+1/2

i with the value Bn
i . In the

case of a wave flowing on an initially dry bed, Yn
i = 0, and consequently

Bn
i = 0. Then the calculation with equation (7.118) fails owing to division

by zero. Note that similar problems may occur even if the initial depth is not
zero. If Yn

i is very small, Bn
i is also very small. Consequently, Bn+1/2

i , which
is initialized as Bn+1/2

i = Bn
i in semi-explicit procedures, is very small at the

beginning of the iterative process. This may result in a dramatic overestima-
tion of the variations in the water depth as computed by equation (7.118).
For negative ∂Q/∂x, Yn+1

i is strongly overestimated, and so is the result-
ing value of Bn+1/2

i in the next iteration. In turn, overestimating the value
of Bn+1/2

i leads to an underestimate of Yn+1
i at the following iteration. If

the computational time step is too large, the iterative process may converge
very slowly. If the maximum number of iterations allowed by the user is
too small, convergence may not be achieved, with the consequence that the
discretized quantity B∂y/∂t may fail to provide a correct approximation of
∂A/∂t. Repeating this problem over several time steps generally leads to
severe mass-conservation problems, if not to numerical instability.

A solution to this problem consists of modifying the shape of the cross-
section artificially so that the bed does not become dry for Y = 0. To do
so, an artificial, triangular slot of base width Ws (to be specified by the
modeller) is created in the bottom (Figure 7.16a). The width of the slot
is usually a few centimetres. In the calculations, any value of η smaller
than the bottom level zb is reset to zb, which guarantees that the free-
surface width never becomes zero. This option, however, introduces a strong
bias in the calculation of the cross-sectional area when z < zs. For this
reason the so-called ‘area-preserving slot’ (Figure 7.16b) is sometimes pre-
ferred. The area-preserving slot is constructed as the superimposition of two
triangular slots.
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Figure 7.16 Artificial slot in the river bottom for dry bed computations. Simple, triangular
slot (a) and area-preserving triangular slot (b). Solid line: real cross-sectional
profile. Dashed line: modified cross-sectional profile. The size of the slot is
exaggerated compared to its actual dimensions

A second problem associated with small depths is the appearance of
oscillations near wetting and drying fronts due to the non-uniqueness of
the relationship between the discharge and the depth in the discretized
equations. The non-uniqueness of the relationship can be illustrated by con-
sidering a horizontal channel, where the depth is small enough for friction
to be assumed reasonably to be the dominant phenomenon, so that the iner-
tial terms can be neglected. The only terms remaining in the momentum
equation are the term c2∂A/∂x on the left-hand side and the term −gASe

on the right-hand side. Introducing the derivative of Y via equation (7.27)
and using the definition (7.29) for c allows the momentum equation to be
simplified to

∂Y
∂x

=−Se (7.119)

For the sake of simplicity, the channel is assumed to be rectangu-
lar and the wide-channel approximation R ≈ Y is assumed to hold
in equations (7.17). Substituting, for example, equation (7.17b) into
equation (7.119) and using the wide-channel approximation and the
relationship V = Q/(BY) leads to

∂Y
∂x

=− n2

B2

|Q|Q
Y10/3

(7.120)
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This equation can be rewritten as

Q = ε
B
n

Y5/3

∣∣∣∣∂Y
∂x

∣∣∣∣1/2 (7.121)

where ε = ±1, depending on the sign of ∂Y/∂x. Discretizing equa-
tion (7.121) between two adjacent computational points i and i + 1 leads to
(the superscript indicating the time level is omitted for the sake of generality)

Q = εB
n

y5/3
i+1/2

(
Yi+1 − Yi

�xi+1/2

)1/2

(7.122)

In the general case, Y5/3
i+1/2 is estimated as a linear combination of Yi and

Yi+1, such as

Yi+1/2 = (1 −ψ)Yi +ψ Yi+1 (7.123)

where the centring coefficient Y is between zero and unity. Substituting
equation (7.123) into equation (7.122) leads to

Q = εB
n

[(1 −ψ)Yi +ψ Yi+1]
5/3

(
Yi+1 − Yi

�xi+1/2

)1/2

(7.124)

When Q is positive, i is the upstream point and i + 1 is the down-
stream point. A straightforward function variation analysis indicates that
Q as given by equation (7.124) is not a monotonic function of Yi+1 for a
given Yi, unless ψ is set to zero. Conversely, for a negative discharge, Q
is a monotonic function of the downstream point Yi only if ψ is set to
1. The non-uniqueness of the relationship between the discharge and the
downstream depth may lead to artificial oscillations in the computed flow
variables during the (iterative) numerical solution process. Repeating the
process along several time steps may lead to solution instability.

The solution to this problem, suggested by Cunge et al. (1980), consists
of setting Y to 0 for positive values of Q and to unity for negative values
of Q. In other words, the conveyance B/n Y5/3 should be estimated using
only the upstream point. This numerical stabilization procedure is known
as ‘conveyance upwinding’. It should be used only for small depths, more
classical estimates being used when the depth becomes larger than a given
threshold value that is specified by the modeller.

The third problem associated with small depths is the possibly unphysi-
cal computational results triggered by the coarseness of the computational
grid. Consider a channel where the flow equations are solved using, for
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example, Preissmann’s scheme. The continuity equation is discretized as in
equation (7.90) with ψ = 1/2:

An+1
i+1 + An+1

i

2�t
+ θ

Qn+1
i+1 − Qn+1

i

�x
= An

i+1 + An
i

2�t
+ (1 − θ )

Qn
i+1 − Qn

i

�x
(7.125)

If the flow is initially uniform, An
i =An

i+1 =A0 and Qn
i =Qn

i+1 =Q0. Assume
now that a wave travelling in the direction of positive x reaches the point i
at tn+1, modifying slightly the discharge at tn+1 by a quantity �Q and A by
the quantity �A, while the discharge at the point i + 1 remains unchanged
because the wave has not had the time to reach it between the time lev-
els n and n + 1. Then, An+1

i = A0 +�A, Qn+1
i = Q0 +�Q and Qn+1

i+1 = Q0.
Equation (7.125) then gives

An+1
i+1 = A0 + 2θ�t

�Q
�x

−�A (7.126)

If A0 is small and the conveyance of the channel is low (owing to high
roughness, narrow free-surface width or a combination of both), even a
small value �Q may lead to a large variation �A and An+1

i+1 may drop
below the initial value A0 without any physical reason, thus creating artifi-
cial oscillations in the computed water depth and discharge. An+1

i+1 may even
become negative for some combinations of the initial water depth, geome-
try, hydraulic and numerical parameters. This undesirable behaviour can be
prevented by keeping �x sufficiently small to ensure the positiveness of the
quantity 2θ�t�Q/�x −�A. Note that increasing the value of θ also has a
stabilizing effect on the solution.

7.3.7 Elementary precautions in boundary-condition
definition

7.3.7.1 Usual combinations of boundary conditions

The most widely used combinations of boundary conditions in natural river
modelling are: (i) prescribed discharge at the upstream boundary and pre-
scribed water level at the downstream boundary; (ii) prescribed discharge at
the upstream boundary and a prescribed stage–discharge relationship at the
downstream boundary.

When the channel system to be modelled is subjected to a strong back-
water influence, as is the case in estuary modelling or in the modelling of
coastal streams, the influence of the tide precludes the definition of one-
to-one stage–discharge relationships. If the upstream boundary of the river
system is too close to the sea, measuring the discharge reliably via water-
level measurements becomes impossible. In such cases, water levels must be
prescribed as functions of time at both ends of the river.
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It should be noted, however, that some types of boundary conditions
should be used with care, while some others should be avoided or they will
lead to instability in the numerical solution. Typical examples are given in
the following subsections.

7.3.7.2 Prescribed outflowing discharge

Although the theory of characteristics allows a discharge to be prescribed
at the downstream end of the channel system (in which case it is a
prescribed outflowing discharge), the modeller should be aware that pre-
scribing exactly the desired values of the outflowing discharge may not
always be possible. More specifically, the prescribed value of the discharge
should be such that (i) no more water is taken from the channel than can
actually be supplied physically, and (ii) the prescribed value of the discharge
must be such that it does not yield a supercritical outflow at the downstream
boundary.

Consider the downstream end of a channel where a discharge Qb is to be
prescribed. For the sake of simplicity of the analysis, the channel is assumed
to be rectangular and horizontal, and friction is assumed to be negligible.
Writing the invariance of the positive Riemann invariant V + 2c between
the channel and the boundary yields

V0 + 2c0 = Vb + 2cb (7.127)

where the subscripts 0 and b denote the values inside the channel and at the
boundary, respectively. Inserting the equality Qb =AbVb =B/g c2

bVb leads to

Qb = B
g

(V0 + 2c0 − 2cb)c2
b (7.128)

A simple variation analysis indicates that Qb is an increasing function of
cb for 0 ≤ cb ≤ (V0 + 2c0)/3 and a decreasing function of cb for cb ≥ (V0 +
2c0)/3 (Figure 7.17a). Qb is zero for cb = 0 and cb = (V0 + 2c0)/2, and takes
its maximum value Qmax of Qb for cb = (V0 + 2c0)/3, with

Qmax = B
g

(
V0 + 2c0

3

)3

(7.129)

The Froude number Frb at the boundary is given by

Frb = Vb

cb
= V0 + 2c0

cb
− 2 (7.130)

Frb is a decreasing function of cb that is equal to unity for cb = (V0 +2c0)/3
(Figure 7.17b).
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Figure 7.17 Variations in the discharge Qb and the Froude number Frb at the downstream
boundary as a function of the celerity cb of the waves in still water

The values of Qb that can be prescribed are those for which the Froude
number at the boundary is smaller than unity. It stems from the above analy-
sis of variations that all values of Qb between 0 and Qmax can be prescribed.
However, it is not possible to prescribe values of Qb larger than Qmax, which
is the maximum value of the discharge that can be physically taken out at
the downstream end of the channel.

7.3.7.3 Prescribed water depth

From the analysis carried out in Section 7.3.7.2, it is easy to infer that pre-
scribing any arbitrary value Yb at the downstream or upstream end of a
channel is not always possible.

Considering downstream boundaries and using the relationship
c = (gY)1/2 for a rectangular channel, it is easy to see from equation (7.130)
that only values of Yb that correspond to cb/(V0 + 2c0) = 1/3 can be pre-
scribed. In other words, the minimum meaningful value Yds for Yb at a
downstream boundary is given by

Yds = 1
9g

(V0 + 2c0)2 (7.131)

A similar analysis leads to the following formula for the minimum
meaningful upstream boundary condition Yus:

Yus = 1
9g

(V0 − 2c0)2 (7.132)

Attempting to prescribe a water depth smaller than Yus at an upstream
boundary or smaller than Yds at a downstream boundary will result in an
erroneous (if stable at all) numerical solution.
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7.3.7.4 Stage–discharge relationship

Stage–discharge relationships should be used with great care. The following
rules should be used.

1 Stage–discharge relationships where Q is an increasing function of η
should never be used at upstream boundaries.

2 Stage–discharge relationships where Q is a decreasing function of η
should never be used at downstream boundaries.

Consider an increasing function Q(η) implemented at the upstream
boundary of the channel. Assume that the initial flow conditions in the
channel satisfy steady state. Then, if for some reason (a change in the down-
stream boundary conditions, operation of a gate within the channel, etc.) a
perturbation propagating in the channel system reaches the boundary and
triggers a change �η in the water level, two possibilities arise.

1 If �η is positive, a positive variation �Q arises in the discharge due
to the increasing nature of the function Q(η). Owing to continuity, this
triggers a new, positive variation �η in the elevation of the free surface
at the next computational time step. This variation in turn triggers a
new, positive variation �Q in the discharge at the upstream boundary.
The positive feedback thus created leads to solution instability.

2 If �η is negative, the increasing nature of the function Q(η) yields a
negative variation �Q in the discharge. This in turn generates another
negative variation �η, with an associated negative �Q. The process is
repeated until the depth at the upstream boundary becomes zero.

Reasoning along the same lines allows rule 2 to be established. Note that
if an increasing Q(η) relationship is prescribed at a downstream boundary
or a decreasing Q(η) relationship is prescribed at an upstream boundary, �η
and �Q have opposite signs, which has a stabilizing effect on the solution.

7.4 Special applications

7.4.1 Quasi-two-dimensional models

7.4.1.1 Application fields – governing equations

Quasi-two-dimensional models are developed for floodplain modelling
(Cunge (1975), Cunge et al. (1980)). Floodplains mostly act as storage
compartments, where the water flows very slowly compared to the typical
flow velocities in the main channel system. This is because the water depth
(and consequently the hydraulic radius) is also much smaller in the flood-
plain than in the channel system, with an increased influence of friction.
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Figure 7.18 Definition of a quasi-two-dimensional model. Real-world situation (a),
schematization in the quasi-two-dimensional model (b)

Representing the floodplain directly as part of the channel cross-section
would lead to violating assumption (A1) that the flow variables (and, more
specifically, the flow velocity) can be considered uniform over a given cross-
section. The floodplain is represented using so-called ‘cells’ or ‘storage
units’ (Figure 7.18). The cells may exchange water with each other and
with the main channel, thus providing a simplified yet acceptably accurate
representation of the flow processes.

The definition and parameterization of the links between the channel and
the cells, as well as the links between the storage cells, must incorporate the
existing exchange patterns. Consider the example of a main road crossing
a floodplain, with a dike isolating the right-hand floodplain from the main
channel downstream of the road, as sketched in Figure 7.18a. Assume that
the continuity of the floodplain on the right-hand side of the river is ensured
by a bridge or by culverts that allow the domains A and C to communicate,
while such communication is disabled on the left-hand side of the channel
between the subregions B and D. In the quasi-two-dimensional model a link
must be defined between A and C, while there is no such communication
between B and D. The impossibility of the main channel to exchange water
with the cell C is accounted for by the absence of a link in the model.

7.4.1.2 Governing equations

The flow between the cells and the channel network obeys continuity:

∂VSi

∂t
=−

i∑
j

Qi,j (7.133)
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where VSi is the volume stored in the cell i and Qi,j is the discharge flowing
from the cell i to the cell j. The summation in equation (7.133) is carried out
for all the neighbouring cells j of i. Note that an additional discharge may
be present in equation (7.133) to account for the exchange between the cell i
and the channel network. The integral of qi with respect to the x-coordinate
represents the amount of water that flows from the cell i into the channel
system and has the dimension of a discharge. Note that equation (7.133) is
usually solved in non-conservation form using the elevation ηi in the cell as
a dependent variable

Ai
∂ηi

∂t
=−

∑
j

Qi,j(ηi, ηj) (7.134)

where Ai is the plan view area of the cell i. Various options are available for
the exchanges between the floodplain cells. A classical-resistance formula
may be applied, such as

Qi,j = εi,jKi,jWi,jYi,j

(∣∣ηi − ηj

∣∣
Li,j

)1/2

(7.135a)

yi,j = yi + yj

2
(7.135b)

εi,j = sgn(ηi − ηj) (7.135c)

where Ki,j, Li,j, Wi,j and Yi,j are, respectively, the average friction coefficient,
the distance, the average cell width and average water depth between the
centroids of the cells i and k. In equation (7.135b), Yi,j is computed assuming
that the free-surface elevation varies linearly between the cells i and j.

When the cells are separated by structures or topographical singularities
such as levees, roads, etc., a weir stage–discharge relationship may provide
a more realistic description of the flow:

Qi,j = εi,jμ
(1)
i,j (ηus − zb)[(ηus − zb)2g]1/2 (7.136a)

Qi,j = εi,jμ
(2)
i,j (ηds − zb)[(ηus − ηds)2g]1/2 (7.136b)

ηus = max (ηi, ηj) (7.136c)

ηds = min (ηi, ηj) (7.136d)

where zb is the elevation of the crest of the weir and μ
(1)
i,j and μ

(2)
i,j are dis-

charge coefficients to be used under free-flowing and flooded conditions,
respectively.
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7.4.1.3 Algorithmic aspects

The system formed by the flow equations (7.134) between the cells is usually
linearized and solved using an implicit approach

An+1/2
i

ηn+1
i − ηn

i

�t
=−

∑
j

Qi,j(ηn+1
i , ηn+1

j ) (7.137)

or a semi-implicit approach

An+1/2
i

ηn+1
i − ηn

i

�t
=−

∑
j

θQi,j(ηn+1
i , ηn+1

j ) + (1 − θ )Qi,j(ηn
i , η

n
j ) (7.138a)

An+1/2
i

ηn+1
i − ηn

i

�t
=−

∑
j

Qi,j(θηn+1
i + (1 − θ )ηn

i , θη
n+1
j + (1 − θ )ηn

j )

(7.138b)

Note that equations (7.130) and (7.138) converge to the same solution
when the computational time step tends to zero. The system formed by
the set of equations (7.137) or (7.138) is non-linear and may be solved
using standard, iterative techniques for system inversion (see Chapter 3 and
Section 3.5). The linearization of equations (7.138a) and (7.138b) requires
comparable effort. Note that An+1/2

i is an average value for Ai between the
time levels n and n + 1 that must be updated within the iterative process.

In natural cells, the plan-view area Ai usually tends to zero when ηi tends
to the bottom level. This triggers similar problems to those described in
Section 7.3.6. Namely, an exaggerated sensitivity of the model’s response
to small variations in the water level in the neighbouring cells. It may be
necessary to modify the law A(η) artificially in such a way that A(zb) �= 0,
while preserving the storage volume in the cell.

7.4.2 Two-dimensional models

7.4.2.1 Application fields – governing equations

Although two-dimensional models for estuary modelling are treated in
detail in Chapter 11 (see Section 11.3), their use in floodplain modelling,
as well as the governing equations and the basic solution techniques, are
outlined here.

Although allowing two-dimensional flow patterns to be reproduced
to some extent via main-channel–cell and intercell exchange, quasi-two-
dimensional models may fail to provide an accurate representation of
the actual flow patterns in situations where (i) the flow patterns cannot
be assumed to be one-dimensional, and (ii) the inertial terms cannot be
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(a) (b) 

Figure 7.19 Typical situations where the one- and quasi-two-dimensional approaches are
invalid. (a) Sharp transient propagating into a channel with strong geometry
variations. (b) Recirculating flow in a lateral storage pocket due to momentum
diffusion

neglected any more in the momentum equations. In such cases the quasi-
two-dimensional approach becomes insufficient. To give but a few exam-
ples, this is the case when a sharp transient (e.g. a flash flood) propagates
into a valley or floodplain with very strong variations in channel geometry,
such as sudden widenings or narrowings (Figure 7.19a), or when the flow in
the main channel creates a swirl in an expansion zone as a result of lateral
momentum diffusion (Figure 7.19b). The swirl that appears as a result of
momentum diffusion cannot be reproduced using classical exchange laws in
the form of equations (7.135) and (7.136).

In such cases, a two-dimensional description of the flow processes is
needed. Classical two-dimensional models retain assumptions (A2)–(A5)
introduced in Section 7.2.1, while assumption (A1) is ‘relaxed’ into the
hypothesis of a uniform velocity distribution over the vertical. These
assumptions lead to the following vector equation in conservation form:

∂U
∂t

+ ∂Fx

∂x
+ ∂Fy

∂y
= S (7.139)

where the conserved variable U, the x- and y-fluxes Fx and Fy and the source
term S are given by

U =
⎡⎣ Y

Yu
Yν

⎤⎦ ,Fx =
⎡⎣ Yu

Yu2 + gY2/2
Yuν

⎤⎦ ,Fy =
⎡⎣ Yν

Yuν
Yν2 + gY2/2

⎤⎦ ,
S =

⎡⎣ 0
(S0,x − Se,x)gY
(S0,y − Se,y)gY

⎤⎦
(7.140)
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where S0,x and S0,y are the bottom slope in the x- and y-direction, respec-
tively, and Se,x and Se,y are the friction slopes in the x- and y-direction,
respectively. Se,x and Se,y are assumed to obey similar laws to the classical
one-dimensional friction laws presented in Section 7.2.1, with the differ-
ence that the hydraulic radius in a two-dimensional context is equal to the
water depth Y. For instance, Manning’s friction law may be extended to
two dimensions of space as follows:

Se,x = n2 (u2 + ν2)1/2u
Y4/3

(7.141a)

Se,y = n2 (u2 + ν2)1/2ν

Y4/3
(7.141b)

Some commercially available packages incorporate the effects of momen-
tum diffusion and wind-induced stress by modifying the source term S as
follows:

S =
⎡⎢⎣ 0

(S0,x − Se,x)gY + D ∂2(Yu)
∂x2 + τx

ρ

(S0,y − Se,y)gY + D ∂2(Yν)
∂y2 + τy

ρ

⎤⎥⎦ (7.142)

where D is a momentum diffusion coefficient and τx and τy are the wind-
induced stress components, usually modelled using classical turbulent drag
formulae:

τx = CD(u2
w + ν2

w)1/2uw (7.143a)

τy = CD(u2
w + ν2

w)1/2νw (7.143b)

where CD is the wind-drag coefficient and the subscript w indicates the
wind velocity. A number of formulae for CD are available in the literature
(Charnock (1995), Geernaert et al. (1986), Large and Pond (1981), Luyten
et al. (1999), Smith and Banke (1975), Wu (1969)).

7.4.2.2 Behaviour of the solution – boundary conditions

Equation (7.139) can also be rewritten in non-conservation form as

∂U
∂t

+ Ax
∂U
∂x

+ Ay
∂U
∂y

= S (7.144)
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where Ax and Ay are, respectively, the Jacobian matrices of Fx and Fy with
respect to U. From equation (7.140),

Ax =
⎡⎣ 0 1 0

c2 − u2 2u 0
−uv v u

⎤⎦ , Ax =
⎡⎣ 0 0 1

−uv v u
c2 − u2 0 2v

⎤⎦ (7.145)

The right-hand side of equation (7.144) is said to be a hyperbolic PDE
because any linear combination of the matrices Ax and Ay has real, distinct
eigenvalues. The hyperbolic nature of the equations allows a characteristic
formulation to be derived (Daubert and Graffe (1967), Gerritsen (1982),
Guinot (2008)). Two characteristic surfaces can be identified in the (x,y, t)
space (Figure 7.20). The first surface (S1) is reduced to a curved line of
equations (dx/dt = u, dy/dt = v); the second surface (S2) is conical and
expands from the first surface at a speed c in all directions of space. The
domain of dependence of the solution is contained within the extension of
the characteristic surface (S2) to negative times.

As shown in Guinot (2008), the vector equation (7.144) can be rewritten
in the following characteristic form:

d
dt

(uξ − 2c) = S1 for
dξ
dt

= uξ − c (7.146a)

d
dt
νξ = S2 for

dξ
dt

= uξ (7.146b)

d
dt

(uξ + 2c) = S3 for
dξ
dt

= uξ + c (7.146c)

x y

t

ct

ut vt 

(S1)

(S2)

θ

ξ

Figure 7.20 Definition of the characteristic surfaces in the (x, y, t) space
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where ξ is the coordinate along the axis that makes an angle θ with the
x-axis (Figure 7.20), and uξ and νξ are the components of the velocity vector
in the directions parallel and orthogonal to ξ , respectively. The expressions
for Sp (p = 1,2,3) can be found in Daubert and Graffe (1967), Gerritsen
(1982) or Guinot (2008). Equations (7.146) are another way of saying that
the two-dimensional shallow-water equations are invariant by rotation. The
two characteristic lines dx/dt = V ± c of the one-dimensional Saint Venant
equations are the intersection of the two-dimensional characteristic surface
(S2) with the plane ξ . The characteristic relationships in the one-dimensional
Saint Venant equations may be seen as the one-dimensional restriction of
equations (7.146a) and (7.146c).

The additional characteristic relationship (7.146b) (as compared to the
two characteristic relationships in the one-dimensional Saint Venant equa-
tions) induces a dependence of the number of boundary conditions to
be prescribed, not only on the flow regime but also on the flow direc-
tion. Four possibilities arise, which are discussed here assuming that
the ξ -axis is oriented in the direction normal to the boundary (positive
outwards).

1 Supercritical flow entering the domain. The three characteristics (7.146)
enter the domain. The behaviour of the flow in the immediate neigh-
bourhood of the boundary is entirely determined by the boundary
conditions, and three independent flow variables must be prescribed.

2 Subcritical flow entering the domain. The two characteristics
dξ/dt = uξ − c and dx/dt = uξ enter the domain, while the character-
istic dξ/dt = uξ + c leaves the domain. Two boundary conditions are
needed, one of which must be the transverse velocity.

3 Subcritical flow leaving the domain. The characteristic dξ/dt = uξ − c
enters the domain, and the characteristics dξ/dt =uξ and dξ/dt =uξ + c
leave the domain. Only one boundary condition is needed.

4 Supercritical flow leaving the domain. All three characteristics leave the
domain and the solution at the boundary is entirely determined by the
flow state inside the domain. Consequently, no boundary condition is
needed.

7.4.2.3 Numerical solution

Many approaches are available for the solution of the two-dimensional
flow equations. As a broad rule, finite-difference-based techniques use struc-
tured grids (either Cartesian or curvilinear), that make the discretization of
the spatial derivatives easier, while finite-volume- and finite-element-based
methods use unstructured grids. The first attempts to solve the two-
dimensional shallow-water equations were based on the two-dimensional
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method of characteristics on Cartesian grids (Daubert and Graffe (1967),
Katopodes (1977), Katopodes and Strelkoff (1979)).

Most commercially available software packages solve the governing equa-
tions using implicit schemes, which allows large time steps to be used
without any stability constraint on the Courant, Friedrichs and Lewy (CFL)
number. This implies the solution of large, non-linear systems, which is
the reason why the non-conservation form (equation 7.144), which can be
easily linearized, is solved in most cases.

Time splitting (also known as operator splitting, see Strang (1968)
for an overview of the technique) is often used in the solution of the
two-dimensional equations. Two main approaches may be used for time
splitting.

1 Dimensional splitting. Dimensional splitting, also called ‘alternate
directions’, is used when the equations are to be solved using Carte-
sian grids. In this case, equation (7.139) is rewritten in the following
two forms:

∂U
∂t

+ ∂Fx

∂x
= S − ∂Fy

∂y
(7.147a)

∂U
∂t

+ ∂Fy

∂y
= S − ∂Fx

∂x
(7.147b)

Equations (7.147a) and (7.147b) are solved successively, the result
of the previous being used as an initial condition for the solution
of the next. If the solution method is explicit, solving successively
equations (7.147a) and (7.147b) is sufficient. If the solution method
is implicit, the right-hand side terms in equations (7.147) must be
discretized in a semi-implicit way, thus leading to an iterative proce-
dure. Iterations are stopped when the difference between the solution
obtained after two successive solutions of equation (7.147b) falls below
a predefined threshold that is specified by the modeller. This solution
technique is often referred to as the ‘alternate directions implicit’ (ADI)
technique.

Alternate directions have the advantage of simplicity because they
imply the solution of one-dimensional equations. They lead to the con-
struction of tri-diagonal to pentadiagonal matrix systems s, for which
standard inversion techniques are available. This makes them easy to
implement.

2 Operator splitting. In most commercially available packages using
unstructured grids the governing equations are broken into several
parts, each of which expresses different physical processes. For instance,
equations (7.139) may be solved in the following sequence:
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∂U
∂t

+ ∂F(a)
x

∂x
+ ∂F(a)

y

∂y
= 0 (7.148a)

∂U
∂t

+ ∂F(p)
x

∂x
+ ∂F(p)

y

∂y
= 0 (7.148b)

∂U
∂t

+ ∂F(d)
x

∂x
+ ∂F(d)

y

∂y
= 0 (7.148c)

∂U
∂t

= S (7.148d)

where the superscripts (a), (p) and (d) represent the advection, propa-
gation and diffusion part of the flux function, respectively:

F(a)
x =

⎡⎣ uY
u2Y
uνY

⎤⎦ ,F(p)
x =

⎡⎣ 0
gY2/2
0

⎤⎦ ,F(d)
x =

⎡⎣ 0
−∂(uY)/∂x
0

⎤⎦
(7.149a)

F(a)
y =

⎡⎣ νY
uνY
ν2Y

⎤⎦ ,F(p)
y =

⎡⎣ 0
0
gY2/2

⎤⎦ ,F(d)
y =

⎡⎣ 0
0
−∂(νY)/∂y

⎤⎦
(7.149b)

In a first-order time-splitting approach, equations (7.148) are solved
sequentially, each step using the result of the previous one as an initial
condition for the solution of the next time step. In contrast with alternate
directions, this procedure is not iterative. The interest of the time-splitting
approach is that different numerical techniques may be used for the solution
of equations (7.148a)–(7.148d), each of these techniques being best suited
for the solution of the relevant part of the equations. This is the case of the
advection part (equation (7.148a)) of the governing equations, for which
specific upwinding techniques (such as the SUPG, finite-element method,
see Hervouët (2007)) providing optimal advective gradient discretization
are available.

Each of the above time-splitting techniques has advantages and draw-
backs. Their common advantage is programming simplicity. A drawback
of the alternate-directions approach is the accurate representation of the
flow patterns near steep topographical gradients. When the ADI approach
is used, too large a computational time step or an insufficiently converged
iteration sequence may lead to unphysical solutions such as larger velocities
in the floodplain than in the main channel, or velocity fields and wetting
fronts unnaturally aligned with the main grid directions. When large time
steps are used, the operator-splitting approach may lead to erroneous solu-
tions in that the final solution at the end of the sequence (equation (7.148))
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may not satisfy the weak form of equation (equation (7.139)). Although
the consequences of this may remain unnoticed in most standard engineer-
ing applications, they may induce solution inaccuracy (e.g. wrongly located
bores, inaccurate hydraulic jump height computation) in the case of more
specific applications such as sharp transients.

7.4.2.4 Mesh design

The finite-element or finite-volume solution of the two-dimensional
shallow-water equations on unstructured grids has gained considerable
popularity in the engineering community over the last decade. Commer-
cially available packages are supplied with grid-generation programs that
allow arbitrary geometries to be represented accurately. Although largely
facilitated by increasingly sophisticated and user-friendly packages, two-
dimensional grid generation for refined hydraulic studies remains time-
consuming; it cannot be fully automated and still requires considerable
operating time. Depending on the complexity of the geometry and the
requirements of the modelling study in terms of accuracy, the design
of the mesh may represent up to 50% of the time devoted to a two-
dimensional hydraulic study. As a consequence, the technician in charge
of grid generation and the hydraulic engineer in charge of the supervision
bear considerable responsibility for the quality of the modelling results. The
present subsection is devoted to elementary guidelines for two-dimensional
grid design.

As in the one-dimensional case, the most influential factor in the quality
of the numerical solution of the two-dimensional shallow-water equations
is the Courant number, which expresses the ratio of the distance covered
by the wave within a time step to the size of the computational cell. Sta-
bility analyses of numerical techniques for solving the two-dimensional
shallow-water equations (Soares-Frazão and Guinot (2007)) have led to the
following two-dimensional generalization of the Courant number:

Cri,j = (ui,j + ci)wi,j�t
Ai

(7.150)

where Ai and ci are, respectively, the plan-view area and the propagation
speed of the waves in still water for the cell i, ui,j is the flow velocity in the
direction orthogonal to the jth interface of the cell i, wi,j is the width of the
jth interface of the cell i and �t is the computational time step. The Courant
number Cri,j as defined in equation (7.150) may be interpreted as the ratio
of the area covered by the fastest of the waves in the direction normal to
the jth interface of the cell i within a time step �t to the plan-view area of
the cell. Note that, in most situations (except special applications such as
dambreak flood wave modelling, see Section 7.5.4, or the refined modelling
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of overspilling over dikes or weirs), the flow velocity is small compared to
the propagation speed of the waves in still water, and equation (7.150) may
be approximated as

Cri,j ≈ ciwi,j�t
Ai

(7.151)

For the accuracy of the numerical solution to be optimal, the Courant
number must be as isotropic and homogeneous as possible over the com-
putational domain. This is the case if (i) the mesh is mostly isotropic and
(ii) the mesh is coarser in regions where (u2 + v2)1/2 + c is large and finer in
regions where (u2 + v2)1/2 + c is small. Strongly distorted meshes may yield
flow velocity fields that are abnormally aligned with the main directions of
the grid.

7.4.3 Three-dimensional models

As three-dimensional models are covered in detail in Section 11.4 on estu-
ary modelling, only a short description of their underlying principles and
applications to river modelling is given here.

Three-dimensional models are needed in applications where the assump-
tions of negligible vertical accelerations and/or uniform velocity fields over
the vertical do no longer hold. Such applications include, but are not lim-
ited to, the refined modelling of flow patterns near structures such as gates,
bridges, sills and weirs, and culverts through levees. Significant vertical
accelerations lead to invalidate the assumption of a hydrostatic-pressure
distribution. One of the best known consequences of the invalidity of
hydrostatic-pressure distribution is the development of undular bores near
mobile jumps, with the maximum amplitude of the waves exceeding the
amplitude of the bore computed from the Saint Venant equations by a fac-
tor of up to 2 (Cunge et al. (1980)). Note that the non-uniform character
of the velocity field in three dimensions of space and the non-hydrostatic
nature of the pressure field are two different issues (although the latter
may be a consequence of the former). Some three-dimensional models use
the assumption of hydrostatic-pressure distributions over the vertical, while
some others do not.

Three-dimensional models are based on the three-dimensional Navier–
Stokes equations (equations 4.3–4.5). Note, however, that these equations
can be solved uniquely for u,v and w only if the pressure field p (x,y, z) is
known. The pressure is usually formulated as

p(x,y, z) = (η− z)ρg + p∗ (7.152)

where the first term on the right-hand side of equation (7.152) accounts for
hydrostatic factors and p∗ is the so-called ‘excess pressure’ that accounts
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for non-hydrostatic effects. Note that introducing the notation in (7.152)
allows the z-momentum equation to be written in exactly the same way as
the x- and y-momentum equations by balancing the vertical volume force
ρg with the vertical gradient of the hydrostatic part of the pressure as given
by equation (7.152). The so-called ‘kinematic boundary condition’ allows η
to be related to the flow velocity components as

∂η

∂t
+ u(x,y, η)

∂η

∂x
+ v(x,y, η)

∂η

∂y
= w(x,y, η) (7.153)

while the atmospheric pressure is used as a boundary condition at the free
surface: p(x,y, η) = patm. Note that integrating equation (7.153) over the
vertical leads to an equation for η

∂η

∂t
+ ∂

∂x

η∫
zb

u dz + ∂

∂x
y

η∫
zb

v dz = 0 (7.154)

Standard solution techniques use time splitting (see e.g. Casulli (1999),
Stelling and Zijlema (2003)). A typical solution sequence is:

1 Solve the momentum equations without the excess pressure term:

∂ui

∂t
+

3∑
j=1

∂

∂xj
(uiuj) =

3∑
j=1

ν
∂2ui

∂xj
, i = 1,2,3 (7.155)

where the subscripts i and j indicate the vector components (i = 1, 2, 3
for the x-, y- and z-direction, respectively). This step yields intermediate
values for the velocity components. These are used as a starting point
in the second step of the process.

2 Solve the continuity equation and the momentum equation with the
excess pressure term only:

∑
i

∂ui

∂xi
= 0 (7.156a)

∂ui

∂t
+ 1
ρ

∂p∗

∂xi
= 0, i = 1,2,3 (7.156b)

Equations (7.156a) and (7.156b) are solved for the excess pressure p∗ and
the velocity components ui(i = 1,2,3).

Steps 1 and 2 are usually part of an iterative, implicit or semi-implicit
procedure, which must be repeated until the excess pressure field p∗ and the
velocity components ui converge.
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The equations may be discretized in the horizontal plane using structured
or unstructured grids, but the vertical discretization is a structured, multi-
layer discretization. A widespread discretization technique called the ‘sigma
coordinate approach’ (see Section 11.4) consists of fixing the number of
discretization points (or layers) over the vertical and to distributing them
equally between the bottom and the free surface. The vertical locations of
the computational points thus move vertically when the elevation of the free
surface changes.

7.4.4 Dambreak flood-wave modelling

The salient feature of dambreak-generated flood waves from a hydraulic
point of view is the presence of supercritical flow regions and discontinu-
ous flows. The breaking of a dam is usually modelled as the instantaneous
removal of the wall (or part of it), thus making the initial water level dis-
continuous. The upstream water level is the initial elevation of the free
surface in the dam immediately before the failure occurs. The downstream
water depth (if any) is usually taken from uniform, steady-state simulation
under the average discharge being released by the dam. The discontinu-
ity in the free-surface elevation yields an infinite acceleration over a time
interval of zero length, resulting in a discontinuous velocity profile near the
front of the wave. The thus-generated flood wave can usually be separated
into three regions (Figure 7.21). The first region consists of a backward
wave propagating into the reservoir at a celerity c. This wave connects the
reservoir to region 2, where the flow is strongly supercritical. Region 3 is
the front of the wave, the steepness of which depends on the intensity of
friction and the initial water level downstream of the dam. In the case of
zero friction, region 3 is infinitely narrow and the flow is discontinuous
across it, which is the definition of a shock wave. The reader interested
in a detailed analysis of shock-wave formation and propagation in open

1 2 3

Initial water level 

Water level after
breaking 

Initial dam location 

Figure 7.21 The three regions in a dambreak flood wave
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channels may refer to Cunge et al. (1980), Guinot (2008) or Stoker (1957).
More theoretical background may be found in Lax (1957), Stoker (1957) or
Whitham (1974). Analytical solutions to the dambreak problem with zero
and non-zero downstream depth can be found in Stoker (1957).

When a shock wave is present in the solution, the classical, differential
form of the one- or two-dimensional open-channel equations ceases to be
valid because the time and space derivatives become locally infinite. Only
the weak form of the equations is applicable, and the so-called jump rela-
tionships (also called the Rankin–Hugoniot conditions) must be used across
the shock. In the direction of propagation of the shock, such conditions may
be written as follows:

F1 − F2 = (U1 − U2)cs (7.157)

where cs is the speed of the shock and the subscripts 1 and 2 denote the
values of F and U on the left- and right-hand sides of the shock. Equa-
tion (7.134) is obtained from a balance over a control volume that contains
the shock in the limit case where the size of the control volume and the time
interval over which the balance is carried out tend to zero. It is a direct appli-
cation of the conservation form (equations (7.20) and (7.139)). Note that,
when the solution is discontinuous, the conservation, non-conservation and
characteristic forms of a hyperbolic system of conservation laws cease to
be equivalent. Solving the non-conservation or non-characteristic form of
the equations without any specific treatment of discontinuities may result in
incorrect shock location and/or amplitude calculation.

This stems from the above-mentioned considerations that dambreak
modelling studies can be carried out using only specific modelling software
packages for which two essential basic requirements are: (i) the capabil-
ity to deal with transcritical flow; and (ii) a conservative solution of the
governing equations that allows for the treatment of weak solutions, thus
enabling the accurate computation of the location and amplitude of shocks
such as hydraulic jumps and/or moving bores. For instance, the Preiss-
mann scheme in its original form satisfies condition (ii) but fails to fulfil
condition (i) (Meselhe and Holly (1997)). However, a new formulation of
the scheme similar to the flux-splitting formalism (Johnson et al. (2002))
allows both conditions to be satisfied, but does not appear to have been
implemented in industrial packages to date. The Abbott–Ionescu scheme
in its original form fails to satisfy condition (ii), while the solution in
pseudo-conservation form additionally fails to satisfy condition (i) because
of the missing term 2u∂Q/∂x in the differentiation of the term Q2/A (see
Section 7.3.4.1).

Dambreak simulations are increasingly carried out using two-dimensional
software packages that solve the two-dimensional shallow-water equations
presented in Section 7.5.2. Most software packages use finite-volume or
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finite-element techniques to solve the governing equations on unstructured
grids. Note that finite-element techniques deal with the weak form of the
governing equations (see Section 3.5.7), which raises the issue of the non-
uniqueness of weak solutions (see e.g. LeVeque (1990) for an outline of
the problem). Finite-volume techniques are essentially conservative, at least
in their explicit implementations, and do not exhibit such problems. Note
that even a fully conservative method solving the correct weak form of the
equations may fail to provide the correct solution when the hyperbolic
part of the equations is not solved within a single algorithmic step (see
Section 7.5.2.3). Moreover, the reader should be aware that, although classi-
cally presented as essentially conservative, most implicit finite-volume-based
methods presented in the literature do not ensure exactly the conservation
of mass and momentum because they are based on a linearized version
of the governing equations (i.e. on the non-conservation form). Although
the non-conservation form of the equations may be discretized in such a
way that it is made conservative (see Cunge et al. (1980), Guinot (2008)),
this is not always the case in the wide range of methods available in the
literature.

7.5 Physical models of open-channel flow

7.5.1 General

As mentioned earlier (see Chapter 1), physical (scale, hydraulic) models
of open-channel flow have been in use for well over a hundred years. In
fact, models of rivers were among the first models to be conceived for solv-
ing practical engineering problems. Equally, however, the sphere of river
engineering, particularly where fixed boundaries were involved, saw the
early introduction and rise of computational modelling. This, as well as the
substantial space requirements and the cost of hydraulic models of river sys-
tems, resulted in their relative decline during the second half of the 1900s.
Nevertheless, they retain their role as a basic research tool and for modelling
flow in open channels with complicated geometries and river–structure
interaction. As interest in environmental processes in open channels grew,
physical modelling of open-channel flow went through a renaissance and
firmly remains an important modelling discipline – particularly as part of
hybrid modelling.

As morphological processes and models with sediment transport are
introduced in Chapter 8, this section deals only with models with fixed
boundaries.

The following text gives only a brief introduction to the subject; for
further reading, see, for example, de Vries (1986), French (1984), Knauss
(1980) and Novak and Čábelka (1981).
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7.5.2 Governing equations

The equations used for the design and operation of hydraulic models of
open-channel flow are based on the equations dealt with in Sections 4.2–4.4
and 7.2 and on the procedures outlined in Chapter 5.

From the Saint Venant equations for unsteady flow (equations (4.66) and
(4.67)), the Darcy–Weisbach equation (equation (4.36)), the equation for
local head losses (equation (4.65)), bearing in mind that the difference in
total heads H between two sections is

�H =�z +�y +�

(
V2

2g

)
=�

(
λlV2

2gR

)
+�

(
ξV2

2g

)
(7.158)

and utilizing the procedure outlined in Section 5.5.2, we can establish six
equations for nine scale variables: Mz, Mb, Ml, Mh, Mλ, MR, Mξ , Mt, MQ

or Mv, where

Mz – scale of height (e.g. of channel bed) above datum

Mb – scale of width

Ml – scale of length

Mh – scale of depth

Mλ – scale of friction coefficient

MR – scale of hydraulic radius

Mξ – scale of local losses coefficient

Mt – scale of time

MQ – scale of discharge

Mv – scale of velocity
Mz = Mh (7.159)

Mv = M1/2
h (Froude law) (7.160)

and thus

MQ = MAMv = MhMbM
1/2
h = M3/2

h Mb (7.161)

MR = MlMλ (7.162)

Mξ = 1 (7.163)

MR =�(Mh,Mh/Mb,h) (7.164)

Mt = Ml/Mv = MlM
−1/2
h (7.165)
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The above equations assume Mg = 1 and apply to a distorted model
(Ml �= Mb �= Mh) of one-directional unsteady flow. With six equations for
nine variables there are three degrees of freedom, and we can thus choose
three variables.

For steady non-uniform flow, Mt and equation (7.165) (essentially the
identity of Strouhal numbers) are redundant, leaving five equations for eight
variables.

For uniform flow, there are no local losses (due to a change in cross-
section or direction of flow) and thus equation (7.163) and Mξ are also
redundant. There is also no need for the scale above datum (e.g. of the
channel bed, Mz) to be equal to the scale of depth (i.e. the model can be
tilted with a suitable adjustment in roughness and equation (7.159) can be
omitted). Finally, the necessity of choosing the discharge scale MQ strictly
according to the Froude law of similarity does not generally arise, and it may
be changed slightly (say by 20%) if it is found to be necessary (e.g. during
model verification tests; see also the following sections). Therefore, in this
case we have only two equations (equations (7.162) and (7.164)) for seven
variables (Mz, Mh, Mb, Ml, MQ, Mλ, MR), and five degrees of freedom.

The above is a general case; in practice it is nearly always useful to have
only one horizontal scale, i.e. Mb =Ml reducing the choice for unsteady and
steady non-uniform flow to two scales (or to four for uniform flow). It has
to be realized that there can be only one time scale for the water movement
in the model resulting (from equation (7.165)) in the scale of the speed of
vertical movements (e.g. of the water level) (see also equation 5.33):

Mw = Mh/Mt = M3/2
h M−1

l (7.166)

There is also the need for a single horizontal scale for the case of a general
(three-dimensional) unsteady flow, i.e. Ml = Mb.

The laboratory space, the pumping capacity and the type of problem to be
studied in the model determine which scales are chosen in the model design;
the parameters selected are usually Ml and Mh or Ml and MQ.

In non-distorted models Mb = Ml = Mh = MR = Mz and the Froude law
applies (MQ = M5/2

h ). Thus, only one parameter, usually the length scale Ml,
need be chosen.

The scale of the hydraulic radius is not only dependent on the depth and
width scales but also on the absolute value of the depth modelled (equa-
tion (7.164)). Only for non-distorted models are the scales of depth and
hydraulic radius equal; they are also approximately equal for wide chan-
nels. With MR = Mh = Ml it follows from equation (7.162) that Mλ = 1;
therefore, the friction and local head-loss coefficients in the model and pro-
totype are identical. The fact that the proportion of friction and local head
losses is identical in the model and prototype can be important in river- and
flood-flow modelling.
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Recalling equations (4.37), (4.61) and (4.64a)–(4.64c), it follows that for
fully developed turbulent flow (independent of the Reynolds number – see
Section 7.4.3)

Mλ =�(MR,Mk) (7.167)

For non-distorted models (MR = Mh = Ml and Mλ = 1) it follows from
equations (4.64) that

Mk = MR = Ml (7.168)

For distorted models, equation (7.167) can be approximated from equa-
tion (4.64) as Mλ = (Mm/MR)1/3; combining this expression with equa-
tion (7.162) and using MR ≈ Mh gives

Mk = M4
hM

−3
l (7.169)

Thus, the relative roughness in a distorted model is always larger than in
the prototype.

It must be remembered, however, that the roughness size ‘k’ is really
a concept using an ‘equivalent uniform roughness size’ giving the same
friction loss as the actual roughness. In reality, the coefficient λ and the
friction head loss will depend not only on the roughness size but also on
the shape and distribution of roughness elements, and the head loss can
only be properly determined by conducting verification experiments on the
scale model.

7.5.3 Boundary conditions and scale effects

The equations presented in Section 7.4.2 are sufficient for the design and
operation of open-channel-flow models on the assumption that the appro-
priate boundary conditions are observed in order to avoid, or at least
minimize, the scale effect.

(a) The most important boundary condition is given by the need to avoid
the influence of viscosity and to have fully turbulent flow in the model
(see Sections 4.4 and 5.8.2), i.e.

Rem >Resq (7.170)

The above condition should really apply for the smallest discharge used
in the model. However, sometimes this is not practical; in this case
it is obvious that for smaller discharges than the one satisfying the
above condition the model Reynolds number Rem must at least be large
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enough to prevent laminar flow, i.e. Rem >Recr; in this case some scale
effects for the lower flow are inevitable.

Just as for pipe flow, where an equation for Resq was established on
the basis of Nikuradse’s experimental work, an equation for open chan-
nels can be derived from similar work by, for example, Zegzhda (see
Novak and Čábelka (1981)). Equation (4.52) can be written as:

Resq =
(

vD
ν

)
sq

= 400
r

kλ1/2
= 400

R
kλ1/2

(7.171)

Therefore,

Resq =
(

vR
ν

)
sq

= 200
r

kλ1/2
= 100

R
kλ1/2

(7.172)

The corresponding equation for open-channel flow is

Resq =
(

vR
ν

)
sq

= 130
r

kλ1/2
= 650

R
kλ1/2

(7.173)

The difference in the coefficients in equations (7.172) and (7.173)
reflects the shape factor of the conduit flow.

Another way of checking that the model has fully turbulent flow is
to compare the components of the denominator in equation (4.61) C =
18 log [6R/(δ′/7 + k/2)] and ensure that δ′/7<< k/2, where δ′ is given
by equation (4.31) (δ′ = 11.6v/V∗ = 11.6ν/v(λ/8)1/2).

(b) The model should be large (deep) enough to avoid surface-tension
effects (i.e. the influence of the Weber number). This was discussed in
Section 5.3.2. Unfortunately, the guidance here is not as clearly defined
as for the limiting values of the Reynolds number; it is, however, gen-
erally accepted that the depth of flow in river models should not fall
below 0.03 m to avoid surface-tension effects, and that for a depth less
than 0.015 m considerable scale effects may result.

(c) One condition concerning the Froude law (equation (7.161)) has
already been mentioned. The observance of this law is essential when
modelling non-uniform open-channel flow with an interaction with sub-
merged structures (e.g. involving flow over submerged obstacles such
as groynes) or through bridges, and it is preferable to adhere to it in
all conditions. However, a relatively minor deviation of up to 20% is
permissible for overall uniform flow conditions if this does not sub-
stantially alter the flow pattern, and may be required as a result of
verification experiments (when the same overall effect cannot easily be
achieved by the adjustment of roughness) or because of limitations in
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the pumping capacity. It is, of course, necessary to observe the condition
of identical flow regimes in both the model and the prototype.

(d) Equation (7.164) shows that in a distorted model with significant
water-level changes there always will be a scale effect. To minimize
this, the distortion should be as small as possible and consistent with
other boundary conditions. In practice, unless dictated by other con-
ditions, a limit should be placed on the distortion Ml/Mh of about
5 (Ml/Mh < 5). It should be noted, however, that a distorted model
satisfies the condition of a sufficiently large Reynolds number (equa-
tion (7.170)) more easily than does a non-distorted model, due to its
large relative roughness (equation (7.169)).

(e) Equation (7.163) indicates that in cases where the more detailed flow
pattern is important, rather than (or as well as) an overall friction loss,
there should be a limit on the size of individual ‘roughness’ elements
representing the overall roughness. The condition often used is R/k>5,
although good results have been obtained for greater roughness sizes.

(f) In a distorted model, the coefficient of local energy loss ξ due to a
change in the cross-section is often greater in the model than in the
prototype. In this case, equation (7.163) (Mξ = 1) can be interpreted as
applying to the sum of local losses, and a significant difference in local
losses due to changes in channel section can be compensated for by a
reduction in the losses due to a change in direction (or, ultimately, by
the adjustment of roughness and the friction loss).

7.5.4 Aerodynamic modelling of open-channel flow

The basis of aerodynamic modelling of open-channel flow is the conversion
of free-water surface flow to flow in a pressurized conduit by substituting
a smooth surface for the air–water interface. If the position of the free-
water surface is known beforehand, then the procedure is quite simple and
the model can be used to investigate the flow patterns in a channel or, for
example, in the approaches to a barrage, power station, navigation lock,
etc. (see also Chapter 13). If, however, we are dealing with non-uniform
flow, where the position of the water level is not known beforehand (and
is, in fact, the objective of the investigation), the procedure is much more
complicated.

The conditions for the simulation of flow in a hydraulically rough chan-
nel have been discussed in the previous sections. If a free-water surface is
replaced by a smooth plate and the flow is pressurized, with the pressure
head simulating the free surface, the Froude number becomes irrelevant,
and the only conditions remaining are the similarity of conduit shapes, the
relative roughness and that the Reynolds number in the model should be
in the hydraulically rough region (Rem >Resq). In principle, we could use
any Newtonian fluid in this type of model; the use of air instead of water
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is mainly a matter of convenience, economics and technical suitability, as
pumping costs and space requirements are substantially reduced and the
need for a circuit with inlet and outlet tanks is avoided. If air is used, it
is, of course, essential to limit the air-flow velocity to values where com-
pressibility effects are negligible (i.e. limit of the Mach number); this value
is about 50 m/s, a condition that is easily satisfied in practice.

The main advantage of aerodynamic modelling of open-channel flow is
that the models can be much smaller than normal free-surface hydraulic
models which are governed by the relationship of the Froude numbers in
the model and the prototype, and a permissible minimum Reynolds num-
ber for the model as the necessary value of the Reynolds number may be
achieved by an increase in velocity (and thus also discharge) of air without
regard to the Froude number. (It is necessary to remember, however, that
the coefficient of kinematic viscosity for air at temperature 20 ◦C and atmo-
spheric pressure is about 15×10−6 m2/s, i.e. about fifteen times greater than
the coefficient of viscosity for water.)

The introduction of a smooth plane surface (e.g. a glass plate) instead of
the free surface distorts the boundary conditions; a number of studies have
dealt with the influence of this surface on the deformation of the veloc-
ity field. It follows that air models of open-channel flow are particularly
useful wherever this deformation does not substantially influence the total
flow picture and where the water level in the prototype does not deviate
significantly from a plane surface.

Theoretical and experimental studies aimed at establishing the type of
free-surface flow suitable for study in air models were carried out in the for-
mer USSR by Averkiev (1957) and Ljatcher and Proudovskij (1959, 1971).
They investigated the extent of the reversal of flow behind a sudden expan-
sion (see Figure 7.22(a). On the assumption that Mλ = 1, Averkiev found
that the percentage error in the relative length of the vortex l/(b2 − b1) due
to the use of a fixed plate instead of a free surface depended on the geometric
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Figure 7.22(a) (b) Scope of the aerodynamic modelling of open-channel flow
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parameters b1/b2 and b1/h, as shown in Figure 7.22(b) (where h is the
depth of flow simulated by the distance between the smooth plate and the
bed). Accepting an error of 5% in the length of the vortex, the aerodynamic
model may be used for all open channels where b1/b2>0.75 and b1/h<30;
limiting the error in the vortex size to 10% would mean b1/b2 > 0.5 and
b1/h<23, etc.

Thus, although in fact the value of l/(b2 − b1) is also a function of the
Froude number (for very low values its influence is insignificant), it is evident
that there is a wide range of situations where the aerodynamic models of
open-channel flow may be used with reasonable confidence.

As the Froude law is no longer applicable and as the model discharge may
be chosen arbitrarily (as long as Rem >Resq and V < 50m/s), the scale of
the velocities is given by

Mv = QpAm

QmAp
= MQ

MbMh
= MQ

MlMh
(7.174)

(This scale is valid for mean cross-sectional velocities as well as for local
velocities.)

The scale of the friction coefficient for a distorted model is again given by
equation (7.162), but it is necessary to take into account that the hydraulic
radius in the model can no longer be approximated by the depth (for a wide
channel), as in this case R = h/2 and MR = 2Mh. The scale of the friction
coefficient then becomes

Mλ = MR

Ml
= 2

Mh

Ml
(7.175)

From the Darcy–Weisbach equation the pressure changes between two
sections of a pressurized model are given by

�p = ρmλmlm
V2

m

2Rm
(7.176)

Noting that, for the difference in water levels above datum between two
sections in prototype,

�hp = �hp

ρpg
= λplp

V2
p

2gRp

(7.177)

we get for �pp/�m = Mp

Mp = MρMλMlM2
vM

−1
R (7.178)
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Substituting from equations (7.174) and (7.175) leads to

Mp = MρM2
Q

M2
l M

2
h

(7.179)

The difference in the water levels above datum between two prototype
sections �h =�pp/(ρg) will be simulated in the model by the difference in
elevation of the cover as �hm =�hp/Mh. Thus, from equation (7.174) we
get the condition

�hm = �hp

Mh
= �pp

ρpgMh
= Mp�pm

ρpgMh

= M2
Q�pm

ρmgM2
l M

2
h

(7.180)

If the difference in water levels in the prototype is initially not known, we
proceed by iteration and gradually adjust the position of the model cover
until equation (7.175) is satisfied.

There is sufficient evidence that observation of the above criteria gives
good results even for detailed flow analysis and head losses on distorted
aerodynamic models of river flow up to a distortion of about 2.5. When
only total losses in a river stretch are required for qualitative studies (e.g.
pressure losses for an arbitrary position of the water surface, i.e. a glass
cover), very good results have been reported for much greater distortions
(e.g. 20). With a suitable distortion it certainly is possible to achieve the
same distribution of velocities as for an open channel in the lower part of
the cross-section (below the zone of maximum velocity); the distortion in
the velocity distribution produced by the cover could be partially offset by
placing the cover in a slightly more elevated position than would correspond
to the water level.

For equal roughness on the model bed and cover, the relationship
between λ, Re and R/k is given by Zegzhda’s experiments, but for dif-
ferent roughness on the bed and on the cover the resulting value of λ
could deviate substantially. The total frictional resistance coefficient for a
cross-section of varying roughness on the bottom and covering plate may
be sufficiently accurately calculated as the arithmetical mean of the resis-
tance coefficients for even roughness over the entire section and the same
depth.

In aerodynamic models, apart from the pressures that are measured by
means of manometers connected to normal piezometric openings, velocities
are usually measured using small pressure head (Pitot) tubes or hot-wire
anemometers, and flow paths are studied using various tracers (smoke,
sparks, etc.) or light threads. The models are usually placed on tables or
trestles with access from below for the insertion of velocity probes and pres-
sure tappings. The morphological features are usually modelled using thin
plasticine templates, with a small amount of linseed oil added to prevent
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cracking, or sometimes layers of plywood have been used. Due to the small
size of the models, great care and accuracy are required in their construc-
tion. The cover is usually made of glass or perspex (5–10 mm thick) and
the contact between the cover and the model has to be carefully sealed (e.g.
with putty).

Air may be either driven into the model or exhausted from it by fans dis-
charging 1,000–10,000m3/h at a pressure of about 500–600 mm of water;
air discharge is usually measured by means of an orifice. An arrangement
where the outlet from the model is connected to the suction side of the fan
is used more frequently, as this allows an easy introduction of tracers at the
model inlet. In this case it is necessary to check the model carefully and, if
necessary, prevent the bending of the model cover by supporting it at inter-
vals by thin rods that act as distance pieces; for this reason a combination
of driving air into the model and extracting it at the end is sometimes used
so that atmospheric pressure is maintained approximately in the middle of
the model.

Because of their small dimensions and the possibility of rapid adjust-
ment, aerodynamic models of open-channel flow are particularly well suited
for preliminary studies of various alternatives of the layouts of complex
low-head hydraulic structures, intakes, river training schemes, etc. The
‘optimum’ solution is then often tested in greater detail using a conven-
tional hydraulic model, but in less important cases it is possible to base the
final design on the aerodynamic model alone. Reliable quantitative results
may be achieved, especially for river studies where there is a fixed bed and
predominantly two-dimensional flow.

7.6 Case studies

7.6.1 The Vidourle river

The purpose of this section is to describe the steps in the construction of a
one- and two-dimensional free-surface-flow model. In order to better illus-
trate the differences between the approaches, the one- and two-dimensional
models are built for the same river reach. The selected site is a reach of
the Vidourle river that has been used as an application example in previ-
ous river-model calibration studies (Guinot and Cappelaere (2009)). The
topography of the bed is shown in Figure 7.23.

The flow in this part of the river is intermittent. This behaviour stems
from: (i) the highly seasonal rainfall pattern, with intense events concen-
trated mainly in autumn and spring; and (ii) the strongly karstified underly-
ing geological layers, combined with a bed made of gravel and stones that
allows large seepage rates from the river. As a consequence, the discharge
pattern is a succession of short peaks, occurring mainly between autumn
and spring, separated by long zero-discharge periods. The river bed is made
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Figure 7.23 Bathymetry of the river reach used for the comparison between a one-
dimensional model and a two-dimensional model. Bold lines: the location of
the cross-sections in the one-dimensional model. Contour line spacing: 5 cm

of gravel and small stones, with sizes ranging typically from 1 to 5 cm. As
a consequence of the highly contrasted flow regime, the bathymetry of the
bed is not stable over time, with local depressions and island-moving from
year to year along the reach. The strong variability in the river bathymetry
allows the differences between one- and two-dimensional model outputs to
be illustrated strikingly.

7.6.1.1 One-dimensional model

As mentioned in Section 7.3, the geometry of the river in a one-
dimensional model is described using cross-sectional profiles located
upstream and downstream of the major changes in cross-section geometry
(see Section 7.3.1.2 for a justification). The locations of the transverse pro-
files are shown in plan view in Figure 7.23. The variability in the geometry
is illustrated by Figure 7.24(a)–(b), which shows the cross-sectional profiles
for the second, fourth, sixth and eighth sections.

The one-dimensional model is built using the Mike 11 modelling package
(DHI (2005)). Like all one-dimensional models, the software uses precom-
puted tables for the free-surface width, cross-sectional area and conveyance.
The actual free-surface width, cross-sectional area and energy slope are
updated at every iteration within each computational time step using an
interpolation between the entries of the table. The free-surface elevation
is used as the input variable for the interpolations. The standard option
in the software package is that the free-surface width, cross-sectional area
and conveyance tables are composed of 20 entries defined automatically
between the bottom and top levels of the cross-sectional area. However,
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Figure 7.24 Input data, processed data and model results for the one-dimensional mod-
elling package. (a) Cross-sectional profiles for cross-sections 2 and 4. (b)
Cross-sectional profiles for sections 6 and 8. (c) Processed conveyance data
for the default value (20 interpolation levels) and for the manually adjusted,
60 interpolation levels. (d) Longitudinal profiles computed by the software for
20 and 60 interpolation levels

the user of the software is entitled to specify a different number of inter-
polation levels if the default value is deemed too coarse. Figure 7.24(c)
shows the conveyance curves computed for the fourth cross-section for
the default value of 20 table entries and a manually adjusted table with
60 interpolation levels. As illustrated in the figure, the default option
yields an artificially linear variation between the last-but-one and last
points in the curve. Computing the conveyance curve using 60 interpo-
lation levels yields a much smoother (and more accurate) conveyance
curve.

Figure 7.24(d) shows the steady-state longitudinal profiles obtained for
a discharge Q = 31m3/s and a downstream water level z = 123.7m,
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which corresponds to full bank flow. The only difference between the two
longitudinal profiles shown in the figure is the number of entries used in
the conveyance table. As shown in the figure, the levels at the upstream
end of the model differ by 3 cm. This difference represents more than
7.5% of the water-level difference computed between the upstream and
downstream boundaries of the domain, which illustrates the importance
of the discretization of the geometry to the quality of the output of a
one-dimensional model.

7.6.1.2 Two-dimensional model

The two-dimensional model solves the two-dimensional shallow-water
equations using a finite-volume approach on unstructured grids. A variety
of numerical solvers and interpolation schemes are available for the solu-
tion of the equations (Guinot (2003), Guinot and Soares-Frazão (2006),
Lhomme and Guinot (2007), Soares-Frazão and Guinot (2007)). The com-
putational grid is made of triangular cells with sizes ranging from 10 to 1 m
(see Figure 7.25 for a global view and a zoomed-in view of the central part
of the mesh). The elevations of the cells are interpolated from measurements
at points scattered all over the modelled area.

The modelling results for an upstream discharge Q = 31m3/s and
a downstream water level z = 123.7m are shown in Figure 7.26. The

0 10
Metres

20

0 10 20
Metres

4030

Figure 7.25 Two-dimensional shallow-water model. Plan view of the computational grid
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Figure 7.26 Simulation results for the two-dimensional shallow-water model. Free-surface
elevation in plan view (a) and along the cross-section [AB] (b). The norm of
the flow velocity in plan view (c) and along the cross-section [AB] (d)

water level is shown in plan view in Figure 7.26(a). Figure 7.26(b) shows a
cross-sectional view of the river bed and the free surface along the segment
[AB]. Figures 7.26(c) and 7.26(d) show the plan view and cross-sectional
distributions, respectively, of the norm of the flow velocity.

The results of the two-dimensional simulation clearly contradict the
leading assumption of uniform flow variables over a cross-section that
is behind classical, one-dimensional river modelling. As illustrated by the
cross-sectional free-surface profile in Figure 7.26(b), the variation in the
free-surface elevation computed by the two-dimensional model along
the segment [AB] is 19 cm (for an average flow depth of 80 cm), while the
roughly triangular flow velocity profile (Figure 7.26(d)) varies between 0
and 2.5 m/s across the section. A close inspection of the vector velocity field
reveals that the peak in the norm of the velocity near the point A is due to a
swirl that appears close to the right bank (Figure 7.27). The numerical inte-
gration of the velocity and unit-discharge profiles along [AB] yield a value
β = 1.2 for Boussinesq’s coefficient in the momentum equation (7.19) for
a one-dimensional model, in contrast with the value β = 1.0 used in most
applications.
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Figure 7.27 Zoomed-in view of the swirl appearing near the right bank

The present application shows that one- and two-dimensional free-
surface flow models provide different kinds of information. One-
dimensional river models are best suited for long channels with smooth,
uniform or slowly varying geometries. They do not allow the variations in
the flow variables to be represented in detail in the presence of local geomet-
ric effects such as sudden narrowings/widenings, highly variable flow depths
and/or velocity distributions. Local effects, such as dead zones, flow diver-
sion around banks or shallow flow zones, etc., can be represented accurately
only by two- or three-dimensional models.

Although more complete than one-dimensional models in their descrip-
tion of the physics of the flow, two- and three-dimensional models require
more time and computational effort. Setting up and calibrating the one-
dimensional model presented in Section 7.6.2 is only a matter of a few
hours. Setting up and calibrating the two-dimensional model presented
in Section 7.6.3 demands at least twice or three times as much time
(and human labour). Moreover, this time ratio is valid only provided that
the topographical data have been acquired appropriately, thus allowing
semi-automatic mesh generation. Reconstructing any missing topographical
and/or geometric information requires the modeller’s knowledge, experience
and judgement.

This is why one-dimensional open-channel models still represent the
vast majority of hydraulic models in operation, while two- or three-
dimensional free-surface flow modelling still remains an activity for skilled
and experienced users.
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7.6.2 The river Dargle flood-management scheme

A hydraulic model was built at HR Wallingford to study the impact on the
town of Bray of a proposed flood risk-management scheme on the river
Dargle in the Republic of Ireland (Éire).

A distorted model with scales Ml = 100 and Mh = 50 was used. The river
model extended to the sea and was run for a number of tidal levels.

The model (Figure 7.28) was used to provide data on flood levels, flow
velocities and inundated areas in order to assess the performance of a num-
ber of different flood-mitigation measures (regrading of the bed, realignment
of the river channel, flood defence walls, debris trap). As there was concern
about the impact of the proposed scheme on trees within the flood plain, and
also to aid the assessment of the visual impact, the trees were represented in
the model by shrub twigs.

Figure 7.28 The river Dargle model (courtesy of HR Wallingford)



Modelling of open-channel systems 311

A physical model was used (in preference to a mathematical one) as it
was believed that it would give a better representation of complex flow
interactions within an urban environment and that it would be a useful tool
in presenting to the general public the scheme and its impact. During the
outline design stage of the project a one-dimensional numerical model was
used for a longer reach of the river to help develop the scheme options.

7.6.3 Entrance to Ústí harbour and regulation of the
Labe (Elbe)

The entrance to the harbour at Ústí and the regulation of the adjoining
section of the river Labe (Elbe) was studied at the T. G. Masaryk Water
Research Institute in Prague.

The harbour entrance had a tendency for silting up after high discharges,
mainly from sediments washed down from upstream and from tributaries
(i.e. not from the river bed itself), and the design for improvement was
finalized after a study on a fixed-bed undistorted hydraulic model of scale
Ml =60, with the feeding of crushed fruit stones at its inflow to simulate the
sediment (see Figure 7.29), and modelling discharges from 600m3/s up to a
50-year flood (4,000m3/s1).

Figure 7.29 Model of the entrance to Ústí harbour (courtesy of VÚV-TGM, Prague)
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In contrast, modelling the river regulation required emphasis at low dis-
charges from 70m3/s, when the depths of flow for a substantial reach of
the river downstream of the harbour are so low that navigation on this
important international waterway has to be severely restricted or aban-
doned altogether. The aim of the study was to increase the depths by at least
100 mm by means of longitudinal dykes or by groynes (without interfering
with navigation). The river bed in the considered reach of about 2.5 km
downstream of the harbour is composed of rock with some very coarse sed-
iment. Computation showed that more than 50% of the total head losses
was due to local losses rather than friction caused by sudden substantial
changes in bed level (macro-roughness) and changes in river width.

To study the options for increasing the flow depth, a distorted fixed-bed
hydraulic model at scales Mh = 25 and Ml = 65 with a bed-slope scale of
MS = 1 (the model was tilted about its downstream end) was built; this
rather unusual arrangement was a compromise between the accuracy of
water-level measurements in the model, the distortion of river cross-sections,
the laboratory space and the preservation of the longitudinal profile macro-
roughness. As a 100 mm prototype is represented in the model only by
4 mm, it was felt that this might cast doubts on the conclusions drawn from
the model, despite the great care taken in its operation. Therefore, further
studies were carried out on an aerodynamic model, with scales of Mh = 130
and Ml = 350 (i.e. with the same distortion as used in the hydraulic model).

The main advantage of the aerodynamic model was that it could be arbi-
trarily inclined (without having to account for the correction of the datum
and the possibility of using sufficiently large discharges and mean veloci-
ties so that the pressure differences (corresponding to water levels could be
measured with sufficient accuracy. Thus, with a flow of air of 30 l/s repre-
senting a discharge of 70m3/s, a change in water level by 100 mm results
in a pressure change of 46 mm water column (see equation (7.17)), which
could easily and accurately be measured. The river bed in the model was
constructed using a mixture of two-thirds plasticine and one-third gypsum,
covered by a special paint (which could be peeled away) with sand grains for
roughness. The cover was of plastic sheets, also covered with sand grains, so
that not too large roughness elements had to be placed on the bed. The inlet
was connected to the delivery and the outlet to the suction of air blowers
so that there was atmospheric pressure approximately in the middle of the
model. The model was calibrated using the known water levels at 70m3/s.
Figure 7.30 shows the model with the cover, without roughness, in place.
Using the procedure outlined in Section 7.4.4, the effectiveness of various
regulation measures could be assessed.

The results from both the hydraulic and aerodynamic models con-
firmed that neither longitudinal dykes nor groynes achieved the required
result (increase of water depth by 100 mm for low river flows) unless the
river width was narrowed to levels unacceptable to navigation. The only
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Figure 7.30 Aerodynamic model of the Elbe (Labe) regulation (courtesy of VÚV-TGM,
Prague)

temporary solution was dredging in critical localities, and the only satisfac-
tory permanent solution was the construction of a low-head barrage (see
also Section 13.5.2). For further details, see Novak (1967) and Libý and
Novak (2002).
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Masaryk Water Research Institute, Prague, p. 40.

Ljatcher, V. M. and Proudovskij, A. M. (1959), Some Problems of Aerodynamic
Modelling of Open Channel Flow – New Methods and Instrumentation for
Research of River Processes, Izd. ANSSSR, Moscow (in Russian).

Ljatcher, V. M. and Proudovskij, A. M. (1971), Investigation of Open Channels on
Pressurised Models, Energija, Moscow (in Russian).

Luyten, P. J., Jones, P. E., Proctor, R., Tabor, A., Tett, P. and Wild-Allen, K. (1999),
COHERENS – A coupled hydrodynamical-ecological model for regional and
mathematical models of the North Sea, MUMM report, Management unit of the
Mathematical Models of the North Sea.

Meselhe, E. and Holly, F. M. Jr (1997), Invalidity of the Preissmann scheme for
transcritical flow, J. Hydraulic Engineering, ASCE, 123, 605–614.

Novak, P. (1967), Model similarity and training of rivers with large channel irreg-
ularities, Proc. 11th Congress IAHR, Fort Collins, CO, Vol. 1, paper A47,
pp. 379–388.
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Chapter 8

Environmental modell ing of
open-channel systems

8.1 Introduction

The present chapter deals with models for dissolved substances’ transport,
water quality and sediment movement in open channels.

Chapters 2–4 are necessary background reading for a correct under-
standing of the mathematical, numerical and physical notions developed
hereafter. Moreover, the reader is assumed to have mastered the basis of
open-channel modelling presented in Chapter 7.

In Section 8.2, the physical processes and governing equations for solute
transport are presented. In most existing solute-transport models the solute
concentrations are assumed to be small enough for the solute concentra-
tion field not to interact with the flow, which makes the mathematical
formulation and solution techniques rather straightforward. In contrast,
morphological processes, which are dealt with in Section 8.3, involve an
interaction (also called coupling) between the transport and the hydraulic
processes, which has consequences on the model behaviour, solution tech-
niques and algorithmic aspects. Section 8.4 deals with water-quality mod-
elling and Section 8.5 is devoted to physical modelling of morphological
processes.

8.2 Computational models of transport of
dissolved matter

8.2.1 Physical processes and governing equations for
one-dimensional transport

8.2.1.1 Assumptions

Solving a solute-transport problem involves computing the concentra-
tion in the dissolved substance at all points at all times of the open-
channel system. Most existing models for one-dimensional transport of
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dissolved substances in open-channel systems are based on the following
assumptions:

(1) The typical ratio of longitudinal to transverse channel dimensions is
large enough for the flow and transport processes to be considered
one-dimensional (see also Section 7.2.1 for a justification and illus-
tration of this assumption). Consequently, the concentration in the
dissolved substance is assumed to be homogeneous within a given
cross-section of the channel.

(2) The range of concentration of the dissolved substance is small enough
to have no influence on water density and thus on the flow field. In other
words, open-channel hydrodynamics are not influenced by the transport
process, and the flow field in the channel system may be determined
independently of the solution of the transport problem. This means, in
particular, that previously computed flow fields may be used for solute-
transport studies.

(3) The main processes at work in solute transport are (i) advection, (ii) dif-
fusion, (iii) hydrodynamic dispersion and (iv) degradation processes.
The mathematical formulation of such processes is examined hereafter.

(4) The dissolved substance is transported at the same velocity as the water
molecules, and therefore the advection velocity is the flow velocity u.

(5) Molecular diffusion is assumed to obey Fick’s law, whereby the diffu-
sion flux is assumed to be proportional to the concentration gradient
and the so-called molecular diffusion coefficient.

(6) Hydrodynamic dispersion may be modelled using a Fickian diffusion-
based law where the diffusion coefficient is proportional to the average
flow velocity. The arguments militating for such a formulation will not
be detailed hereafter. The underlying idea to representing hydrodynamic
dispersion using a diffusion law is very similar to the idea that leads to
the eddy viscosity concept in the representation of Reynolds stress for
turbulent flows (see Section 4.3.3).

8.2.1.2 Mathematical formulation in conservation form

The governing equation for the solute concentration C is derived directly
from a mass balance. The method used to derive the mass-balance (also cal-
led continuity) equation is detailed in Section 7.2.2.1 and will not be presen-
ted here. Applying the reasoning of Section 7.2.2.1 to the mass M of solute
per unit length of channel, the following conservation equation is obtained:

∂M
∂t

+ ∂F
∂x

= S (8.1)

where F is the flux (i.e. the amount of dissolved substance that passes at
a given cross-section per unit time) and S is the source term that results
from source or non-point source pollutions, as well as from lateral flow
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diversions or inflows. The expression of the various terms in equation (8.1)
is examined hereafter.

Expression for M. The mass M of solute per unit length of river may
be expressed as the product of the concentration and the volume per unit
length of river. As the volume per unit length of river is the cross-sectional
area A, one has M = AC.

Expression for F. The flux F expresses the combined effects of advection,
molecular diffusion and hydrodynamic dispersion

F = Fa + Fm + Fd (8.2)

where the advection flux Fa, the molecular diffusion flux Fm and the
dispersive flux Fd are given by

Fa =
∫
A

uCdA =
∫
A

u dAC = QC (8.3a)

Fm =
∫
A

−Dm
∂C
∂x

dA =−DmA
∂C
∂x

(8.3b)

Fd =
∫
A

−Dd
∂C
∂x

dA =−DdA
∂C
∂x

=−αLuA
∂C
∂x

=−QαL
∂C
∂x

(8.3c)

where Dm and Dd are the molecular diffusion and dispersion coefficients,
respectively, and αL is the so-called longitudinal dispersivity Dd =αLu. Note
that in deriving equations (8.3a)–(8.3c), the assumption of a constant C over
the channel cross-section is used to take C out of the integrals. In most cases,
Fm is negligible compared to Fd and is omitted from the final expression of
F. Substituting equations (8.3a)–(8.3c) into equation (8.2) and neglecting
Fm gives

F =
(

C −αL
∂C
∂x

)
Q (8.4)

Expression for S. The source term may be expressed as

S = Sd + Sin + Sout (8.5)

where Sd, Sin and Sout are the source terms that account for the influence
of degradation, lateral inflow of possibly contaminated water and lateral
outflow, respectively. These fluxes are usually formulated as follows:

Sd =−kdM =−kdAC (8.6a)

Sin = q + |q|
2

Cin (8.6b)

Sout = q − |q|
2

C (8.6c)
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where kd is the linear degradation constant, q is the laterally inflowing dis-
charge per unit length and Cin is the concentration in the inflowing water.
Note that if q is positive (inflow), Sout is zero, while Sin is zero if q is negative,
hence the presence of the terms (q ± |q|)/2 in equations (8.6b) and (8.6c).

Final expression in conservation form. Substituting the expressions for
M, F and S into the governing equation (8.1) yields the final expression in
conservation form

∂(AC)
∂t

+ ∂

∂x

[(
C −αL

∂C
∂x

)
Q
]

=−kdAC + q + |q|
2

Cin + q − |q|
2

C (8.7)

8.2.1.3 Alternative expressions

The conservation form (equation 8.7) is not the easiest possible formu-
lation of the transport equation, because the quantity AC is not directly
measurable, while C is. For this reason, the non-conservation and charac-
teristic forms of equation (8.7), where C is the dependent variable, are often
preferred.

Non-conservation form. The non-conservation form is obtained by
expanding the derivatives in equation (8.7)

A
∂C
∂t

+ C
∂A
∂t

+ C
∂Q
∂x

−αL
∂C
∂x

∂Q
∂x

+ Q
∂

∂x

(
C −αL

∂C
∂x

)
=−kdAC + q + |q|

2
Cin + q − |q|

2
C (8.8)

For convenience, we recall that the liquid-continuity equation is

∂A
∂t

+ ∂Q
∂x

= q (8.9)

Noting that the second and third terms in equation (8.8) are nothing but
the left-hand side of equation (8.9) multiplied by C, then rearranging and
dividing by A, equation (8.8) is rewritten as

∂C
∂t

+
(

u − αL

A
∂Q
∂x

)
∂C
∂x

− u
∂

∂x

(
αL
∂C
∂x

)
=−kdC + q + |q|

2A
(Cin − C)

(8.10)

Neglecting the term αL/A∂Q/∂x (which is justified in most real-world
applications) and assuming a constant αL allows equation (8.10) to be
simplified further

∂C
∂t

+ u
∂C
∂x

− uαL
∂2C
∂x2

=−kdC + q + |q|
2A

(Cin − C) (8.11)
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which is the form solved in most models for solute transport in open
channels.

Characteristic form. From the developments presented in Chapter 7, it
follows that equation (8.11) may be rewritten in characteristic form as
follows:

dC
dt

= uαL
∂2C
∂x2

− kdC + q + |q|
2A

(Cin − C) for
dx
dt

= u (8.12)

8.2.2 Initial and boundary conditions in one
dimension – branched and looped networks

8.2.2.1 Initial and boundary conditions for a single reach

Equation (8.10) is parabolic (see Section 2.2). The conditions for the exis-
tence and uniqueness of parabolic equations (see Chapter 2) require that
(i) the initial condition (in the present case the value of C at t =0) be known
at all points of the computational domain and (ii) a condition be prescribed
at each boundary of the domain. When a single reach is to be modelled,
classical boundary condition types are:

(1) Prescribed concentration. Such boundary conditions, also known as
‘Dirichlet conditions’ (see Section 2.5.3), are usually prescribed at the
upstream boundary of channel models.

(2) Prescribed flux or prescribed concentration gradient. Such boundary
conditions, also known as ‘Neumann conditions’ (see Section 2.5.4),
are more often used at the downstream boundaries of channel
systems.

8.2.2.2 Internal boundary conditions for branched and looped
networks

As mentioned in Chapter 7, the junctions between several reaches in a
channel network are considered as internal boundaries (see Section 7.3.5).
At such boundaries, mass conservation must hold:

J∑
k

εkFk = 0 (8.13)

where J is the number of junctions, Fk is the flux at the boundary of the
branch k connected to the junction, and εk is a topological indicator that
is equal to +1 if the junction is considered as the upstream boundary of
the branch and to −1 if the junction is the downstream boundary of the
branch k. From the definition of F, equation (8.13) becomes
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J∑
k

εk

(
Ck −αLk

∂Ck

∂x

)
Qk = 0 (8.14)

where Qk is the liquid discharge at the boundary of the kth branch (note
that the discharges Qk satisfy the liquid-continuity condition (7.114)).
As evaluating the derivative of the concentration at a model boundary is
rather complicated from an algorithmic point of view, many commercially
available software packages approximate the flux at the boundary as the
advection flux, thus simplifying equation (8.14) to

J∑
k

εkQkCk = 0 (8.15)

The solution is made unique by requiring in addition that the concentra-
tion Ck be the same for all branches for which the junction is an upstream
boundary. This assumption, known as the ‘perfect mixing’ assumption,
leads to the following formula:

Cus =
∑
ds

QkCk∑
us

Qk
(8.16)

where Cus is the concentration used as an upstream boundary in all the
branches for which the junction is an upstream boundary, and the sum-
mation indexes ‘ds’ and ‘us’ indicate the branches for which the junction
is a downstream boundary and the branches for which the junction is an
upstream boundary, respectively.

8.2.3 Numerical techniques for one-dimensional models

The numerical techniques for the solution of the one-dimensional transport-
reaction equation (8.7), (8.11) or (8.12) can be classified into: (i) unsplit
techniques, whereby all the terms in the equation are solved in a single step;
and (ii) operator-splitting techniques, whereby the advection, diffusion and
reaction parts of the equations are treated sequentially within a given time
step. The broad outlines of these methods are provided hereafter.

8.2.3.1 Unsplit techniques

These techniques use a simultaneous discretization of all the terms in the
transport-degradation equation. In many cases the non-conservation form
(8.11) of the equation is solved because the solute concentration arises
as a ‘natural’ variable in this form. The concentration is easily measured
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in the field, which makes a direct comparison with the model results
straightforward. The derivatives in equation (8.11) are usually approx-
imated using implicit or semi-implicit techniques in order to avoid any
numerical stability problem. For instance, one may choose to discretize the
advection and diffusion parts using the Crank–Nicholson technique:

∂C
∂x

≈ (1 − θ1)
Cn

i+1 − Cn
i−1

2�x
+ θ1

Cn+1
i+1 − Cn+1

i−1

2�x
(8.17a)

∂2C
∂x2

≈ (1 − θ2)
Cn

i+1 − 2Cn
i + Cn

i−1

�x2
+ θ2(1 − θ2)

Cn+1
i+1 − 2Cn+1

i + Cn+1
i−1

�x2

(8.17b)

where θ1 and θ2 are implicitation parameters between 0 and 1. θ1 and θ2 are
usually equal, but other options are possible. The derivative with respect to
time and the terms in C in the equation (8.11) are approximated as

∂C
∂t

≈ Cn+1
i − Cn

i

�t
(8.18a)

− kdC + q + |q|
2A

(Cin − C) ≈−kdCn+1
i +

(
q + |q|

2A

)n+1/2

i

(Cin − Cn+1
i )

(8.18b)

Substituting equations (8.17) and (8.18) into equation (8.11) yields

AiCn+1
i−1 + BiCn+1

i + DiCn+1
i+1 = En

i (8.19)

where the coefficients Ai, Bi, Di and Ei are given by

Ai =−θ1

2
Cr − θ2F (8.20a)

Bi = 1 + 2θ2F +
(

kd + q + |q|
2A

)
�t (8.20b)

Di = θ1

2
Cr − θ2F (8.20c)

En
i =

[
1 − θ1

2
Cr + (1 − θ2)F

]
Cn

i−1 + [1 − 2(1 − θ2)F] Cn
i

+
[
−1 − θ1

2
Cr + (1 − θ2)F

]
Cn

i+1 + q + |q|
2A

Cin�t
(8.20d)

where Cr and F are the Courant number and the diffusive Courant number,
respectively, and are defined as
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Cr = u�t
�x

(8.21a)

F = uαL�t
�x2

(8.21b)

For a reach with M computational points, M − 2 equations (8.19) can
be written for the points I = 2, 3, . . . , M − 1. The missing two equations
are provided by the boundary conditions. Note that, owing to the presence
of the diffusion term, one boundary condition is needed at each end of
the reach.

8.2.3.2 Operator-splitting techniques

In these techniques the various parts of the transport equation are treated
in a sequence. This allows, in particular, the most appropriate (or accurate)
method to be selected for, for example, the advection part of the equation.
A typical time-splitting sequence for the solution of equation (8.11) is the
following.

(1) Solve the advection part of the equation over the computational
time step �t using the values of C at the time level n as an initial
condition.

∂C
∂t

+ u
∂C
∂x

= 0 (8.22a)

dC
dt

= 0 for
dx
dt

= u (8.22b)

Equations (8.22a) and (8.22b) are the non-conservation and char-
acteristic forms of the advection equation, respectively. Any standard
method, such as the Crank–Nicholson, Preissmann or upwind schemes,
may be used to solve equation (8.22a), while the method of character-
istics (MOC) is best suited to the solution of the characteristic form
(equation (8.22b)).

Step (1) provides a first estimate Cn+1,A
i of the solution at the time

level n + 1. The superscript A indicates that this estimate is the result of
the advection part only.

(2) The values Cn+1,A
i at the computational points are used as a starting

point for the solution of the diffusion part of the equation over the time
step �t:

∂C
∂t

− uαL
∂2C
∂x2

= 0 (8.23)
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This yields a new estimate Cn+1,D
i of the solution, where the super-

script D indicates that the solution is the result of the diffusion part of
the equation.

(3) The values Cn+1,D
i are used as initial conditions to compute the remain-

ing part of the equation over the computational time step �t:

∂C
∂t

=−kdC + q + |q|
2A

(Cin − C) (8.24)

8.2.4 Two-dimensional transport of dissolved matter

8.2.4.1 Assumptions – mathematical formulation

The assumptions behind two-dimensional models for the transport of dis-
solved substances are identical to assumptions (2)–(6) for one-dimensional
transport. Assumption (1), valid only for one-dimensional flow configura-
tions, must be replaced with the following assumption:

(7) The typical ratio of the vertical to horizontal dimensions of the physical
domain is small enough for the flow to be considered nearly horizontal
and the flow velocity homogeneous over the vertical (see Section 7.4.2
on two-dimensional free-surface-flow modelling). The concentration in
the dissolved substance is also assumed to be homogeneous over the
vertical.

Transposing the reasoning of Section 8.2.1 to a two-dimensional flow
configuration leads to the following conservation form of the two-
dimensional transport equation:

∂(YC)
∂t

+ ∂

∂x

[(
C −αL

∂C
∂x

)
Yu
]

+ ∂

∂y

[(
C −αL

∂C
∂y

)
Yv
]

=−kdYC

(8.25)

where u and v are the x- and y-velocities, respectively, and Y is the water
depth. The non-conservation form of the transport equation is obtained by
expanding the derivatives in equation (8.25)

Y
∂C
∂t

+C
∂Y
∂t

+ Yu
∂

∂x

(
C −αL

∂C
∂x

)
+
(

C −αL
∂C
∂x

)
∂

∂x
(Yu)

+ Yv
∂

∂v

(
C −αL

∂C
∂v

)
+
(

C −αL
∂C
∂v

)
∂

∂v
(Yv) =−kdYC (8.26)
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Equation (8.26) can be simplified using the liquid-continuity equation
obtained from the first component of the vector equation (7.140):

∂Y
∂t

+ ∂

∂x
(Yu) + ∂

∂y
(Yv) = 0 (8.27)

Multiplying equation (8.27) by C, subtracting the resulting equation from
equation (8.26) and dividing by Y leads to

∂C
∂t

+
[
u − αL

Y
∂

∂x
(Yu)

]
∂C
∂x

+
[
v − αL

Y
∂

∂y
(Yv)

]
∂C
∂y

=

uαL
∂2C
∂x2

+ vαL
∂2C
∂y2

− kdC (8.28)

Assuming, as in Section 8.2.1, that αL/Y∂(Yu)/∂x is negligible com-
pared to u and that αL/Y∂(Yv)/∂y is negligible compared to v leads
to the following writing for the non-conservation form of the transport
equation:

∂C
∂t

+ u
∂C
∂x

+ v
∂C
∂y

= uαL
∂2C
∂x2

+ vαL
∂2C
∂y2

− kdC (8.29)

The characteristic form of the transport equation is obtained directly from
equation (8.29):

dC
dt

= uαL
∂2C
∂x2

+ vαL
∂2C
∂y2

− kdC for

⎧⎪⎪⎨⎪⎪⎩
dx
dt

= u

dy
dt

= v
(8.30)

8.2.4.2 Numerical techniques

The two-dimensional transport-degradation equation is usually solved using
time-splitting procedures. As mentioned in Section 7.4.2.3, two main types
of time splitting are available:

(1) Process, or operator, splitting. This option is used when optimal
accuracy is needed in the solution of the advection, diffusion and/or
degradation terms. Each of the advection, diffusion and degradation
processes is then modelled using the most appropriate technique. A
classical process-splitting framework consists of solving sequentially the
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advection, diffusion and degradation parts of the equations. Assuming
that the conservation form (equation (8.25)) is to be solved, the solution
sequence is:

∂(YC)
∂t

+ ∂

∂x
(YuC) + ∂

∂y
(YvC) = 0 (8.31a)

∂(YC)
∂t

− ∂

∂x

[(
αL
∂C
∂x

)
Yu
]

− ∂

∂y

[(
αL
∂C
∂y

)
Yv
]

= 0 (8.31b)

∂(YC)
∂t

=−kdYC (8.31c)

Equation (8.31a) is solved over the computational time step �t
using the concentration field at the time level n as an initial condition.
The solution of equation (8.31a) is used as an initial condition to
solve equation (8.31b) over the computational time step. The result-
ing solution is used as an initial condition to solve equation (8.31c)
over the computational time step. The solution obtained after solving
equation (8.31c) is the final solution at the time level n + 1.

(2) Dimensional splitting. This option can be used when the transport
equation is to be solved on structured grids (e.g. Cartesian grids). It
is interesting because many high-order numerical schemes for transport
modelling (in particular schemes for advection modelling) are formu-
lated for one-dimensional equations. Robust and accurate numerical
techniques, such as those presented in Section 8.2.3, can then be readily
used for the solution of the two-dimensional equations, with optimal
tuning of the numerical parameters leading to optimal accuracy of the
numerical solution. Applying explicit dimensional splitting to the non-
conservation form (equation (8.29)) yields the following computational
sequence:

∂C
∂t

+ u
∂C
∂x

− uαL
∂2C
∂x2

=−kd

2
C (8.32a)

∂C
∂t

+ v
∂C
∂y

− vαL
∂2C
∂y2

=−kd

2
C (8.32b)

In this sequence equation (8.32a) is solved over one computational
time step. The solution of equation (8.32a) is used as an initial con-
dition to solve equation (8.32b). The result is the final value at the time
level n + 1.
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8.3 Computational models of morphological
processes

8.3.1 Introduction – assumptions

Morphological processes represent an important engineering field of
hydraulics as well as a vast research topic with many pending questions.
Compared to classical free-surface flow modelling, morphological mod-
elling introduces two extra difficulties: (i) the need to account for the
coupling between sediment and flow dynamics, and (ii) the difficulty of
deriving models that accurately describe sediment motion.

Prior to reading this section, the reader is referred to Section 4.6.3 on the
basics of sediment mechanics. Many models are available for the description
of morphological processes in open channels. The simplest existing model is
the so-called Saint Venant–Exner model. The present section is devoted to
a short presentation of this model. For the sake of clarity, the equations are
derived for a rectangular, prismatic channel, i.e. b(x, z) = B(x) = constant,
and for a uniform sediment grain-size distribution.

The uniform grain-size distribution assumption is a very limiting assump-
tion because, as shown by Cunge et al. (1980), non-uniform sediment
grain-size distributions yield different mobility properties for sediment
motion, leading to armouring, variable bed erodability, etc. Ideally, mor-
phological simulations should be carried out taking non-uniform sediment
grain-size distributions into account. The purpose of the present section is
not to give a detailed description of the theory of non-uniform sediment
motion but to present the dynamics of morphological flows as well as basic
considerations on their modelling.

The Saint Venant–Exner model presented hereafter is based on the
following assumptions.

Assumption 1: both the flow and sediment-transport processes are one-
dimensional. Such an assumption is classical in the field of open-channel
flow modelling (see Chapter 7). This means, in particular, that the
sediment is eroded or removed in a uniform fashion across a given
cross-section.

Assumption 2: the flow pattern can be viewed as the superimposition
of two layers (Figure 8.1): (i) a bottom layer flowing over the river
bed, referred to as the bedload layer; and (ii) an upper layer, where the
sediment is transported in the form of a suspension, referred to as the
suspended-transport layer. The thicknesses of the bedload and transport
layers are hereafter denoted by Yb and Ys.

Assumption 3: the sediment velocity in the suspended-transport layer is
equal to the flow velocity V, while it is equal to a lower velocity Vb in
the bedload layer.
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Figure 8.1 Definition of and notation for the Saint Venant–Exner equations. Two-layer flow
system (left) modelled using a single-layer approximation (right)

Assumption 4: the sediment concentrations Cb and Cs in the bedload
and suspended-transport layer are constant. The density ρb of the sedi-
ment is uniform. The sediment concentration in both layers is assumed
to be small enough for the density of the (sediment + water) mixture to
be constant.

Assumption 5: once deposited on the bottom, the sediment instanta-
neously takes a zero velocity. However, the bottom may not be entirely
made of sediment but may include immobile water. The porosity of the
bed is assumed to be uniform, and is denoted by φ hereafter.

Assumption 6: erosion or sediment deposition occur uniformly over the
cross-section at a given point, i.e. the bottom level rises or falls in a
uniform fashion at all points of a cross-section.

Assumption 7: the pressure distribution is hydrostatic over both the
bedload and the suspended-transport layer.

Assumption 8: the bed elevation varies slowly compared to the total
depth, i.e. ∂zb/∂t<<∂(Yb + Ys)/∂t.

Assumption 9: the average sediment concentration over the vertical in
the bedload and the suspended-transport layers is assumed to be very
small compared to the sediment concentration in the bed.

The two-layer system may be approximated using an equivalent, single-
layer system, as shown on the right-hand side of Figure 8.1.

8.3.2 Governing equations

Only the broad lines of the derivation of the continuity and momentum
equations are given hereafter. The detailed principle of their derivation can
be found in Chapter 7 and will not be recalled here. The Saint Venant–Exner
equations are obtained from conservation considerations.
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8.3.2.1 Liquid continuity

The liquid-continuity equation is written under assumption 9 by summing
the continuity equation for each of the bedload and suspended-transport
layers. Under the assumption of a constant width B, the following equation
is obtained:

∂

∂t
(BYb + BYs) + ∂

∂x
(BYbub + BYsus) = 0 (8.33)

Simplifying by the constant width B and introducing the average flow
velocity V

V = Ybub + Ysus

Yb + Ys
= Yb

Y
ub + Ys

Y
us (8.34)

Substituting equation (8.34) into equation (8.33) and simplifying by the
constant width B allows equation (8.33) to be rewritten as

∂Y
∂t

+ ∂q
∂x

= 0 (8.35)

where q = YV is the unit discharge. From the point of view of liquid conti-
nuity, the single-layer system sketched on the right-hand side of Figure 8.1
is equivalent to the two-layer system, provided that the flow velocity V is
defined as in equation (8.34).

8.3.2.2 Momentum balance

According to assumption (4), the sediment concentration in the bedload
and suspended-transport layers is very small. Therefore, the density of the
water–sediment mixture in both layers can be considered constant, and
equal to that of water. Consequently, the momentum equation takes the
same form as the momentum equation in the Saint Venant model (see
Chapter 7). It is recalled that the equation is

∂Q
∂t

+ ∂

∂x

(
β

Q2

A
+ P

)
= (S0 − Se)gA (8.36)

The reader may refer to Chapter 7 for the details of the derivation, and
the meaning and detailed expression of the terms in equation (8.36). In the
case of sediment transport, the formulation of the friction terms needs to
be adapted to account for the friction shear stress, thus yielding a modified
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expression for Se. In the case of a rectangular, prismatic channel of width B
and β = 1, equation (8.36) simplifies to

∂q
∂t

+ ∂

∂x

(
q2

Y
+ g

2
Y2

)
= (S0 − Se)gY (8.37)

Note, however, that, since the bed level zb is variable, it must be consid-
ered as a flow variable, and the bed slope S0 =−∂zb/∂x cannot be considered
independent of time. Consequently, equation (8.37) is rewritten as

∂q
∂t

+ ∂

∂x

(
q2

Y
+ g

2
Y2

)
+ gY

∂zb

∂x
=−SegY (8.38)

8.3.2.3 Sediment balance

Applying the assumption of mass conservation to the sediment included in
both the bedload and the suspended-transport layer yields a conservation
equation in the form

∂M
∂t

+ ∂Qs

∂x
= 0 (8.39)

where M is the mass of sediment per unit length of channel and Qs is the
sediment mass flux (i.e. the mass of sediment passing at a given x per unit
time). The variation of M is expressed as the sum of three terms

∂Ms

∂t
= ∂Mr

∂t
+ ∂Mb

∂t
+ ∂Ms

∂t
(8.40)

where ∂Mr/∂t, ∂Mb/∂t and ∂Ms/∂t are the variations in the mass of sed-
iment stored under the (immobile) bed level, in the bedload layer and in
the suspended-transport layer, respectively. As the bed has a porosity p, a
variation dzb in the bed level yields a variation

dMr = (1 − p)ρsBdzb = d [(1 − p)ρsBzb] (8.41)

because zb is assumed to vary uniformly across the cross-section and because
B = constant can be incorporated in the differential. A variation dYb in the
depth of the bedload layer yields a variation

dMb = CbB dYb = d [CbBYb] (8.42)

Conversely, one has

dMs = CsB dYs = d [CsBYs] (8.43)
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In the same way, the sediment mass flux can be written in the form

Qs = Qb + Qs = YbubBCb + YsusBCs (8.44)

Substituting equations (8.40)–(8.44) into equation (8.39) and dividing by
the constant width B gives

∂

∂t
[(1 − p)ρszb + CbYb + CsYs] + ∂

∂x
(YbubCb + YsusCs)= 0 (8.45)

An average sediment concentration may be defined as

C = YbCb + YsCs

Yb + Ys
= Yb

Y
Cb + Ys

Y
Cs (8.46)

Then, equation (8.45) may be rewritten as

∂

∂t
(YC) + (1 − p)ρs

∂zb

∂t
+ ∂qs

∂x
= 0 (8.47)

where qs = Qs/B is the unit sediment discharge. Assumption (9) allows the
first time derivative in equation (8.47) to be neglected. Assumptions (4) and
(5), of constant ρs and φ, allow equation (8.47) to be simplified to

∂zb

∂t
+ ∂

∂x

(
qs

(1 − p)ρs

)
= 0 (8.48)

As mentioned in Section 4.6.3, the sediment flux is most often
expressed as

qs = ρs(�g)1/2d3/2φ (8.49)

where d is the mean grain diameter, � is the relative density difference
between the sediment and water (i.e. the ratio of sediment to water), and φ is
the so-called ‘sediment-transport parameter’. In classical sediment-transport
models, sediment transport cannot occur unless the bed shear stress is larger
than a given threshold. An example of such a law is Meyer–Peter and
Müller’s model (see equation (4.100)), which can be rewritten in the form

qs = ρssgn(V)d3/2(�g)1/2

[
max

(
4V2

�gd
− 0.188,0

)]3/2

= ρssgn(q)d3/2(�g)1/2

[
max

(
4

�gd
q2

Y2
− 0.188,0

)]3/2 (8.50)

where sgn( · ) is the sign function, equal to −1 if the argument is negative
and to +1 if the argument is positive. Note that the sgn( · ) function allows
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qs

VV0

–V0

Figure 8.2 Definition of the Meyer–Peter and Müller model

both positive and negative flow velocities to be accounted for and that the
max ( · ) operator yields a zero value for qs if the absolute value of V is
smaller than the threshold value V0 = (0.47�gd)1/2 (Figure 8.2).

8.3.2.4 Vector form of the Saint Venant–Exner equations

The liquid continuity, momentum and sediment-balance equations
(equations (8.35), (8.38) and (8.48)) cannot be recast completely in con-
servation form because the term gY ∂zb/∂x cannot be integrated in the
general case. The non-conservation form is used for the vector writing of
the governing equations

∂U
∂t

+ A
∂U
∂x

= S (8.51)

where U, A and S are given by

U =
⎡⎢⎣ Y

q
zb

⎤⎥⎦ , A =

⎡⎢⎢⎢⎢⎣
0 1 0

c2 − V2 2V c2

1
(1 −φ)ρs

∂qs

∂Y
1

(1 −φ)ρs

∂qs

∂q
0

⎤⎥⎥⎥⎥⎦ , S =
⎡⎢⎣ 0

−gYSe

0

⎤⎥⎦
(8.52)

Note that in equation (8.52) the two derivatives on the third line of A are
obtained from equation (8.50) as

1
ρs

∂qs

∂Y
=−V

1
ρs

∂qs

∂q
(8.53a)

1
ρs

∂qs

∂q
= 12sgn(q)

(
d
�g

)1/2 q
Y2

[
max

(
4

�gd
q2

Y2
− 0.188,0

)]1/2

(8.53b)
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Substituting equations (8.53) into equation (8.52) leads to the following
expression for A:

A =

⎡⎢⎢⎢⎢⎣
0 1 0

c2 − V2 2V c2

−V
(1 −φ)ρs

∂qs

∂q
1

(1 −φ)ρs

∂qs

∂q
0

⎤⎥⎥⎥⎥⎦ (8.54)

8.3.3 Wave-propagation speeds

8.3.3.1 General

The wave-propagation speeds λ of the solution are the eigenvalues of the
matrix A. They satisfy the condition |A − λI| = 0, that is,

λ3 − 2Vλ2 +
[
V2 + 1 + θ −φ

1 −φ
c2

]
λ+ θ

1 −φ
Vc2 = 0 (8.55)

No analytical solution can be found for the roots of equation (8.55) in
the general case. However, it is possible to solve equation (8.55) numeri-
cally for particular values of the flow variables. As an example, Figure 8.3
shows the variations in the dimensionless ratio λ/c, with the Froude num-
ber for the sediment and flow parameters given in Table 8.1. Figure 8.3 is
plotted by using various values for the average velocity V and computing
the corresponding value of Fr = V/c.

As illustrated by Figure 8.3, there is a clearly visible asymptotic behaviour
for the wave-propagation speeds at large values of the Froude number. The

−6

6

Fr

/c

1.5
−1.5

λ

Figure 8.3 Variations in the Saint Venant–Exner wave-propagation speeds with the Froude
number. Sediment-transport formula used: Meyer–Peter and Müller
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Table 8.1 Parameters for the graph in Figure 8.3.

Symbol Meaning Value

d Sediment grain size 10−2 m
g Gravitational acceleration 9.81m/s2

Y Total mixture depth 1 m
φ Sediment porosity 0.25
ρs Sediment density 3 × 103 kg/m3

analysis of the wave-propagation speed is carried out in the neighbourhood
of zero velocities and for asymptotic values of the Froude number hereafter.

8.3.3.2 Limit case 1: zero sediment discharge

If the average velocity V is smaller than the threshold value V0, then θ = 0
and equation (8.55) simplifies to

λ3 − 2Vλ2 + (V2 + c2)λ= 0 (8.56)

the roots of which are

λ(1) = V − c (8.57a)

λ(2) = 0 (8.57b)

λ(3) = V + c (8.57c)

This may be interpreted as follows. If the sediment unit discharge is
zero, the bottom elevation zb is constant. Therefore, the channel bed does
not move, and hence the zero wave-propagation speed λ(2). The remain-
ing two wave-propagation speeds λ(1) and λ(3) are the classical celerities
of the Saint Venant system. Therefore, the wave-propagation properties of
the Saint Venant equations are retrieved as a particular case of the Saint
Venant–Exner system.

8.3.3.3 Limit case 2: large Froude numbers

Dividing equation (8.57) by c3 yields the following equality:(
λ

c

)3

− 2Fr
(
λ

c

)2

+
[
Fr2 −

(
1 + θ

1 −φ

)]
λ

c
+ θ

1 −φ
Fr = 0 (8.58)

Equation (8.58) is an equation of the type f (x) = 0. A simple
variation analysis shows that equation (8.58) has only one root if
Fr2

>7/4 + θ/(1 −φ), because in such a case the derivative f ′(x) is always
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non-zero. In most situations with ordinary sediment density, porosity and
grain size, however, this is not the case, and equation (8.58) has three roots.

It can be shown that, for large values of V, θ becomes very large
compared to unity and that q can be approximated as

θ ≈ 24
�

Fr2 >>1 (8.59)

Then equation (8.58) becomes equivalent to

(
λ

c

)3

− 2Fr
(
λ

c

)2

+
(

1 − 24
(1 −φ)�

)
Fr2 λ

c
+ 24

(1 −φ)�
Fr3 = 0 (8.60)

Noting that λ/c = Fr is a root of equation (8.60), equation (8.60) can be
rewritten as

(
λ

c
− Fr

)[(
λ

c

)2

− Fr
λ

c
− 24Fr2

(1 −φ)�

]
= 0 (8.61)

which leads to the following eigenvalues for A

λ1

c
=
{

1
2

−
[
1 + 96

(1 −φ)�

]1/2
}

Fr (8.62a)

λ2

c
= Fr (8.62b)

λ3

c
=
{

1
2

+ 2
[
1 + 96

(1 −φ)�

]1/2
}

Fr (8.62c)

Note that λ1 + λ3 = λ2. Also note that λ1 <V − c and λ3 >V + c.

8.3.3.4 Interpretation

The following conclusions may be drawn from the present analysis.

(1) The wave-propagation speeds λ1 and λ3 of the Saint Venant–Exner sys-
tem are very different from those of the original Saint Venant equations.
With the parameters in Table 8.1, the ratio between the wave speeds of
the two models may be as large as 4. Consequently, solving the Saint
Venant–Exner equations using explicit techniques implies that much
shorter computational time steps should be used than when the Saint
Venant equations alone are to be solved.
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(2) The asymptotic expressions (equations (8.62a) and (8.62b)) indicate
that the wave-propagation speed is lower when the sediment is denser
and when the porosity is smaller. This can be expected because larger
values of � tend to reduce the volumetric sediment discharge qs/ρs

and because a smaller porosity allows more sediment to be stored (or
removed) at a given place for a given variation in the bottom level.

(3) The ratio of the speed λ2 of the central wave to the speeds λ1 and λ3

of the other two waves is between 0 and, typically, 1/6. Consequently,
when solving the Saint Venant–Exner equations numerically, there is
at least one wave with a Courant number significantly different from
unity. Unity is well known to be the Courant number value for which
most numerical techniques for wave propagation are optimally accurate
(Cunge et al. (1980). This means that at least one of the waves is bound
to be poorly resolved in the numerical solution. Indeed, two options are
possible: either (i) the time step and cell size are chosen such that the
Courant numbers of the first and third waves are close to unity, thus
yielding a Courant number for the central wave significantly smaller
than unity; or (ii) the Courant number of the central wave is kept close
to unity, thus yielding Courant number values much larger than unity
for the first and third waves. Determining the most appropriate com-
putational time step and cell size is a matter of determining which of
the three waves is of particular importance in the representation of the
morphological transients.

8.3.4 Initial and boundary conditions

Assume that the Saint Venant–Exner equations with Meyer–Peter and
Müller’s formula are to be solved over a domain [0,L] for t> 0. The wave-
propagation speed analysis in Section 8.3.4 allows the following conclusions
to be derived for solution existence and uniqueness.

For a point M, the domain of dependence of which is located within
the interval [0,L] (see Figure 8.4), the solution is unique provided that
the initial condition at the feet A, B and C of the three characteristics
dx/dt = λk (k = 1, 2, 3) is known. If this is the case, a characteristic rela-
tionship can be written along each of the characteristic segments [AM],
[BM] and [CM]. The solution of the resulting 3 × 3 system is unique.

For a point located next to the upstream boundary (such as the point M′

in Figure 8.4), only one characteristic (the characteristic dx/dt = λ1) travels
from within the domain. The missing two pieces of information must be
supplied in the form of two upstream boundary conditions.

For a point located near the downstream boundary (such as the point
M′′ in Figure 8.4), the characteristics dx/dt = λ1 travels from the down-
stream boundary into the domain, while the remaining two characteristics
dx/dt = λ2 and dx/dt = λ3 come from within the domain. Consequently,
only one boundary condition is needed downstream.
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Figure 8.4 Definition sketch of the characteristics in the Saint Venant–Exner model

There exist situations where prescribing a downstream boundary con-
dition (e.g. a boundary condition in terms of hydrodynamic variables)
yields a second boundary condition because of the specific formulation for
the sediment discharge qs. Consider the downstream boundary condition
q(L, t) = 0. Such a condition is equivalent to prescribing a zero velocity,
V(L, t) = 0. Then, from Meyer–Peter and Müller’s formula, the sediment
discharge is necessarily zero at the boundary, qs(L, t) = 0. This additional
condition in qs should not be considered as an independent boundary condi-
tion, and it should not be inferred that two conditions (i.e. one for the flow
and one for the sediment discharge) can be prescribed at the downstream
boundary. Indeed, obtaining qs(L, t) = 0 as a particular consequence of the
boundary condition V(L, t) = 0 is not the same as prescribing qs (L, t) = 0,
irrespective of the flow conditions at the downstream boundary.

8.3.5 Numerical techniques

The impossibility to derive exact, analytical expressions for the wave celer-
ities in the Saint Venant–Exner model makes numerical methods based
on exact expressions of the Riemann invariants, such as the method of
characteristics (see Section 7.3.2), difficult to use. One of the earliest indus-
trial implementations of the coupled solutions of the flow and sediment-
transport equations described in the literature is based on Preissmann’s
scheme (Preissmann (1961), Preissmann and Cunge (1961a,b)) (see also
Section 7.3.3). Preissmann’s scheme is described in Section 7.3.3 and the
principle of the scheme will not be recalled here. It is simply recalled that
the derivatives of U with respect to time and space are approximated as

∂U
∂x

≈ (1 − θ )
Un

i+1 − Un
i

�xi+1/2
+ θ

Un+1
i+1 − Un+1

i

�xi+1/2
(8.63a)

∂U
∂t

≈ (1 −ψ)
Un+1

i − Un
i

�t
+ψ

Un+1
i+1 − Un

i+1

�t
(8.63b)
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Substituting these approximations into equation (8.51) yields a vector
equation in the form

an+1/2
i+1/2 Un+1

i + bn+1/2
i+1/2 Un+1

i+1 = cn+1/2
i+1/2 (8.64a)

an+1/2
i+1/2 = 1 −ψ

�t
I − θ

�xi+1/2
An+1/2

i+1/2 (8.64b)

bn+1/2
i+1/2 = ψ

�t
I + θ

�xi+1/2
An+1/2

i+1/2 (8.64c)
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�xi+1/2
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]
Un

i

+
(

ψ

�t
I − 1−θ

�xi+1/2
An+1/2

i+1/2

)
Un

i+1

(8.64d)

where I is the identity matrix and A is given by equation (8.54). Substi-
tuting equation (8.54) into equations (8.64b)–(8.64d) leads to a system of
equations in the form

D(k)
i+1/2A

n+1
i + Ek)

i+1/2Q
n+1
i + F(k)

i+1/2zb
n+1
i + G(k)

i+1/2A
n+1
i+1

+H(k)
i+1/2Q

n+1
i+1 + I(k)

i+1/2zb
n+1
i+1 = J(k)

i+1/2,

{
i = 1, . . . ,M − 1
k = 1,2,3

(8.65)

where M is the number of computational points in the domain. Writing
equation (8.65) for k = 1, 2, 3 for i = 1 to M − 1 yields a system with
3M − 3 equations for 3M unknowns. The missing three equations are pro-
vided in the form of boundary conditions. As mentioned in Section 8.3.3,
two boundary conditions must be specified at the upstream end of the reach
and one boundary condition must be prescribed at the downstream end.

8.4 Models of water-quality processes

8.4.1 Physical processes and governing equations

The basics of water-quality modelling are presented in Chapter 4
(Section 4.6.4). As mentioned in Section 4.6.4, water quality may
be described in terms of physical, chemical and biological indicators.
Modelling of temperature and dissolved chemical transport are described
in Section 8.2. The present section is devoted to modelling of biological
processes. It is recalled from Section 4.6.4 that two biological processes are
usually taken into account in water-quality modelling, namely: (i) the bio-
logical oxidation of organic matter, described in terms of biological oxygen
demand (BOD); and (ii) self-purification processes, described in terms of
dissolved oxygen (DO).

The variations of the BOD in water are accounted for by the concen-
tration L of organic matter in the water. Assuming that organic matter
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is transported at the velocity of the flow and subjected to the same
hydrodynamic dispersion processes as any dissolved chemical substance, L
obeys an equation similar to (8.7), where the concentration C is replaced
with L, and the degradation constant kd of the chemical is replaced with an
oxidation constant K1:

∂(AL)
∂t

+ ∂

∂x

[(
L −αL

∂L
∂x

)
Q
]

=−K1AL+ q + |q|
2

Lin + q − |q|
2

L (8.66)

where A is the cross-sectional area, Q is the liquid discharge, q is the liquid
discharge of point or non-point sources, Lin is the concentration of organic
matter in incoming flow and αL is the longitudinal dispersion coefficient.

The governing equation for DO is somewhat similar to the BOD
equation, with the difference that the kinetic degradation term −K1L in
equation (4.115) is replaced with the term K1L − K2D in the so-called
‘sag-curve equation’ (4.118). This leads to the following equation:

∂(AD)
∂t

+ ∂

∂x

[(
D −αL

∂D
∂x

)
Q
]

= (K1L − K2D)A

+ q + |q|
2

Din + q − |q|
2

D (8.67)

The conservation forms (equations (8.66)–(8.67)) of the equations may
be rewritten in characteristic form as

dL
dt

= uαL
∂2L
∂x2

− K1L + q + |q|
2A

(Lin − L) for
dx
dt

= u (8.68a)

dD
dt

= uαL
∂2D
∂x2

+ K1L − K2D + q + |q|
2A

(Lin − L) for
dx
dt

= u (8.68b)

Equations (8.68a) and (8.68b) are coupled via the term K1L.
The main approaches for solving the transport-reaction equations (equa-

tions (8.66)–(8.68)) are described in Section 8.2.

8.4.2 Initial and boundary conditions

The initial and boundary conditions needed to ensure solution existence
and uniqueness are identical to those needed to solve a classical chemical-
transport problem. In order to solve equations (8.66)–(8.67) or equa-
tions (8.68) over a domain [0,L] for all t>0, the initial conditions D(x, 0)
and L(x, 0) must be known for all x, 0 ≤ x ≤ L. Owing to the parabolic
terms that account for the hydrodynamic dispersion process, one condition
must be specified at each boundary of the solution domain for D (or ∂D/∂x)
and L (or ∂L/∂x) at all times t>0.
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Figure 8.5 Structure treatment in computational models for water quality. The double bar
represents the structure, and the points i − 1 and i are considered as internal
boundaries

As recalled from Section 4.6.4, hydraulic structures with overfalls or
jumps may be considered as point sources in terms of dissolved oxygen
(see Chapter 13). Option 1: the structure is treated as an internal boundary
(Figure 8.5). The computational points on the upstream and downstream
sides of the structure are denoted by i − 1 and i, respectively. The point
i − 1 is a downstream boundary for the reach [i − 2, i − 1] and the point i
is an upstream boundary for the reach [i, i + 1]. Prescribing a relationship
between D and L at the points i − 1 and i allows the system of equations to
be closed:

Ln+1
i = Ln+1

i−1 (8.69a)

Dn+1
i = f

(
Dn+1

i−1 ,Q
n+1
i−1 ,Q

n+1
i

)
(8.69b)

because equations (8.69) replace the transport equation that would nor-
mally be solved between the points i − 1 and i if those were ordinary points
in the reach.

8.5 Physical models of morphological processes

8.5.1 General

River engineering studies usually deal with river-training structures designed
to create favourable geometric and kinematic flow conditions for various
purposes and/or to provide adequate flood protection. Studies of scour
and bed-level changes caused by structures (e.g. bridge piers, cofferdams,
intakes) are also frequent topics for open-channel flow models with movable
beds (see also Chapter 13). The physical (scale) modelling of morphological
processes will obviously be closely connected with models of open-channel
flow with fixed boundaries (see Section 7.4) and incorporate the procedures
outlined there with the additional conditions governing the introduction of
a movable bed required to simulate sediment transport.
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The following text gives only a brief introduction to the subject; for fur-
ther reading, refer to, for example, Gehrig (1980), Novak and Čábelka
(1981), de Vries (1993) and Yalin (1971).

8.5.2 Governing equations

Equations (7.159)–(7.167) involving 11 variables (Mz, Mb, Ml, Mh, MR,

Mξ , Mλ, Mt, Mv (or MQ), Mw and Mk) deal basically with the modelling
of water movement. To these have to be added equations for the similar-
ity of the beginning of sediment motion, sediment transport and the time
scale of morphological processes.

8.5.2.1 Beginning of sediment motion

The condition for similarity of incipient sediment motion can be derived
from the well-known Shields diagram giving the relationship between the
square of the densimetric Froude number (see Section 5.8) in the form
Frd

2 = U∗2/gd� (see equations (4.96) and (4.99a); also, 1/Frd
2 is the flow

parameter ψ – see Section 4.6.3) and the Reynolds number in the form
Re∗ = U∗d/ν(�= (ρs − ρ)/ρ, where ρs is the sediment-specific mass and d is
the sediment diameter.

In general, we have to consider both the densimetric Froude number and
the Reynolds number introducing two new variables d and ρs(�). The scale
of the sediment size is, of course, closely related to the roughness scale Mk,
i.e. Mk = f (Md). The ‘equivalent’ roughness size k (see Section 4.4.1) in a
channel with a sediment bed and transport will be a function of the overall
channel morphology and sediment size and grading. If, for simplicity, we
use k ∼= d (or, more accurately, d90), i.e. Mk = Md, then equations (7.168)
and (7.169) will also apply.

For U∗2 = τ0/ρ = gRS (equations (4.38) and (4.39)), where S is the chan-
nel/water surface/energy line slope, using MR = Mh, MS = Mh/Ml and for
Mν = 1 we get from MFr = 1,MRe = 1 and equation (7.169) the following
three equations:

MhM
−3/2
l M−1/2

d M−1/2
� = 1 (8.70)

MhM
−1/2
l Md = 1 (8.71)

M3
l M

−4
h Md = 1 (8.72)

There are four variables in the above three equations, and thus there is
only one degree of freedom and a distorted model is needed (usually Ml is
chosen). Should it not be necessary to consider roughness (e.g. in a short
model the water surface slope may not be important), equation (8.72) is
redundant and we have two degrees of freedom and may thus choose a
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non-distorted model. Finally, if the Reynolds number effect can be neglected
(equation (8.71) redundant), we also can choose two variables (or even three
on short models using only equation (8.70)).

Examining more closely the last case (equation (8.63) redundant), as is
the case for fully turbulent flow and Frd constant (see equation (4.99a)) –
i.e. for Re∗

> 400 (at Re∗ = 400 the effect of viscosity is negligible and
at Re∗ = 1,000 it disappears completely) – and for a non-distorted model
(Mh = Ml), from equation (8.70):

M�Md = Ml (8.73)

If Md is also equal to the length scale Ml then

M� = 1 (8.74)

i.e. the model sediment-specific mass must be the same as that of the
prototype.

For distorted models (Mh <Ml), from equations (8.70) and (8.72)

M� = (Ml /Mh)2 (8.75)

and from equations (8.70) and (8.71)

M3
h = M�M3/2

l (8.76)

Thus

M� = M3/5
l (8.77)

i.e. M� >1 (the model must have lighter material than the prototype).

8.5.2.2 Sediment transport

From equations (4.100)–(4.103) expressing the correlation between the
sediment-transport and flow parameters, it is evident that the scale of the
sediment transport is

Mqs = f (Mh,Ml,M�,Md,Mλ) (8.78)

Using, for example, equation (4.100) and the procedure outlined in
Chapter 5 results in the simple equation

Mqs = M3
hM

−3/2
l M� (8.79)
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(a different form of equation (8.79) would result if equations (4.101)–(4.103)
were used as the basis, because qs varies with different powers of the velocity
V – see Section 4.6.3).

For the derivation of model scales for suspended-sediment transport and
concentration we can start with equations (4.105)–(4.109), all of which
involve the dimensionless Rouse number (the ratio of sediment fall velocity
w and the shear velocity U∗). From this criterion we can state

MwM−1
U∗ = 1 (8.80)

Substituting for U∗2 = gRS and using for w equation (4.98), equa-
tion (8.79) leads again to

MdM� = MRMS = M2
hM

−1
l (8.81)

For the sediment fall velocity with the time scale given by the Froude
law, equation (7.166)

(
Mw = Mh

3/2
/Ml

)
must also apply. Combining equa-

tions (7.166) and (8.69) leads to the condition of an undistorted model
(Mh = Ml).

8.5.2.3 Time scale of morphological processes

The time scale of morphological processes will not be the same as that for
water movement as it will depend on the speed of sediment transport. It
can be determined from corresponding bedload volumes transported in the
prototype and on the model. This involves the use of the ratio of the void
fraction Mp (which depends on the grain sieve curves of the prototype and
the model bedload material). The morphological time scale will be given by

Mts = MvolMpM−1
qs M−1

b (8.82)

Thus, using equation (8.79) for qs

Mts = MlMbMhMp

M3
hMb

M3/2
l M�

= M5/2
l M�MpM−2

h (8.83)

Considering that equation (8.83) involves the void fraction ratio (which
often is considered as unity), which together with the required knowledge
of the prototype bedload transport rate introduces considerable uncertain-
ties, it is best to determine the morphological time scale, if at all possible,
by reproducing on the model a known prototype sequence of discharges
resulting in a known sediment deposition (or scour) (see the case study in
Section 8.6.3).
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8.5.3 Boundary conditions and scale effects

(a) The boundary conditions stated in Chapter 7 for fixed-bed, open-
channel flow models will apply also for movable-bed models. In this
connection it is important to note that it is much easier to adjust the
roughness of the channel in a fixed-bed model than in one with a mov-
able bed. Sometimes the differing demands of reproducing correctly the
roughness and the morphology of the channel and that of reproducing
sediment transport can be reconciled by using lightweight material to
simulate transport on a fixed bed or a sand/gravel bed of appropriate
roughness.

(b) If lightweight material is used (coal, plastics, sawdust, etc.), the shape
of the particles may be quite different from natural sand and gravel;
this can introduce scale effects, which may at least partly be offset by
varying the other relevant parameters.

(c) It has already been mentioned that ignoring viscous effects requires
Re∗

> 400. Sometimes this is considered to be rather strict, and a limit-
ing value of about 70 or even lower may be acceptable without major
scale effects (see Figure 8.6). An interesting possibility is also offered
by the fact that the same constant value of Frd

2 = 0.056 occurs approx-
imately also at Re∗ = 3.5. This, in fact, represents a value when the
forces acting on a sediment particle are caused mainly by its frontal
resistance (as would be the case in the prototype) and when tangential
stresses are negligible. This therefore presents a possibility of modelling
a limited range of discharges and simulating the incipient motion of fine
sediment by using coarser material.

(d) Using a distorted-scale model with a movable bed, the condition of not
exceeding the natural slope of bed material under water is relevant.
This is particularly important when studying the bank-slope stability
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Figure 8.6 Side view of the channel bed and free surface (left); velocity profile along the
channel (right)
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and/or the extent of local scour (see also Section 4.6.3); the condition
of Ml/Mh < 5 is, therefore, also valid for these reasons (usually an
appreciably smaller distortion is used).

(e) Similarity of bedload transport requires that not even the smallest grain
of a mixture on the model should move in suspension (unless this is the
case in the prototype). This condition requires the sediment fall velocity
w to be greater than the shear velocity U∗, i.e. a Rouse number >1.

8.6 Case studies

8.6.1 Transport of a dissolved chemical in a channel

8.6.1.1 Test case description

The purpose of this test case is to illustrate the typical behaviour of solu-
tions of the transport-degradation reaction presented in Section 8.2. The
following problem is considered: a river of length L, the discharge of which
can be considered constant at the time scale of the study, discharges into
a lake. The water is initially free from any contamination. The purpose of
the study is to assess the consequences of an industrial pollution occurring
at the upstream boundary of the channel. At t = 0, the concentration of the
dissolved chemical at the upstream boundary of the river (x=0) rises instan-
taneously to the constant value Cus. The chemical is subjected to advection
at the flow velocity, hydrodynamic dispersion in the river and degradation.
The parameters of the test case are summarized in Table 8.2.

8.6.1.2 Simulation results

The velocity field is obtained by solving the steady-state backwater curve
equation over the domain using the downstream water depth Yds given in

Table 8.2 Parameters for the case study.

Symbol Meaning Value

C0 Initial concentration of dissolved chemical 0 g/l
Cus Concentration at the upstream boundary 1 g/l
kd Chemical degradation constant 0 (Option 1), 10−4/s1 (Option 2)
L Length of the computational domain 6 × 103 m
nM Manning’s friction coefficient 2.5 × 10−2

q Unit discharge in the river 2m2/s
S0 River-bed slope 2 × 10−3

Yds Downstream water depth 7 m
αL Longitudinal dispersivity 5 m
�t Computational time step 20 s
�x Cell width 60 m
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Table 8.2 as a boundary condition. The resulting water level and velocity
field over the solution domain are shown in Figure 8.6.

The characteristic form (equation (8.12)) of the transport equation is
solved using the parameters in Table 8.2. Note that two options are con-
sidered regarding the behaviour of the dissolved chemical. In Option 1, the
chemical is assumed to be fully conservative (i.e. there is no degradation). In
Option 2, the degradation constant is kd = 10−4/s, which corresponds to a
half-life of approximately 2 hours. Such a value for the degradation constant
may be considered as an extreme case, corresponding to a highly reactive
chemical. Therefore, Options 1 and 2 can be considered as the boundaries
of a wide range of possible situations, the behaviour of most contaminants
being somewhere between these two extreme behaviours.

The computed concentration profiles at various times are shown for both
options in Figure 8.7. As the transport-degradation problem is linear, the
plots are drawn for the dimensionless ratio of the concentration to the
concentration at the upstream boundary (C/Cus).

The profile for Option 1 shows no damping of the concentration signal.
This could be expected because, in the absence of degradation, C= constant
is a solution of the characteristic equation (8.12) when C is constant at the
upstream boundary. The concentration profiles are drawn every 20 minutes
in the figure. The dramatic decrease in the advection velocity in the deeper
part of the channel (x>4,000m) is easily deduced from the smaller distance
between the profiles after t =2,400s. The negative velocity gradient around
x = 4,000m is also responsible for the compression of the contamination
front. Indeed, it can be observed that for t = 1,200s the front is smeared
over 1,200 m, while the smearing occurs within only 900 m at t = 2,400s.

In the presence of degradation the concentration decreases as the contam-
inant travels downstream. When the contaminant enters the deeper part of
the channel (x>4,000m) its degradation properties remain unchanged, but
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Figure 8.7 Simulated concentration profiles in the channel at various times. Left: no
degradation (Option 1). Right: kd = 10−4/s1 (Option 2)
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a given distance is covered within a longer time than in the shallower part
of the channel (x<4,000m). This is why the concentration decreases faster
with distance in the deeper part of the channel than in the shallower part.
This explains the change in the slope of the envelope of the concentration
profiles around x = 4,000m.

It must be stressed that the present case study is given only for illustration
purposes. In the case of a river entering a lake, the flow and transport pat-
terns become two-dimensional (if not three-dimensional) at the mouth of
the river. Attempting to model contaminant transport in such a situation
using a one-dimensional description of the flow and transport processes
would obviously lead to an oversimplification of the problem and would
inevitably generate incorrect modelling results.

8.6.2 Arve diversion

The Arve river and valley upstream of Chamonix are affected by landslides.
These and the resulting sediment transport in the Arve are threatening the
village downstream, could raise the river bed up to Chamonix, and affect
it by clogging its banks by fine sediments for 100 km as far as Geneva. The
solution for these problems consisted of:

• construction of a water and sediment intake and an 800 m-long Arve
torrent-diversion tunnel to stop further undermining of the land-
slide base;

• provision of a deposition area for the transported material by a
sediment-retaining barrage to store 20,000m3 of sediment and to
control the area between the diversion intake and the tunnel outlet;

• improvement of the Arve channel capacity.

To study the above measures, two hydraulic models were built at the
Sogreah laboratory, Grenoble:

• A large model, scale Ml = 27, of a reach of the torrent with a mov-
able bed and bedload transport, the diversion intake, a vortex shaft
(height 40 m and diameter 3 m), a dissipation chamber and tunnel,
with all the structures made of perspex. The diverted discharge is up
to 27m3/s and all sediments smaller than 0.3 m are diverted into the
tunnel. Figure 8.8 shows the intake and entrance to the shaft of the
model, with the deposition of sediment larger than 0.3 m downstream
of the intake.

• A model, scale Ml = 45, of the sediment-retaining barrage simulat-
ing the sediment transport and torrential mudflow, with the model
extending beyond the downstream village. Figure 8.9 shows the
sediment-retaining barrage of the model.



Figure 8.8 The diversion intake in the Arve model, Ml = 27 (courtesy of Sogreah,
Grenoble)

Figure 8.9 The sediment-retaining barrage in the Arve model, Ml = 45 (courtesy of
Sogreah, Grenoble)
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Both undistorted models were operated according to Froude law and the
principles outlined in Section 8.5. The boulders and gravel of the proto-
type were represented on the model by gravel and sand to geometrical
scale. A special feature of the models was the representation of the mud-
flow. A mixture of kaolin and additives was used to give the appropriate
rheological properties, and was calibrated according to the actual observed
mudflow.

8.6.3 Danube confluence

The Danube below Bratislava undergoes a substantial change in slope result-
ing in a network of branches and difficult navigation conditions at low
discharges in a river with substantial sediment transport. This situation
was only improved to a substantial degree in 1992 by the construction of
the Gabčíkovo hydroelectric plant and a long navigation canal. In 1953,
the T. G. Masaryk Water Research Institute in Prague was asked to carry
out a study of a particularly difficult reach of the Danube at the conflu-
ence with a strong branch – the Denkpal – with the aim of improving
the situation by river-training measures and changes at the confluence.
The actual sediment transport at various discharges was not known, but
detailed surveys of the river bed and its changes over three years were
available.

A hydraulic model of the confluence (Novak (1966)), to scales of Mh =
100 and Ml = 300, and using coal with a specific gravity 1.38, d90 = 2.4mm
and ds = 1.15mm was used; the slope of the river channel was given by the
length and depth scales MS = 1/3.

To determine the sediment rating discharge in the fairly short model,
the bed was set according to prototype for a certain date and the model
operated with the corresponding (constant) discharge for 30 minutes while
dosing an estimated sediment volume at entry and collecting sediment at
exit; the procedure was repeated until both sediment discharges were equal.
In the same way, sediment discharges were obtained for other water dis-
charges. To prove the model, the actual sequence of discharges in the
Danube (according to the daily readings at the gauging station in Bratislava)
was reproduced on the model for the period of three years, and the resulting
bed forms compared with those recorded in the prototype. The time scale
for sediment transport was determined from equation (8.83) to be about
Mts = 1,000, and after a few runs was adjusted to Mts =1,200 for best results
(see Section 8.5.2.3). Comparing this result with the conventional time
scale for water movement according to the Froude law (equation (5.32c)),
Mt = MlMh

−1/2 = 30, it can be seen that the use of lightweight material to
simulate sediment transport and the distorted scales resulted in speeding
up the channel-forming process, and that three years were represented by
21 hours of operations on the model.
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Figure 8.10 Distorted model of the Danube confluence (courtesy of VÚV-TGM, Prague)

The same sequence of discharges for the period of three years was then
used to study the effect of various river-training measures to find the best
solution (see Figure 8.10). The proposed measures, when carried out in the
prototype, resulted in a bed configuration that on the whole closely corre-
sponded to the one predicted from the model. Small differences – apart from
other uncertainties – could be attributed to the fact that, although the actual
flow duration curve for the period used on the model closely resembled the
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actual one, the actual sequence of discharges was, of course, not the same
as the one used on the model.
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Chapter 9

Modell ing of closed-conduit
f low

9.1 Introduction

The present chapter deals with modelling of steady-state and transient
hydraulics in pressurized pipe networks. The case of free-surface flow in
closed conduits is dealt with separately in Chapter 10.

Prior to reading this chapter, for a correct understanding of the mathemat-
ics of pipe transients the reader should be aware of the notions presented in
Chapter 2 (more specifically Sections 2.1–2.5).

In Chapter 3, Section 3.3 is needed for an understanding of a number of
system inversion techniques, and Section 3.6 provides the necessary back-
ground for the development of the characteristic form of the equations for
transients (Section 9.3). Section 3.9.5 provides an introduction to numerical
methods for the solution of hyperbolic partial differential equations.

In Chapter 4, the reader should be aware of Sections 4.3 and 4.4. In par-
ticular, Section 4.4.1 is an indispensable prerequisite to the understanding
of the head-loss formulae used in Section 9.2.

Two configurations are dealt with in the present chapter: (i) pressurized,
quasi-steady flow in networks, to be simulated over large time scales; and
(ii) fast transients (known as waterhammer), the typical time scale of which
is, at most, a few seconds. These two aspects are dealt with in separate
sections hereafter.

9.2 Computational models of quasi-steady
closed-conduit flow

9.2.1 General – assumptions

Pipe networks are schematized as nodes connected by pipes (Figure 9.1).
From a topological and hydraulic point of view, a node is needed at
any place where the geometric properties (diameter) or hydraulic para-
meters (roughness coefficient) of the pipe change. Any point where water
is abstracted from the network (in the form of a known demand or in the
form of a discharge–head-loss relationship) or supplied to the network by a
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Figure 9.1 Definition sketch for a water-supply network

tank or a pump also needs to be indicated by a node. In the network shown
in Figure 9.1, the presence of the node J is justified only if the pipe [IJ] has
a different diameter or is made from another material than that of the pipe
[JK], or if a structure such as a diaphragm or a pump is located at this node.
The node D is needed along the line [CDE] because there is a demand at D.

Networks are usually divided into loops and branches. A loop is a set
of pipes that form a closed contour (e.g. [BCIHF] in Figure 9.1). A branch
is a set of pipes where an upstream and a downstream end can be clearly
identified (e.g. [ILMNP] in Figure 9.1). While steady-state flow in branched
networks can be easily calculated (the discharges in all the pipes are sim-
ply computed by summing all the demands from the downstream to the
upstream end of the branch), the calculation of steady flow in looped net-
works is more computationally intensive because the direction of the flow
cannot be guessed a priori and may even change depending on the variations
in the boundary conditions.

Models for quasi-steady flow in pipe networks rely on the following
assumptions:

(1) The time scales involved are large. Consequently, the fast transients
originating from the operation of valves, pumps, tanks or any other
device can be neglected at such time scales. Therefore, compressibil-
ity effects are negligible and the density of water is assumed to be
constant.



Modelling of closed-conduit flow 355

(2) Devices such as pumps, valves, controlled tanks, etc., satisfy known
relationships between the discharge and head, or head loss.

9.2.2 Governing equations

9.2.2.1 Conservation of mass

Conservation of mass imposes that, at each node in the network, the
total amount of water flowing to the node (or leaving the node) be zero.
Combined with the assumption of incompressible water, this leads to the
following equation for volume discharge:

Pn∑
p=1

Qp = qn (9.1)

where Pn is the number of pipes connected to the node n, Qp is the discharge
in the pth pipe connected to the node, and qn is the demand at the node n. In
equation (9.1), the discharge Qp is taken as positive if the water is flowing
toward the node and as negative if the water flows away from the node. By
definition, the demand qn is positive if the water is being consumed.

Equation (9.1) is also known as the ‘law of nodes’.

9.2.2.2 Conservation of energy

Conservation of energy states that, in the absence of friction and any dissi-
pation mechanism, the hydraulic head is invariant between two consecutive
nodes on a pipe. In real-world situations, dissipation mechanisms yield a
head loss that can be classified as either regular or singular. Note that
such notions are fully developed in Chapter 4 and only the broad lines are
recalled here. The reader is strongly advised to refer to Section 4.4.1 for a
review of the main friction laws available in the literature.

Regular head losses are due to friction against the pipe walls. They yield a
head loss per unit length of pipe. The head loss per unit length is classically
expressed in the form of Darcy–Weisbach’s law

dH
dx

= λ
L
D

|V|V
2g

= λ
L

2gDA2
|Q|Q = 8

π 2g
λ

L
D5

|Q|Q (9.2)

where D and L are the diameter and length of the pipe, respectively, λ is the
Darcy–Weisbach friction factor, g is the gravitational acceleration, and Q
and V are the discharge and average flow velocity in the pipe, respectively.
The absolute value in equation (9.2) accounts for the dependence of the
head loss per unit length on the direction of the flow. For a pipe of length
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L with a uniform diameter D, integrating equation (9.2) over the length of
the pipe gives

Hus − Hds = λ
L2

D
|V|V

2g
= λ

L2

2gDA2 |Q|Q = 8
π 2g

λ
L2

D5
|Q|Q (9.3)

where the subscripts ‘us’ and ‘ds’ denote the upstream and downstream
nodes of the pipe. Many formulae for λ are available in the literature. A
widely used friction model is Colebrook’s formula, where the friction factor
is defined implicitly via (see also equation (4.54))

λ−1/2 =−2 log
(

κ

3.7D
+ 2.51

Re
λ−1/2

)
(9.4)

where κ is the roughness height of the pipe (κ/D is called the relative rough-
ness) and Re is the dimensionless Reynolds number, Re = VD/ν, where ν is
the kinematic viscosity of the fluid. Although equation (9.4) is implicit and
solving for λ may seem time-consuming at first sight, using equation (9.4)
in a recursive way allows λ to be determined quite accurately after a few
iterations (3–4 iterations are usually sufficient to converge with a rela-
tive precision of 10−4). Alternatively, equation (4.56), providing an explicit
equation for λ, can be used with sufficient accuracy, particularly with large
Reynolds numbers (Re>105).

Note that for a totally smooth pipe (κ/D = 0), Colebrook’s equation
simplifies to

λ−1/2 =−2 log
(

2.51
Re

λ−1/2

)
(9.5)

Also note that, when the Reynolds number becomes very large, equa-
tion (9.4) can be approximated as

λ= 1

4 log2
( κ

3.7D

) (9.6)

In such a case, λ is independent of the value of the Reynolds number (and
thus of V), and the head loss is strictly proportional to the square of the flow
velocity, which is the case when the flow is fully turbulent (i.e. Re>Resq).
Equations (9.5) and (9.6) represent two asymptotic behaviours for λ.

The variation in λ with the Reynolds number Re and the relative rough-
ness κ/D are usually plotted on a Moody diagram (Figure 9.2). The
asymptotic law for totally smooth pipes, as given by equation (9.5), is
plotted as the bold line in the figure, while the other lines represent the
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Figure 9.2 Part of the Moody diagram for the friction law. The diagram is plotted for
Re> 2 × 103 (the lower limit of turbulent flow)

variations in f for three different values of the relative roughness. The hori-
zontal part of the curves corresponds to the asymptotic behaviour given by
equation (9.6).

Singular head losses are due to sudden changes in the flow direction (e.g.
bends), in pipe diameter (sudden or rapid widenings or narrowings) or to
singularities such as valves, diaphragms, etc. Energy loss occurs due to the
turbulent dissipation in the swirls created by the singularities. The corre-
sponding head loss formulae are classically assumed to be proportional to
the square of the flow velocity (or liquid discharge). The singularity may be
considered as a pipe of zero length (usually referred to as a link) over which
the following formula is applicable:

Hus − Hds =α |Q|Q (9.7)

where the subscripts ‘us’ and ‘ds’ denote the nodes connected to the
upstream and downstream sides of the singularity, respectively.

9.2.2.3 Boundary conditions

In a network with P pipes connecting N nodes, there are P unknown dis-
charges and N unknown heads. As N equations (9.1) can be written and
P equations (9.3) can be written for the head losses along the pipes, the
number of equations matches the number of unknowns provided that the
demands qn are known at all the nodes in the network. However, pre-
scribing only demands at the nodes of the network is not sufficient to
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guarantee the existence and uniqueness of the solution, for the following
reasons.

(1) If the nodal demands are the only boundary conditions prescribed
in the network, at least one of them is redundant, because under
steady state the total amount of water in the network is constant, and
therefore

N∑
n=1

qn = 0 (9.8)

Consequently, the N equations (9.3) are equivalent to only N − 1
independent equations.

(2) The set of equations (9.3) provides relationships between the discharge
and the difference between the heads at both ends of a pipe. Conse-
quently, the solution of the set of equations (9.3) is a priori independent
of the reference level (datum) fixed for the heads.

For these two reasons, at least one of the boundary conditions must
involve the hydraulic head at one of the nodes. Examples of such condi-
tions are prescribed heads (when the node is connected to a tank with a
fixed water level), or prescribed relationships between head and discharge
(e.g. the characteristic of a pump or a group of pumps). A general equation
for a head–discharge boundary condition at the node n is

bn(qn,Hn) = 0 (9.9)

where bn is a known function for the boundary condition. Note that head–
discharge relationships should be handled with care, as detailed in the
paragraph ‘Modelling precautions’ in Section 9.2.3. Also note that such
relationships can be modelled by connecting a node with a fixed head to the
node n and placing a pump or a singularity with a known head–discharge
relationship between them. Moreover, the boundary condition (9.9) is also
applicable to fixed-head boundary conditions.

9.2.3 Numerical techniques and solution methods

9.2.3.1 Vector writing

The laws of nodes (9.1), the head-loss laws (9.3) and (9.7) and the boundary
conditions (9.8) may be written in vector form as

F(X) = 0 (9.10)
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where F and R are the function and unknown vectors, respectively,
defined as

F = [c1, . . . , cN,h1, . . . ,hP,b1, . . . ,bR]T (9.11a)

X = [H1, . . . ,HN,Q1, . . . ,QP,q1, . . . ,qR]T (9.11b)

where N is the number of nodes in the network, P is the number of
pipes, and R is the number of nodes where head–discharge relationships
in the form of equation (9.9) are prescribed. The functions cn (n = 1, . . . ,N)
account for the continuity equations, or laws of nodes (equation 9.1):

cn(X) =
Pn∑

p=1

Qp − qn (9.12)

while the functions hp (p = 1, . . . ,P) account for the head loss relationships
(equations (9.3) and (9.7)):

hp = Hn1 − Hn2 − 8
π 2g

L2
p

D5
p

λp

∣∣Qp

∣∣Qp (pipe) (9.13a)

hp = Hn1 − Hn2 −αp

∣∣Qp

∣∣Qp (singularity) (9.13b)

where n1 and n2 are the node numbers that correspond to the upstream and
downstream ends of the pipe (or link) p. The friction factor λp in equa-
tion (9.13a), being computed using Colebrook’s formula, is a function of
the discharge Qp.

9.2.3.2 Solution techniques

The vector equation (9.10) is non-linear and must be solved using itera-
tive techniques. A widely used method is the Newton–Raphson method,
an extension of Newton’s method presented in Section 3.3. Like the orig-
inal Newton method, Newton–Raphson’s algorithm is based on a local
linearization of the vector equation (9.10):

F(X(m+1)) − F(X(m)) = J · [X(m+1) − X(m)] (9.14)

where the superscript between parentheses indicates the iteration number
and J = ∂F/∂X is the Jacobian matrix of F with respect to X. The pur-
pose is to find X(m+1) such that equation (9.10) be satisfied. Substituting this
condition into equation (9.14) leads to the following equivalent conditions:

J · X(m+1) = J · X(m) − F(X(m)) (9.15a)

X(m+1) = X(m) − J−1 · F(X(m)) (9.15b)
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Although equations (9.15a) and (9.15b) are equivalent, equation (9.15b)
implies that the Jacobian matrix J be inverted at each iteration. Inverting
J exactly is extremely time-consuming, and it is often preferred to solve
equation (9.15a) directly, for which iterative methods, such as conjugate
gradients, or any such iterative approach, are very efficient.

The solution technique thus involves two nested loops: (i) the iterative
matrix-inversion method used to solve equation (9.15a); and (ii) the recur-
sive application of equation (9.15a) or (9.15b). A convergence, or iteration
stop criterion, must be defined for each of these two loops. Convergence
parameters are usually of two kinds:

(1) A first parameter, often called ‘precision’, is the threshold level under
which the equation to be solved can be considered verified. At each
iteration, F(X(m+1)) is computed. The solution is considered satisfactory
if the following condition is fulfilled:∣∣cn(X(m+1))

∣∣≤ εc, n = 1, . . . ,N (9.16a)∣∣hp(X(m+1))
∣∣≤ εh, p = 1, . . . ,P (9.16b)∣∣bn(X(m+1))
∣∣≤ εb, n = 1, . . . ,B (9.16c)

where εb, εc and εh are predefined convergence criteria (either absolute
or relative).

(2) In some cases, however, one or several convergence criteria may be too
small for equations (9.16) to be satisfied within a reasonable number of
iterations. In order to avoid time-consuming iterations that may fail to
converge, it is customary to specify a maximum permissible number of
iterations, after which the recursive application of equations (9.15) is
stopped, even if equations (9.16) are not satisfied.

9.2.3.3 Modelling precautions

The numerical solution of the vector equation (9.10) may fail if a number of
conditions are not met during model building. A number of classical sources
for failure are given hereafter (the list is non-exhaustive). Some commer-
cially available packages may be sufficiently well programmed to check for
such mistakes prior to starting the calculation procedures. However, this is
not always the case and the user of a network-simulation package is strongly
advised to check whether any of the following conditions are verified in the
case of a failure.

(1) There is no boundary condition (equation (9.9)) involving the hydraulic
head in the model. In this case, the system is not closed because the
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number of equations does not match the number of unknowns (see
Section 9.2.2.2).

(2) Two nodes A and B with different prescribed heads are connected using
pipes, all with a zero length and/or singularities with nil head-loss coef-
ficients. In such a case, summing the equations (9.13a) and (9.13b)
between A and B yields an equation of the form

HA − HB = 0 (9.17)

As HA �= HB, equation (9.17) has no solution.
(3) One or several loops is/are made of pipes with a zero head-loss coeffi-

cient. This may result in a zero determinant for the Jacobian matrix J in
equations (9.14) and (9.15). If a Newton–Raphson-based algorithm is
used, the system (9.10) cannot be solved because J cannot be inverted.

(4) The head–discharge relationship (equation (9.9)) is decreasing. Then
the iterative solution sequence will be unstable, for the following rea-
son. Assume first that qn is negative (this corresponds to water being
pumped into the system, point A in Figure 9.3). If, from one iteration
to the next, qn decreases (i.e. it remains negative but becomes larger in
absolute value, point B in Figure 9.3), then the head Hn at the node n
decreases (point C in Figure 9.3). This in turns triggers a new decrease
in qn at the next iteration due to friction (point D), which yields a new
increase in H (point E). Repeating this positive-feedback iteration after
iteration induces instability. The problem is exactly the same if qn is pos-
itive (water being pumped out of the network at the node n). The only
permissible relationship is an increasing H–q relationship. This is the

Water pumped from
the network

A

C

E
Hn

qn

D

B

Water pumped into
the network 

Figure 9.3 Instability triggered by a decreasing H–q relationship at a boundary node
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case with pumps (H decreases with the discharge −q pumped into the
network) and orifice or head-loss formulae at outlets (the outflowing
discharge q increases with the head H at the outlet).

9.3 Computational models of pipe transients

9.3.1 Introduction – assumptions

Pipe transients, also known as waterhammer, are often associated with the
names of Joukowski (1898) and Allievi (1903), who provided the first math-
ematically correct derivation of the governing equations. The derivation of
the waterhammer equations has been widely published (Fox (1989), Jaeger
(1933), (1977), Swaffield and Boldy (1993), Wylie and Streeter (1977)).

Pipe transients arise as a consequence of rapid variations in the flow
conditions in pressurized networks. Due to the (small) elasticity of the
pipe material and the (small) compressibility of the fluid, such variations
in the pressure and/or flow velocity propagate in the pipes at very high
speeds. A typical wave celerity for waterhammer is 1,000 m/s. The actual
value of c will depend on the pipeline diameter, wall thickness and mate-
rial, and on the liquid bulk modulus K, which in turn is dependent on the
entrained-air content (see equation (4.78)). This large contrast between the
wave-propagation speed and the flow velocity has the consequences that: (i)
pipe transients occur over very small time scales (at most a few seconds);
and (ii) as the energy of the transient is dissipated only by friction or via
singular head losses, the pressure wave may propagate over long distances
with very little dissipation, because the flow velocity is small compared to
the wave-propagation speed.

Waterhammer may lead to considerable pressure variations (see e.g.
Section 9.3.3.3) within very short times, which may induce considerable
damage to the pipes, junctions or installations, be it in the form of overpres-
sure and/or cavitation induced by the pressure dropping below the vapour
pressure of water in the pipe.

x + dx

θ

P(x+dx)

P(x)

mg
x

x

Rf

Figure 9.4 Definition sketch and notation for the derivation of the governing equations
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The notation used in the present section is standard (see the list of Main
Symbols given at the front of this book). The angle of the axis of the pipe
with the horizontal is denoted by θ (Figure 9.4). The x-axis is the symme-
try axis of the pipe. For the sake of clarity and conciseness, the governing
equations and their characteristic form are derived for a pipe with a con-
stant cross-sectional area. More complete expressions involving pipes with
variable cross-sectional areas are presented in Guinot (2008).

Assumptions:

(1) The water is compressible and the pipe is deformable. Both the fluid
and pipe material are assumed to remain in the elastic domain, i.e. the
relative variations in the density ρ of water and the cross-sectional area
A of the pipe are proportional to the variations in the pressure. A par-
ticular consequence of this is that the propagation speed of the pressure
waves in still water is constant.

(2) The pressure p is assumed to be uniform over the cross-sectional area
of the pipe.

(3) Both the water and pipe are only slightly deformable. Therefore, the
variations in the pressure force Ap exerted on the cross-sectional area
of the pipe are mainly due to the variations in the pressure, d(Ap)≈Adp
and the variations in the mass flux are mainly due to those in the liquid
discharge, d(ρQ) ≈ ρdQ.

(4) The variations in the pressure p may reach several million pascals,
while the typical order of magnitude of the velocity is a few metres
per second. Consequently, the momentum discharge is much smaller
than the pressure force and may be neglected in the momentum
equation.

(5) Friction is accounted for by steady-state, turbulent friction laws such as
Darcy–Weisbach’s equation (9.2).

9.3.2 Governing equations

In view of the above statements, only a broad outline as necessary for the
following sections is given here; for further details, see Chapter 7.

9.3.2.1 Continuity equation

Consider the control volume between the abscissas x and x + dx in
Figure 9.4. Conservation of mass imposes that the variation in the mass
stored in the control volume between times t and t + dt is due to the dif-
ference between the mass entering the control volume at x and the mass
leaving the volume at x + dx. The mass stored in the control volume is
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equal to ρAdx and the amount of water passing at a given point over the
time interval dt is given by ρQdt. Using these expressions for mass balance
yields the following equality:

(ρAdx)(t + dt) − (ρAdx)(t) = (ρQdt)(x) − (ρQdt)(x + dx) (9.18)

In the limit of infinitesimal dt and dx, the two members of equation (9.18)
become

(ρAdx)(t + dt) − (ρAdx)(t) = ∂

∂t
(ρAdx) dt = dtdx

∂

∂t
(ρA) (9.19a)

(ρQdt)(x) − (ρQdt)(x + dx) =− ∂

∂x
(ρQdt)dx =−dtdx

∂

∂x
(ρQ) (9.19b)

Substituting equations (9.19) into equation (9.18) and simplifying by
dt/dx yields the continuity equation for a compressible fluid:

∂

∂t
(ρA) + ∂

∂x
(ρQ) = 0 (9.20)

9.3.2.2 Momentum equation

The momentum equation is obtained by applying Newton’s second law of
motion to the control volume of Figure 9.4:

∂M
∂t

= QM(x) − QM(x + dx) + F (9.21)

where F is the projection onto the x-axis of the sum of the forces exerted
onto the control volume, M is the momentum of the fluid contained in the
control volume and QM is the momentum discharge, i.e. the amount of
momentum carried at the flow velocity that passes at a given point per unit
time. F, M and QM are given by

F = P(x) − P(x + dx) + mg sin θ − Rx (9.22a)

M = ρQdx (9.22b)

QM = ρQu = ρAu2 = ρQ2/A (9.22c)

m = ρAgdx (9.22d)

where m is the mass of the fluid contained in the control volume, P is the pre-
ssure force exerted onto the cross-section of the pipe and Rx is the force exer-
ted onto the fluid owing to friction (see Figure 9.4). From Assumption (2),
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P is equal to the product of the cross-sectional area A and the pressure p.
Moreover, the friction force Rx is related to the slope of the energy line via

Rx = ρAgSedx (9.23)

where Se is the slope of the energy line, given by equation (9.2). Substituting
equations (9.22) and (9.23) into equation (9.21) leads to

∂

∂t

(
ρQdx

)=(ρQ2

A

)
(x) −

(
ρQ2

A

)
(x + dx)

+ (Ap)(x) − (Ap)(x + dx) + ρAg( sin θ − Se)dx (9.24)

Introducing the derivative of ρQ2/A and Ap with respect to x and
simplifying by dx leads to

∂

∂t
(ρQ)+ ∂

∂x

(
ρQ2

A
+ Ap

)
= ( sin θ − Se)ρgA (9.25)

Using Assumption (4) allows the momentum discharge ρQ2/A to be
neglected compared to Ap, and equation (9.25) simplifies to

∂

∂t
(ρQ)+ ∂

∂x
(Ap) = ( sin θ − Se)ρgA (9.26)

9.3.2.3 Vector writing: conservation and non-conservation form

The continuity equation (9.20) and the momentum equation (9.26) can be
recast in vector conservation form as

∂U
∂t

+ ∂F
∂x

= S (9.27a)

U =
[
ρA
ρQ

]
, F =

[
ρQ
Ap

]
, S =

[
0

( sin θ − Se)ρgA

]
(9.27b)

The non-conservation form of equations (9.27) is written as

∂U
∂t

+ A
∂U
∂x

= S′ (9.28)
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where the general definitions for the matrix A and the source term S′ are
(see Chapter 7)

A = ∂F
∂U

(9.29a)

S′ = S −
(
∂F
∂x

)
U=Const

(9.29b)

The diameter of the pipe being constant, (∂F/∂x)U=Const and S′ = S. From
equations (9.27), the expression for A is

A =
[

0 1
c2 0

]
(9.30a)

c2 = d(Ap)
d(ρA)

(9.30b)

From Assumption (1) of a linear dependence between the pressure, pipe
cross-sectional area and water density (see Section 9.3.1), the speed of sound
c as defined in equation (9.30b) is independent of the pressure and the
Jacobian matrix A is constant.

Equations (9.27) are not the preferred form to deal with the waterhammer
equations because the conserved variables ρA and ρQ are not directly mea-
surable. The flow variables that are directly accessible to measurement are
the pressure p and the discharge Q. Equations (9.27) can be transformed
into equations involving only the derivatives of p and Q by noting from
equation (9.30b) and Assumption (3) that

d(ρA) = 1
c2

d(Ap) ≈ A
c2

dp (9.31a)

d(ρQ) ≈ ρdQ (9.31b)

Substituting equations (9.31) into (9.28) leads to an expression of the
form

∂V
∂t

+ B
∂V
∂x

= R (9.32)

with

V =
[

p
Q

]
, B =

[
0 ρc2/A

A/ρ 0

]
, R =

[
0
( sin θ − Se)gA

]
(9.33)
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Another possibility is to use the flow velocity V rather than the discharge
Q for the second component of the variable vector V. This leads to the
following definition for B, R and V:

V =
[

p
V

]
, B =

[
0 ρc2

1/ρ 0

]
, R =

[
0
( sin θ − Se)A

]
(9.34)

9.3.2.4 Characteristic form

The characteristic form is obtained by transforming equation (9.28) or
equation (9.32) into a vector equation where the matrix A becomes diago-
nal. As shown in Chapter 7, this can be done by introducing the matrix K
of the eigenvectors of A and left-multiplying equation (9.28) by K−1:

K−1 ∂U
∂t

+ K−1AK K−1 ∂U
∂x

= K−1S′ (9.35)

The matrix K−AK is diagonal. The terms on the diagonal are the
eigenvalues of A. Equation (9.35) can be rewritten as

∂W
∂t

+�
∂W
∂x

= S′′ (9.36)

with the following definitions of W, � and S′′:

dW = K−1 dU (9.37a)

� = K−1AK (9.37b)

S′′ = K−1S′ = K−1S (9.37c)

W is called the vector of Riemann invariants because, as shown here-
after, its components are invariant along some particular trajectories in the
(x, t)-plane, called ‘characteristics’. It is easy to check that the eigenvalues
λp and eigenvectors rp(p = 1,2) of A are

λ1 =−c, λ2 =+c (9.38a)

r1 =
[

1
−c

]
, r2 =

[
1

+c

]
(9.38b)

leading to the following expressions for K and K−1:

K =
[

1 1
−c c

]
, K−1 = 1

2c

[
c −1
c 1

]
(9.39)
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Substituting equations (9.38) into equations (9.37) leads to

dW = 1
2c

[
cd(ρA) − d(ρQ)
cd(ρA) + d(ρQ)

]
≈ 1

2c

[
d(Ap)/c − ρdQ
d(Ap)/c + ρdQ

]
≈ 1

2c

[
A/cdp − ρdQ
A/cdp + ρdQ

]
(9.40a)

� =
[ −c 0

0 c

]
(9.40b)

S′′ = 1
2c

[−( sin θ − Se)ρgA
( sin θ − Se)ρgA

]
(9.40c)

Substituting equations (9.40) into (9.36) and simplifying by 1/(2c) yields
the following two characteristic equations:

ρ
dQ
dt

− A
c

dp
dt

= ( sin θ − Se)ρgA for
dx
dt

=−c (9.41a)

ρ
dQ
dt

+ A
c

dp
dt

= ( sin θ − Se)ρgA for
dx
dt

=+c (9.41b)

Assumptions (1) and (3) allow equations (9.41) to be transformed into

d
dt

(
ρQ − Ap

c

)
= ( sin θ − Se)ρgA for

dx
dt

=−c (9.42a)

d
dt

(
ρQ + Ap

c

)
= ( sin θ − Se)ρgA for

dx
dt

=+c (9.42b)

or

d
dt

(ρcu − p) = ( sin θ − Se)ρcg for
dx
dt

=−c (9.43a)

d
dt

(ρcu + p) = ( sin θ − Se)ρcg for
dx
dt

=+c (9.43b)

Note that, for frictionless flow in a horizontal pipe, equations (9.43)
become

ρcu − p = Const1 for
dx
dt

=−c (9.44a)

ρcu + p = Const2 for
dx
dt

=−c (9.44b)

Then W1 and W2 are said to be invariant along their respective character-
istic lines, and hence the term ‘Riemann invariants’.
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9.3.3 Behaviour of analytical solutions – initial and
boundary conditions

9.3.3.1 General

The characteristic forms (equations (9.42)–(9.44)) lead to the following con-
clusions about the behaviour of the analytical solutions of the waterhammer
equations.

(1) The state of the flow at any point M in the (x, t)-plane is deter-
mined by the flow state in the domain of dependence delimited by
the characteristics dx/dt = −c and dx/dt = +c (domain [ABM] in
Figure 9.5).

(2) Conversely, a perturbation in the flow state at the point M triggers vari-
ations in the flow at the points contained within the domain of influence
delimited by the characteristics dx/dt = −c and dx/dt = +c (domain
[A′B′M] in Figure 9.5).

(3) The speed of sound c being independent from the flow state, the
characteristics are straight lines in the (x, t)-plane.

(4) The flow at M is determined uniquely at a given point provided that
W1 = ρcu − p and W2 = ρcu + p are known. Indeed,

u = W1 + W2

2ρc
(9.45a)

p = W2 − W1

2
(9.45b)

then Q = Au can be computed and all the flow variables are known.

x

t

M

A′ B ′

AB

dx /dt = 
+c 

dx /dt = 
–c

Figure 9.5 Waterhammer. Definition sketch for the propagation speeds of the waves in
the (x, t)-plane. Domain of influence (light-grey area), domain of dependence
(dark-grey area)
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9.3.3.2 Initial and boundary conditions

Assume that the waterhammer equations are to be solved over the domain
[0, L] for all times t> 0 (Figure 9.6). Three possibilities arise depending on
the location of the point M(x, t) in the phase space.

(1) If the domain of dependence is included in the segment [0, L] (point M
and domain of dependence [AB] in Figure 9.6), the knowledge of the
initial condition is sufficient to compute the solution at M. The invari-
ant W1 can be computed from the known flow state at the point A and
the invariant W2 can be computed from the known initial condition at
the point B. The invariants W1 and W2 at M can be determined by inte-
grating equations (9.43) between the feet A and B of the characteristics
and the point M:

(W1)M = (W1)A +
tM∫

tA

S′′dt (9.46a)

(W2)M = (W2)B +
tM∫

tB

S′′dt (9.46b)

thus enabling the calculation of u, Q and p at M via equations (9.45).
(2) If part of the domain of dependence comprises the left-hand boundary

(point M′ and domain of dependence [A′B′] in Figure 9.6), the knowl-
edge of the initial state alone is not sufficient to compute the solution
at M. Indeed, W2 cannot be computed at the point M from the ini-
tial condition because the characteristic dx/dt = +c passing at M does
not intersect the line t = 0. The earliest time at which W2 can be known
corresponds to the point B′ in the phase space (see Figure 9.6). The miss-
ing information must be supplied in the form of a boundary condition

x

t

M

AB L0

M ′

M ′′

A′′

B ′′

B ′

A′C ′ C ′′

Figure 9.6 Waterhammer equations. Definition sketch for initial and boundary conditions
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involving the velocity (or discharge) and/or the pressure. The general
form of such a boundary condition is

fL(pB′ ,uB′ , t) = 0 (9.47)

where fL is a known function of both the unknown pressure pB′ and
velocity uB′ . From the definitions of W1 and W2, one has

(W1)B′ = ρcuB′ − pB′ (9.48a)

(W2)B′ = ρcuB′ + pB′ (9.48b)

Equations (9.47) and (9.48) must be solved for pB′ , uB′ and (W2)B′ .
To do so, the system must be closed by finding (W1)B′ . This is done
using the characteristic relationship (9.43a) between the foot C′ of the
characteristic dx/dt =−c and the boundary point B′:

(W1)B′ = (W1)C′ +
tB′∫

tC′

S′′dt (9.49)

The calculation sequence is as follows. In a first step, (W1)B′ is com-
puted using equation (9.49). The second step consists of solving equa-
tions (9.47)–(9.48a) for pB′ and uB′ . In a third step, (W2)B′ is computed
using equation (9.48b).

(3) The treatment of the right-hand boundary is similar to that of the
left-hand boundary. A boundary condition is needed at the right-hand
end of the domain to ensure the existence and uniqueness of the solu-
tion. Such a boundary condition is written in the form of a known
relationship between the pressure and velocity at the point A′′:

fR(pA′′ ,uA′′ , t) = 0 (9.50)

and the following relationships are available:

(W1)A′′ = ρcuA′′ − pA′′ (9.51a)

(W2)A′′ = ρcuA′′ + pA′′ (9.51b)

(W2)A′′ = (W2)C′′ +
tA′′∫

tC′′

S′′dt (9.51c)
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The calculation sequence at the right-hand boundary consists of (i)
computing (W2)A′′ from the known value at the point C′′ using equa-
tion (9.51c), (ii) solving equations (9.50) and (9.51b) for pA′′ and uA′′ ,
and (iii) computing (W1)A′′ using equation (9.51a).

9.3.3.3 Joukowski’s formula

Equations (9.46) allow the derivation of the so-called Joukowski formula.
Consider a pressure wave across which the pressure and velocity varia-
tions are denoted by �p and �u, respectively. If the wavefront is narrow,
the time interval needed to cross the wave is negligible and the integral
in equations (9.46) can be neglected. If the wave moves at the speed +c,
equation (9.46a) gives

�p = ρc�u (9.52)

while for a wave moving at a speed −c, equation (9.46b) gives

�p =−ρc�u (9.53)

Joukowski’s formula provides a relationship between the magnitude
of the pressure variation and that of the flow velocity by summarizing
equations (9.52) and (9.53) under the same equation

|�p| = ρc |�u| = ρc
A

|�u|Q (9.54)

Equation (9.54) may be used to estimate the maximum possible pressure
variations caused by the sudden operation of valves, pumps, turbines, etc.,
in a pipe network.

9.3.4 The method of characteristics

9.3.4.1 General

The principle of the method of characteristics (MOC) for waterhammer
simulations is the same as for the Saint Venant equations (see Sections 2.8
and 7.3.2), but with the difference that the celerity of the pressure waves is
fixed and is independent of the local value of the flow variables. The MOC
consists of solving the characteristic form (equation (9.43)) of the equations
approximately. Space is discretized into computational points (Figure 9.7)
at which the solution is to be computed for predefined times. The distance
�x between two adjacent points is usually called the ‘cell width’, while
the difference �t between two successive computational times is called the



Modelling of closed-conduit flow 373

x

t

0 i – 1 i i + 1

n + 1

n

dx / dt = +c
Equation (9.43b)

dx / dt = –c
Equation (9.43a)

AB

Δt

Figure 9.7 Definition sketch for the method of characteristics (MOC)

‘computational time step’. A flow variable U computed at the point i at the
time level n is denoted by Un

i .
In the MOC, the characteristic equations (9.43) are integrated approxi-

mately between the foot of each characteristic and the point (i, n+1) where
the solution is sought in the phase space. The invariant W1 at the foot A
and the invariant W2 at the foot B are computed from the known values
at the points (i − 1, n), (i, n), (i + 1, n), etc., using interpolation formulae.
The treatment of internal points and boundary conditions is dealt with in
separate sections hereafter.

9.3.4.2 Treatment of internal points

Assume that the pipe is discretized using M computational points. The
present section describes the solution technique for internal points, i.e. for
i=2,3, . . . ,M−1. The technique consists of applying equations (9.46) with
S′′ = 0, where the point M is the point (i, n + 1) in the phase space:

ρcun+1
i − pn+1

i = ρcuA − pA + S′′
1�t (9.55a)

ρcun+1
i + pn+1

i = ρcuB + pB + S′′
2�t (9.55b)

The expressions for pn+1
i and un+1

i are obtained from the sum and
difference between equations (9.55)

pn+1
i = pA + pB

2
+ ρc

2
(uB − uA) + S′′

2 − S′′
1

2
�t (9.56a)

un+1
i = uA + uB

2
+ pB − pA

2ρc
+ S′′

1 + S′′
2

2ρc
�t (9.56b)
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The pressure and flow velocity are interpolated at the points A and B.
The formulae for a linear interpolation over an irregular computational
grid are

UA =
{

(1 + 1/Cr1)Un
i+1 − Un+1

i+1 /Cr1 if Cr1 ≤−1
(1 + Cr1)Un

i − Cr1Un
i+1 if Cr1 ≥−1′ U = p,u (9.57a)

UB =
{

(1 − Cr2)Un
i + Cr2Un

i−1 if Cr2 ≤ 1
(1 − 1/Cr2)Un

i−1 + Un+1
i−1 /Cr2 if Cr2 ≥ 1′ U = p,u (9.57b)

where the Courant numbers Cr1 and Cr2 are defined as

Cr1 =− c�t
�xi+1/2

(9.58a)

Cr2 = c�t
�xi−1/2

(9.58b)

where �xi−1/2 and �xi+1/2 are the width of the cells i − 1/2 (between
the points i − 1 and i) and i + 1/2 (between the points i and i + 1),
respectively.

(1) If the absolute values of the Courant numbers Cr1 and Cr2 are
smaller than unity, substituting the interpolation formulae (9.57) into
equations (9.56) yields the explicit formulae

pn+1
i = Cr2pn

i−1 + (2 + Cr1 − Cr2)pn
i − Cr1pn

i+1

2

+ ρc
2

[
Cr2un

i−1 − (Cr1 + Cr2)un
i + Cr1un

i+1

]+ S′′
2 − S′′

1

2
�t

(9.59a)

un+1
i = Cr2un

i−1 + (2 + Cr1 − Cr2)un
i − Cr1un

i+1

2

+ 1
2ρc

[
Cr2pn

i−1 − (Cr1 + Cr2)pn
i + Cr1pn

i+1

]+ S′′
1 + S′′

2

2ρc
�t

(9.59b)

with

S′′
1 = (1 + Cr1)S′′n

i − Cr1S′′n
i+1 (9.60a)

S′′
1 = (1 − Cr2)S′′n

i + Cr2S′′n
i−1 (9.60b)
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(2) If Cr1 and Cr2 are larger than unity, substituting equations (9.57) into
equations (9.56) leads to a set of implicit relationships:

pn+1
i − (1 + 1/Cr1)pn+1

i+1 + (1 − 1/Cr2)pn+1
i−1

2

+ ρc
2

[
(1 + 1/Cr1)un+1

i+1 − (1 − 1/Cr2)un+1
i−1

]+ S′′
2 − S′′

1

2
�t (9.61a)

=−pn
i+1/Cr1 + pn

i−1/Cr2

2
+ ρc

2

(
un

i−1

Cr2
− un

i+1

Cr1

)
un+1

i − (1 + 1/Cr1)un+1
i+1 + (1 − 1/Cr2)un+1

i−1

2

+ (1 + 1/Cr1)pn+1
i+1 − (1 − 1/Cr2)pn+1

i−1

2ρc
(9.61b)

= Cr2un
i−1 − Cr1un

i+1

2
+ Cr1pn

i+1 + Cr2pn
i−1

2ρc
+ S′′

1 + S′′
2

2ρc
�t

Many options are available for the implicit discretization of the source
term S′′. One could propose the following two formulae:

S′′
1 = S′′

2 ≈ ρgc( sin θ − Sn+1
ei ) = ρgc

(
sin θ − λL2

2g

∣∣un+1
i

∣∣un+1
i

)
(fully implicit) (9.62a)

S′′
1 = S′′

2 ≈ ρgc
(

sin θ − λL2

2gD

∣∣un
i

∣∣un+1
i

)
(semi-implicit) (9.62b)

Equation (9.62a) is not used in practice because it introduces a second-
degree term in the sought variable un+1

i . The option (9.62b) is preferred. It
yields a system of equations of the form

A(1)
i pn+1

i−1 + B(1)
i pn+1

i + C(1)
i pn+1

i+1 − ρcA(1)
i un+1

i−1 − ρcC(1)
i un+1

i+1 = D(1)
i (9.63a)

A(2)
i un+1

i−1 + B(2)
i un+1

i + C(2)
i un+1

i+1 − A(2)
i

ρc
pn+1

i−1 − C(2)
i

ρc
pn+1

i+1 = D(2)
i (9.63b)

with

A(1)
i = A(2)

i = 1 − Cr2

2Cr2
(9.64a)

B(1)
i = 1 (9.64b)

B(2)
i = 1 + λ

L2

2D

∣∣un
i

∣∣�t (9.64c)
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C(1)
1 = C(2)

1 =−1 + Cr1

2Cr1
(9.64d)

D(1)
i =−pn

i+1/Cr1 + pn
i−1/Cr2

2
+ ρc

2

(
un

i−1

Cr2
− un

i+1

Cr1

)
(9.64e)

D(2)
i = Cr2un

i−1 − Cr1un
i+1

2
+ Cr1pn

i+1 + Cr2pn
i−1

2ρc
+ gsinθ�t (9.64f)

9.3.4.3 Treatment of boundary conditions

Denote by M the number of computational points in the domain. The
formulae (9.56) for an explicit discretization and equations (9.62) for an
implicit discretization are applicable only for the points i = 2, . . . ,M − 1.
This means that only 2M−4 equations can be written for the 2M unknown
variables (pn

i , un
i ) in the computational domain. The missing information

must be supplied in the form of boundary conditions at i=1 and i=M. Only
the treatment of the left-hand boundary is detailed hereafter. The treatment
of a right-hand boundary can be inferred using symmetry considerations.

Consider the point i = 1 in the computational domain (Figure 9.8).
Assume first that Cr1 >−1 (Figure 9.8(a)). Applying the characteristic rela-
tionship (9.55a) with the interpolation formula (9.57a) at the point i = 1
leads to

ρcun+1
1 − pn+1

1 = ρc
[
(1 + Cr1)un

1 − Cr1un
2

]− (1 + Cr1)pn
1 + Cr1pn

2 (9.65)

The boundary condition may be supplied in the form of a known dis-
charge (i.e. velocity), a known pressure, or a known relationship between
the pressure and discharge at the left-hand boundary:

fb(pn+1
1 ,un+1

1 , tn+1) = 0 (9.66)

Equations (9.65) and (9.66) can be solved uniquely for pn+1
1 and un+1

1 .

x

t

0 1 2

n A

x

t

0 1 2

n + 1n + 1

n

dx / dt = –c

dx / dt = –c

A

(a) (b)

Figure 9.8 Definition sketch for the treatment of the left-hand boundary
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If Cr1 <−1 (Figure 9.8(b)), the interpolation formula (9.57a) becomes

ρc
(

un+1
1 − Cr1 + 1

Cr1
un+1

2

)
− pn+1

1 + Cr1 + 1
Cr1

pn+1
2 =− ρc

Cr1
un

2 + pn
2

Cr1
(9.67)

Equations (9.66) and (9.67) supply the missing two equations at the
left-hand boundary. Writing similar equations for the point M yields the
missing two equations at the right-hand boundary and the system counts
2M equations for 2M unknowns, thus ensuring solution existence and
uniqueness.

9.3.5 Treatment of singularities and junctions

9.3.5.1 Singularities

Singularities such as diaphragms, valves, and sudden pipe widenings or
narrowings can be accounted for using head-loss–discharge relationships.
From a numerical point of view, they are handled as internal boundaries
(Figure 9.9).

Assume that a singularity is located between the points i and i + 1. The
pressures and discharges must be computed at the points i and i + 1 at the
time level n + 1. Consequently, there are four unknown variables at the
singularity at the time level n + 1. Equation (9.55b) can be used to calculate
the flow variables at the point i, and equation (9.55a) is available for the
point i + 1. However, the characteristic equations cannot be used between
the points i and i + 1. The missing two equations are supplied from mass-
conservation considerations

Qn+1
i = Qn+1

i+1 (9.68)

x

t

0 i – 1 i

n + 1

n

dx / dt = – c

i + 1 i + 2

dx / dt = + c

Figure 9.9 A singularity modelled as an internal boundary
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and from the head-loss–discharge relationship

pn+1
i − pn+1

i+1 = ρgα
∣∣Qn+1

i

∣∣Qn+1
i (9.69)

where α is a known head-loss coefficient. Equation (9.69) is most often
linearized to

pn+1
i − pn+1

i+1 = ρgα
∣∣Qn

i

∣∣Qn+1
i (9.70)

Note that equation (9.68) is a simplification of the conservation equation
ρQ = constant under Assumption (3) of a nearly constant density.

Equations (9.55), (9.68) and (9.70) allow the system to be closed and a
unique solution to be found for the pressures and discharges at the points i
and i + 1.

9.3.5.2 Junctions

Junctions are also classically handled as internal boundaries. The pipes
converging to the junction node are treated as separate branches (see
Figure 9.10, sketched for three pipes). Without loss of generality, the

x

t

0 1

n + 1

n

dx / dt  = –c1
Equation (9.55a) dx / dt = – c2

Equation (9.55a)
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x
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0 1

n + 1

n

dx / dt = – c3
Equation (9.55a)
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t

0 1

n + 1

n

2

Figure 9.10 A junction handled as an internal boundary. The junction is a left-hand
boundary for each of the pipes converging to the junction
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x-axis along each pipe is oriented positive away from the node. As many
equations (9.55a) may be written as there are pipes:

ρckun+1
k,1 − pn+1

k,1 = ρckuAk
− pAk

+ S′′
k,1�t, k = 1, . . . ,P (9.71)

where Ak is the foot of the characteristic dx/dt = −ck passing at the point
i = 1 in pipe number k, P is the number of pipes of the junction, and pn+1

k,1

and un+1
k,1 are the unknown pressure and velocity at the first point of the pipe

k (point Mk in Figure 9.10).
The missing P equations are provided by the continuity equation (law on

nodes) at the junction:

P∑
k=1

Qn+1
k,1 = 0 (9.72)

and a condition involving the pressures at the nodes Mk, k = 1, . . . ,p. For
instance, a uniform pressure condition may be used:

pn+1
1,1 = . . .= pn+1

k,1 = . . .= pn+1
P,1 (9.73)

9.3.5.3 Surge tanks and air vessels

The sharp pressure transients induced by waterhammer may be efficiently
damped by devices such as surge tanks or air vessels. The role of such
devices is to absorb and damp the energy of the transient, thereby reducing
the amplitude of the pressure waves. The common feature of a surge tank
or an air vessel is to allow for substantial volume variations under small
pressure changes. From the point of view of wave propagation, connecting
such a device to a pipe is equivalent to inserting a highly deformable, short
pipe (i.e. a pipe with a very low sound speed). In surge tanks, the pressure
at the free surface of the water is the atmospheric pressure. In air vessels,
the air or inert gas above the free surface is pressurized.

Surge tanks and air vessels may be represented using the general sketch
in Figure 9.11(a). In the case of a surge tank, the free surface is at the
atmospheric pressure

p = patm (9.74)

while for an air vessel the pressure p is a function of the volume of the gas
above the water. Under the assumption of adiabatic behaviour:

p = p0

(
VT − V0

VT − V

)γ

(9.75)
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p = p (V)

p = p (V) + ρgh

M1 M2

Ph

ΔH

(a) (b)

Figure 9.11 Definition sketch for a surge tank/air vessel (a) and discretization of the
numerical solution (b)

where V is the volume of water in the vessel, VT is the total volume of the
vessel, V0 is the volume occupied by the water at the reference pressure p0,
and γ = 1.4 is the polytropic constant for perfect gases.

Assuming a hydrostatic distribution, the pressure at the bottom of the
chamber is pT = p + ρgh, where h is the water depth in the tank or vessel.
Assuming a head loss at the inlet of the chamber of the form

�H =αT |QT|QT (9.76)

where QT is the discharge into the tank. Using equations (9.74)–(9.76) and
the hydrostatic distribution assumption, one obtains

pn+1
i = patm + ρghn+1 +αT |QT|QT (tank) (9.77a)

pn+1
i = p0

(
VT − V0

VT − Vn+1

)γ

+ ρghn+1 +αT |QT|QT (vessel) (9.77b)

Moreover, continuity and the equality of pressures at the points i and i+1
yield the following equations:

Qn+1
i − Qn+1

i = QT (9.78a)

pn+1
i = pn+1

i+1 (9.78b)

The discharge QT is the time derivative of the volume V of water in the
tank:

dV
dt

= A
dh
dt

= QT (9.79)
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Equation (9.79) can be discretized into

Vn+1 = Vn + QT�t (9.80)

The unknowns are the pressures and discharges pn+1
i , pn+1

i+1 , Qn+1
i and Qn+1

i+1 ,
the volume Vn+1, the discharge QT and the water depth hn+1. The geometry
of the tank/vessel being known, V and h are related by a one-to-one rela-
tionship, which leaves only six unknowns. Two relationships are provided
by equations (9.55) at the points i and i + 1. The continuity and pressure
equations (9.78) provide another two relationships. Closure is ensured by
one of the equations (9.77) and equation (9.80). For the determination of
the head-loss coefficient at the restricted (‘throttled’) surge tank/air vessel
entry, see the remarks in the following section.

9.4 Physical modelling of closed-conduit flow

9.4.1 Modelling of steady flow and friction head losses

In order to obtain the same value of the friction coefficient λ in laminar
flow, it follows from equation (4.41) (λ=64/Re) that the Reynolds number
must be identical in the model and prototype (MRe =1). This, in turn, means
that Mν = Mμ/(MρMl) and Mp = M2

μ
/(MρM2

l ) (see Chapter 5), which satis-
fies the velocity-distribution equation for laminar flow (Hagen–Poiseuille).
However, to obtain similarity of head losses hf with Mhf

= Ml and MD = Ml

we get, from equation (4.36), for the velocity scale

Mv = Mhf
M2

DMρM−1
l M−1

μ
= M2

l (MρMμ)−1 (9.81)

This is clearly incompatible with the Reynolds law of similarity, unless

Ml = M2/3
v (9.82)

For the same fluid in the model as in the prototype, this means that Ml =1
and it is practically impossible to find a suitable fluid that would satisfy
all the above conditions with water in the prototype. Therefore, we must
conclude that, while on a scale model of laminar closed-conduit flow we
can model with the identity of Reynolds number the velocity distribution
and friction coefficient, we cannot easily achieve simultaneously similarity
of head losses.

For the smooth turbulent region it follows from equations (4.46) or (4.48)
that the same arguments and conclusions apply as for laminar flow. For
flow in the transition region (1/6 < δ′/k < 4) the identity of the friction
coefficient on the model and in the prototype and similarity of head losses
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(Mhf
= Ml) can be achieved for a model operated according to the Froude

law of similarity (Mν = M1/2
l ) (see equation (4.55)):

kp

3.71Dp
+ 2.51

Repλ
1/2
p

= km

3.71Dm
+ 2.51

Remλ
1/2
m

(9.83)

assuming that we can choose the model scale to satisfy the above equation
for one discharge only, and only at the expense of adjusting the roughness
scale (i.e. Mk is not equal to MD = Ml) (see also below).

If the prototype pipe is hydraulically rough (k> 6 δ′), which is frequently
the case because in the prototype the Reynolds number is often large, the
coefficient λ is independent of the Reynolds number and is a function only
of the relative roughness (equation (4.49)).

To attain mechanical similarity in the model, i.e. the same velocity dis-
tribution as in prototype (Mλ = 1), and the similarity of friction losses
(Mhf

= Ml) with complete geometrical similarity, i.e. with the same relative
roughness on the model and in prototype (Mk = MD = Ml), we must ensure
that the model scale is such that, with the preservation of the Froude law
of similarity, λ on the model is also independent of the Reynolds number.
This is only the case if the minimum value of the Reynolds number on the
model is greater than (or at least equal to) Resq (equation (4.52)). For the
same liquid on the model as in the prototype (Mν = 1) and for Mν = M1/2

l

(Froude law) the following relation will apply for the scale of the model:

MRe = MvMDM−1
ν

= M3/2
l <

Repkmλ
1/2

400rm
<

Repkpλ
1/2

200Dp
(9.84)

Sometimes, however, the condition expressed by the above equation can-
not be fulfilled and then the model operates in the transition zone or even
becomes hydraulically smooth. For example, in the case of dams one scale
model is often used to simulate the spillway, the bottom outlet and the still-
ing basin, with the outlet being represented by a smooth brass or perspex
pipe (see Chapter 13); in such cases the model pipe is usually ‘smooth’,
even if the prototype pipe is ‘rough’. The model is operated according to
the Froude law of similarity with regard to the decisive part played by iner-
tial forces. By using a smooth pipe on the model the condition of geometric
similarity for the roughness is violated; nevertheless, satisfactory results may
be obtained by the procedure shown in the following example (Novak and
Čábelka (1981)) (Figure 9.12).

Let us consider that using the same liquid as in the prototype we want to
simulate on a model friction losses and flow through a prototype pipe with
a relative roughness of kp/Dp = 0.001 and Rep = 107. From Figure 4.4 (or
equation (4.49)), λp = 0.0197 (alternatively, Rep and λp may be given and
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Figure 9.12 Definition sketch for modelling hydraulically rough flow

we determine kp/Dp). This case is illustrated in Figure 9.12 by point 1.
If we satisfy the condition Rem >Rep, the model situation is illustrated in
Figure 9.12 by point 2 (or any point between 2 and 1). For the model in
the transitional zone for the same relative roughness (0.0010) we get, for
example, to point 3 (if Rem = 2 × 105), with λm = 0.0212 (i.e. λm > λp). If
we want to preserve the condition λp = λm we must, for Rem = 2 × 105,
choose km/Dm = 0.0007 (i.e. point 4 in Figure 9.12). If we want to achieve
Mλ = 1 for a smooth pipe, the model scale is determined by the fact that,
for the modelled discharge calculated according to Froude law, Rem must
be on the point of intersection of the horizontal line for the given prototype
relative roughness and the curve of the smooth pipe law – point 5 with
Rem = 70,000.

Thus, the model scale (for Mν = 1) is given by

Ml = M2/3
Re = 107

7 × 104
= 27.5 (9.85)

Obviously, we can satisfy the condition Mλ = 1 for one discharge only,
as λ changes with discharge (Reynolds number) on the model but not in
the prototype. In this case, the model scale is usually chosen so that the
condition Mλ =1 is valid for the mean or maximum discharge; for the other
cases we can compute λ on the model and when scaling the model results
onto the prototype apply the appropriate correction numerically. If, in this
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example, Rep varies within the limits 5 × 106 − 15 × 106 (points 1′ and 1′′ in
Figure 9.12), with Ml = 27.5, Rem will vary between 35,000 and 105,000
(points 5′ and 5′′) and λ will vary within the limits 0.0228–0.0180.

Apart from the procedure described above, another possibility is to use
a distorted model with different length scales in the longitudinal (l) and
transverse (D, h) dimensions. For Mν given by the Froude law (i.e. Mν =√

Mh =√
MD), it follows that

Mhf
= MλMlM2

vM
−1
D = MD (9.86)

i.e.

Mλ = MDM−1
l (9.87)

For Mλ <1 (the model λ is larger than in the prototype) for

Recr <Rem <Resq (9.88a)

Dpl−1
p <Dml−1

m (9.88b)

The use of this technique is, however, severely restricted partly because
of the distortions it would cause in local losses and partly because, for a
given value of Ml, MD is a function of Mλ, which in turn is a function of
the Reynolds number. Thus, MD varies with the size of the cross-section as
well as the discharge, and similarity conditions for fixed values of Ml and
computed MD (or vice versa) can again be satisfied for one discharge only.

Modelling of the prototype closed-conduit water flow in any duct can
also be reproduced on any scale model by using a different fluid (e.g. air).
This leads to the use of ‘air tunnels’ for investigating velocity, pressure, flow
fields and forces in cases where the model Reynolds number is high enough
to avoid viscous effects and the influence of gravity on flow phenomena can
be eliminated or is negligible. At the same time, flow velocities should be
restricted to values where compressibility effects are absent – generally this
means values below 50 m/s (see also Chapter 5).

The special case of using air flow in a duct to simulate flows with a
prototype water–air interface is discussed in some detail in Chapter 7.

9.4.2 Modelling of local losses

Referring to Section 4.4.2, it is evident that if similarity of head losses
due to friction can be achieved in the model (with Rem > Resq) correct
reproduction of all local losses may also be achieved in a model operated
according to Froude law as long as complete geometric similarity of the fea-
ture causing the local loss is observed and similarity of upstream conditions
is maintained.
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As in most cases of local losses, independence of viscosity is achieved at
lower values of Reynolds numbers than those given by equation (4.53), and
this can be taken into account if local losses alone are to be modelled. If
only the total head losses in a whole pipeline system (including local losses)
are to be illustrated on a model, and if for operational or economic reasons
not all changes in direction and cross-sections are reproduced on the model,
the effect of local losses may be simulated by a friction loss in an ‘equivalent
length’ of the straight pipe.

9.4.3 Modelling of unsteady flow

9.4.3.1 Waterhammer

By applying to the waterhammer equations (equations (4.76) and (4.77))
the procedure discussed in Chapter 5, we obtain as the criteria of similarity
for model and prototype:

(i) cV/(gH) = idem (Allievi characteristic);
(ii) ct/l = idem (Strouhal criterion);
(iii) V/

√
(gH) = idem; c/

√
(gH) = idem (Froude number).

The last two equations can also be written as c/V = idem = Ma (Mach
number).

The Strouhal criterion, where t is the time of operation T of a gate (or
pump or turbine), determines also whether the operation is ‘fast’ (T< 2l/c)
or ‘slow’ (T>2l/c).

It is evident that viscous effects are neglected in the computation of the
friction slope and that the assumption is of a sufficiently high Reynolds
number (which is correct for most, but not all, times of the unsteady flow
process). The assumption that the time scale is unity (i.e. Mt = 1 as applied,
for example, to the time of closure of the gates) results in McMν = MH,
Mc = Ml and MS = MH/Ml = M2

ν
/MD.

This, in turn, means a distorted model with MH different from Ml and
MD. As for a Froude model Mν > 1, Mc must also be bigger than unity
(i.e. the pressure-wave velocity on the model must be only a fraction of the
prototype velocity). Such a reduction may be achieved either by suitably
increasing the elasticity of the pipe walls (by use of an appropriate material,
or by decreasing the thickness), which may be difficult to comply with in
practice or, more easily, by inserting a rubber hose filled with compressed
air into the model pipeline. The pressure-wave velocity will decrease in pro-
portion to the ratio of the air volume in the hose to the water volume in the
pipe, and thus a reduction in ‘c’ on the model may be achieved over a very
wide range.
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9.4.3.2 Mass oscillation

Equations (4.79)–(4.81) lead to six conditions of similarity involving ten
variables (Novak and Čábelka (1981)):

MLMvM−1
t = Mz = MPM2

V = MRM2
V (9.89)

MVM2
D = MVsM2

Ds − MQ′ (9.90)

MVs = MzM−1
t (9.91)

In solving the above equations it is most advantageous and practical to
use MD, MDs, MR and Mz as independent variables and compute the rest.
Furthermore, to illustrate correctly on the model the loss in the junction of
the conduit and the surge tank, which may (and often does) have a compli-
cated shape, the head-loss coefficient ξ , and hence R, should be the same on
the model as in the prototype (i.e. MR = 1).

The six remaining variables are then given by

MVs = M1/2
z (9.92)

Mt = M1/2
z (9.93)

MP = M4
DM4

Ds (9.94)

MQ′ = M1/2
z M2

Ds (9.95)

MV = M1/2
z M2

DsM
−2
D (9.96)

ML = MzM−2
Ds M

2
D (9.97)

Obviously, the resulting model is distorted, with the exception of the
junction of the conduit (tunnel) and the surge tank. The joining of this
undistorted part of the model (MD = MDs) to the distorted part must be
gradual to prevent errors in the oscillations of the water levels in the model
tank.

There are two further constraints on the choice of MDs/MD (which is also
governed by the practical possibilities of commercially available pipelines):

(i) from the above

Pm = 1
2g

(
1 + λmLm

Dm

)
= PpM4

DsM
−4
D (9.98)

or

1
2g

(
1 + λmLpM2

Ds

DpMzMD

)
= PpM4

DsM
−4
D (9.99)
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As λp(Pp), Lp and Dp are all known and λm is either known or may be
chosen

MzM−1
Ds =φ(MDsM−1

D ) (9.100)

or

Mz(MDsλm) =ψ(MDsM−1
D ) (9.101)

This condition practically limits the choice of MDs/MD to 0.75 <

MDs/MD <1.5.
(ii) If the tank has an overflow, it is further necessary to fulfil the additional

condition MQ = M5/2
z , resulting in Mz = MDs and one single possibility

of MDs/MD.

For modelling of cavitation in general and air water flows in closed
conduits, see Chapter 13.

9.4.4 Choice of approach

Closed-conduit flow is modelled predominantly by using computational
models. This applies both to steady and unsteady flow. The main pur-
pose of laboratory studies of closed-conduit flow under pressure is either
‘basic’ research investigating the physics of multiphase flows (air–water,
water–sediment) or the study of cavitation processes. In the case of sedi-
ment transport in pipelines, because of the complexities of interaction of
the turbulence of the transporting fluid and the particle mechanics, greatly
reduced models are seldom used and experiments are often conducted at a
‘scale’ approaching prototype dimensions.

In applied research, physical models are used to investigate head losses
and the pressure distribution at transitions with complicated geometry (pen-
stocks, manifolds, conduit–surge-tank junctions, surge-tank throttles, etc.)
and of critical cavitation conditions. In addition, sometimes whole pressure
systems require physical modelling as a design aid (e.g. in complicated cases
of hydropower development).

Physical models are also used to verify the results of numerical calcu-
lations in situations where there is uncertainty in the application of the
assumption of essentially one-dimensional flow.

Modelling of closed-conduit flow is a good example of hybrid modelling,
where, for example, the head-loss coefficients at surge-tank entries are
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ascertained on a physical model and surge-tank oscillations are found by
using computational methods.

9.5 Case study: waterhammer arising from pipe
failure

9.5.1 Test case description

The purpose of the present test case is to illustrate the solution properties of
the waterhammer equations. The transients arising from the sudden failure
of a valve in a pipe with non-uniform, wave-propagation properties are used
as an example. The pipe is assumed to be in two parts that have identical
cross-sectional areas but different wave-propagation speeds. Denoting the
abscissa of the junction between the two parts by x1, the speed of sound is
c1 for x< x1 and c2 for x> x2 (Figure 9.13). The water is initially at rest.
A closed valve located at the abscissa x0 < x1 separates two regions with
initially different pressures. The pressures on the left- and right-hand sides of
the valve are denoted by pL and pR, respectively. In the present application,
pL is assumed to be higher than pR. At t =0 the valve fails, and both sides of
the pipe are allowed to communicate. For the sake of simplicity, the valve
is assumed to fail instantaneously and to induce no local head loss at later
times.

After the failure, two waves originating from the abscissa x0 of the ini-
tial discontinuity travel in opposite directions at speeds +c1 and −c1. The
pressure in the intermediate region delimited by the two waves is between
pL and pR, and the flow velocity is positive. When the wave travelling at the
speed +c1 reaches the abscissa x1, part of the energy of the wave is transmit-
ted to the region of the pipe with celerity c2 and part of it is reflected into the
region of the pipe with sound speed c1. The pressure behind the reflecting
wave may be higher or lower than the pressure behind the impinging wave,
depending on the ratio c1/c2. The parameters retained for the application
example are given in Table 9.1. In Option 1, the region of the pipe with the
larger celerity is the left-hand region. In Option 2, the left-hand region has
the smaller of the two sound speeds.

x0 x1 x

c1, pL
c1, pR c2, pR

Figure 9.13 Definition sketch for the test case
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Table 9.1 Parameters for the application example.

Symbol Meaning Value

A Cross-sectional area of the pipe 3.14 × 10−2 m2

c1 Sound speed in the left-hand region of the pipe 1,000 m/s (Case 1)
600 m/s (Case 2)

c2 Sound speed in the right-hand region of the pipe 600 m/s (Case 1)
1,000 m/s (Case 2)

pL Initial pressure for x< x0 2 × 105 Pa
pR Initial pressure for x> x0 105 Pa
x0 abscissa of the valve 50 m
x1 abscissa of the junction 95 m
ρ water density 1,000 kg/m3

9.5.2 Simulation results

The waterhammer equations are solved using the MOC presented in
Section 9.3.4. The computational time step is �t = 5 × 10−3 s, and the cell
width is �x = ck�t in the region k (k = 1,2). This guarantees that the
Courant number is equal to unity everywhere, which eliminates the need
for interpolation, and hence leads to a more accurate and faster solution
process.

Figure 9.14 shows the pressure profiles computed every fifth time step
for Option 1 (whereby the larger of the two sound speeds is on the left-
hand side of the junction). At t = 2.5 × 10−2 s, the two waves originating
from the abscissa x0 are clearly visible. At t =5×10−2 s, the rightward wave
reaches the abscissa x1 of the junction and propagates into the pipe at the
speed c2. As c2 < c1, the pipe on the right-hand side of the junction is more
deformable, and this causes the decrease in the pressure observed around
x = x1 in the figure. The decrease in the pressure triggers a wave that travels
to the left at the speed −c1 and a wave that travels to the right at the speed
+c2. Such waves are clearly visible in the graphs at t=7.5×10−2 s and 0.1 s.

Figure 9.15 shows the pressure profiles computed every fifth time step for
Option 2 (c1< c2). At t =2.5×10−2 s and t =5×10−2 s, the waves travelling
in opposite directions from x = x0 are clearly visible. At t = 7.5 × 10−2 s, the
rightward wave reaches the junction. The pipe–water system being more
rigid on the right-hand side of the junction than on the left-hand side, only
part of the energy of the impinging wave can be transmitted to the pipe
on the right-hand side. As a consequence, the discharge decreases and the
pressure rises at the junction. This yields a return pressure wave that propa-
gates to the left at the speed −c1. This is illustrated by the pressure profile at
t = 0.75 s, where the return wave is visible, while the wave that propagates
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Figure 9.14 Pressure profiles computed using the method of characteristics for Option 1
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Figure 9.15 Pressure profiles computed using the method of characteristics for Option 2
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beyond the junction at the speed c2 has not yet reached the next computa-
tional point. The pressure profile at t = 0.1 s clearly shows the propagation
of the two waves from the junction.

This computational example shows that the maximum (or minimum) val-
ues in the pressure signal are not necessarily reached at the early times of
the transient. Depending on the geometric and mechanical characteristics of
the pipes, and the combination of the initial and boundary conditions, the
maximum and/or minimum values (that condition the protection objectives
of the installation) of the pressure and discharge may be reached after one
or several reflections of the pressure transient within the network.
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Chapter 10

Modell ing of urban drainage
systems

10.1 Introduction

The present chapter is devoted to a presentation of the specific hydraulic
features of urban drainage systems and the computational techniques for
their hydrodynamical modelling. Prior to reading this chapter, the reader
should master a number of notions presented in the previous chapters of
this book.

As far as hydraulics is concerned, an indispensable prerequisite to this
chapter is Chapter 4. In what follows, the reader is assumed to be familiar
with the concepts and equations presented in Section 4.3 on hydraulics and
Section 4.4 on flow in conduits. The reader may also refer to Chapter 7 for
a presentation of free-surface-flow modelling. More specifically, Section 7.2
on the various models for free-surface flow (the Saint Venant equations, the
diffusive and kinematic wave approximations) and Section 7.3 on numerical
solution techniques provide useful background reading. For a basic under-
standing of the features of transient, pressurized pipe flow, the reader is
advised to read Section 9.3. For details of hydraulics of various wastewater
appurtenances, see Hager (1999).

A specificity of urban drainage systems is the extreme variability of the
flow regime. Such variability is expressed in the form of very rapid changes
in both time and space (i) from free surface to pressurized flow and (ii) from
subcritical to supercritical flow. The variability is mainly due to the large
geometric variability of the drainage network (changes in conduit shape
and size, singularities, sudden slope transitions, etc.) and the large relative
changes in the discharges at conduit junctions (confluences, etc.). More-
over, an urban drainage system may be subjected to very low flow (or no
flow) conditions, with dry beds and small depths, which is another source
of computational difficulty.

The transition between free-surface and pressurized flow can be mod-
elled by modifying artificially the shape of the pipe (see Section 10.2.3) so
that the propagation properties of the solutions of the Saint Venant equa-
tions (see Section 7.2) become identical to those of the solutions of the
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Figure 10.1 Typical conduit shapes: (a) circular, (b) egg-shaped, (c) horseshoe-shaped

waterhammer equations for pipe transients (see Section 9.3). The transi-
tion from subcritical to supercritical flow can be modelled provided that the
available numerical techniques for free-surface-flow modelling are adapted.
The numerical aspects are covered in Section 10.4.

Another specificity of urban-drainage-system modelling compared to clas-
sical, open-channel-flow modelling is the artificial character of the channels.
The shape of urban drainage conduits is often predefined, as shown in
Figure 10.1. Many commercially available software packages incorporate
a library of typical conduit shapes.

This chapter does not deal with the movement of sediment in sewers; for
an introduction to this subject, see Section 4.6.2.

Although the design of urban drainage systems invariably requires com-
putational procedures, detailed solution of hydraulic intricacies of parts of
the system and of many appurtenances can – and often has to – be carried
out by means of physical modelling (see Section 13.3.3 and the case study
in Section 13.5.4).

10.2 Governing equations of urban drainage
systems

10.2.1 Assumptions

The governing assumptions behind modelling of urban drainage systems are
similar to those used in open-channel and closed-pipe systems. They can be
summarized as follows.

Assumption (1): The longitudinal dimensions of the pipes in the drainage
system are much larger than the transverse dimensions. Consequently,
the flow can be considered one-dimensional.

Assumption (2): The water is incompressible and the pressure distribution
is hydrostatic.
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Assumption (3): The velocity distribution within a cross-section can be
fully described via the average flow velocity V via the Boussinesq β

coefficient (see Chapter 7).
Assumption (4): The angle between the pipes and the horizontal is

small.
Assumption (5): The effects of friction can be accounted for via a tur-

bulent head-loss law such as the Manning and Strickler law (under
unsaturated conditions) or the Darcy–Weisbach formulation (under
saturated conditions); that is, the energy slope Se is proportional to
the square of the flow velocity.

Assumption (6): In contrast with the waterhammer equations, the
momentum discharge Q2/A is not neglected in the momentum equa-
tion, even when the system is saturated and the flow is pressurized.
This assumption allows mass oscillations to be accounted for.

10.2.2 Governing equations

Following the assumptions in Section 10.2.1, the continuity and momentum
equations can be written in conservation form as (see Chapter 7 for the
details of the derivation)

∂U
∂t

+ ∂F
∂x

= S (10.1)

where the conserved variable U, the flux F and the source term S are
defined as

U=
[

A
Q

]
, F=

[
Q

βQ2/A + P/ρ

]
, S=

[
q

(1 − ε)qu + (S0 − Se)gA

]
(10.2)

where A is the wetted cross-sectional area, g is the gravitational acceleration,
P is the pressure force exerted onto the cross-sectional area of the pipe, Q
is the volume discharge, q is the lateral discharge per unit length, S0 and Se

are the bottom and energy slopes, respectively, ε= ±1 is the sign of q, β is
Boussinesq coefficient, and ρ is the water density.

Numerical solution techniques usually solve the non-conservation form

∂U
∂t

+ A
∂U
∂x

= S (10.3)

where the Jacobian matrix A of F with respect to U is given by

A =
[

0 1
c2 −βu2 2βu

]
(10.4)
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where the speed c of the waves in still water is given by

c ≡
[

dP
d(ρA)

]1/2

=
(

gA
B

)1/2

(10.5)

where b is the width of the free surface.

10.2.3 Transition between free-surface and pressurized
flow – Preissmann’s slot

A salient feature of the wave-propagation properties of closed-conduit flow
is that c becomes infinite when the pipe is full. Indeed, in a closed conduit,
the width B of the free surface tends to zero when the free surface reaches
the top of the section (Figure 10.1). For a circular pipe of radius r, A and B
are given by

A = (θ − cos θ sinθ)r2 (10.6a)

B = 2rθ (10.6b)

where θ is the angle between the vertical and the straight line connecting
the centre of the pipe and the contact between the free surface and the pipe
wall (Figure 10.2(a)). It is easy to check that substituting equations (10.6)
into equation (10.5) leads to

c =
[(

1 − cos θ sinθ

θ

)
gr
2

]1/2

(10.7)

Figure 10.2(b) illustrates the variation in the dimensionless ratio c/c(r) as
a function of the dimensionless ratio h/r, where c(r) is the expression of
c obtained for h = r (i.e. for θ = π/2). Figure 10.2 is drawn for a circu-
lar pipe but similar behaviour is observed for the celerity in oval-shaped
conduits.

In reality, c does not become infinite because when the flow becomes fully
pressurized the (small) elasticity of the pipe-wall material and the (small)
compressibility of the water allow the mass ρA per unit length of pipe
to vary slightly with the pressure force P. The celerity c of the wave then
becomes equal to the (constant) speed of sound cp for pressurized flow clas-
sically used in waterhammer transients (see Section 9.4 on waterhammer).
Although this reflects a change in the physical nature of the flow, the tran-
sition from the classical expression (10.5) to the speed of sound can be
accounted for in the Saint Venant equations provided that the geometry of
the pipe section is modified artificially.
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Figure 10.2 Propagation speed of the waves in still water for a circular pipe: (a) definition
sketch; (b) variation in the dimensionless ratio c/c(R) with the dimensionless
depth h/R

Figure 10.3 Definition sketch for Preissmann’s slot

Preissmann and Cunge (1961) and later Cunge and Wegner (1964) pro-
posed that an artificial slot should be added on top of the pipe (Figure 10.3).
This design has two advantages: (i) it allows the water level to rise above the
top of the original pipe section, thus allowing pressure surges to be repro-
duced by the model via the hydrostatic pressure distribution; and (ii) the
geometry of the artificial slot can be designed so that equation (10.5) gives
c = cp when the water rises into the slot.

From a theoretical point of view, the mass of water stored in the slot in
Figure 10.3 represents the extra amount of water stored in the pipe due
to water compressibility and pipe-wall elasticity. Since this amount is very
small compared to the volume of water contained in the pipe, the width bs

of Preissmann’s slot must be very small. From equation (10.5), one obtains
bs = gA/c2. To give but one example, for a pipe of radius r = 0.3m
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and a celerity under pressurized conditions of cp = 200m/s, one obtains
bs = 7 × 10−5 m.

From a practical point of view, the Preissmann slot does not have a con-
stant width, and a smooth geometrical transition must be ensured between
the roof of the pipe and the bottom of the slot when the equations are to be
solved numerically (see Section 10.4).

10.2.4 Instability near discharge capacity

10.2.4.1 Conveyance as a non-monotone function of the
water depth

Another issue specific to closed-conduit, free-surface flow is the essentially
unstable character of the flow when the water rises above a certain threshold
level in the pipe. The reasons for flow instability are as follows.

The slope of the energy line in a pipe is classically accounted for by a
Manning–Chezy formula in the form (see Section 7.2.2.2)

Q = ConvS1/2
e (10.8a)

Conv = AR2/3

nM
= A5/3P

′−2/3

nM
(10.8b)

where the conveyance Conv expresses the capacity of the pipe to convey the
flow under a fixed energy gradient, P′ is the wetted perimeter and R is the
hydraulic radius.

In contrast with open-channel flow, the conveyance in closed conduits is
not a monotone function of the water depth h over the entire range [0, 2Rp].
For a circular or ovoid pipe, there exists a depth above which the hydraulic
radius increases faster than the cross-sectional area. Indeed, the variation in
the conveyance with the depth h is given by

dConv = 5
3

A2/3P′−2/3 dA
dh

dh − 2
3

A5/3P′−5/3 dP′

dh
dh

= 1
3

R2/3

(
5

dA
dh

− 2R
dP′

dh

)
dh (10.9)

The variation in the cross-sectional area with the depth is given by

dA = Bdh (10.10)

while the variation in the wetted perimeter is given by

dP′ =
(

1
cos θ1

+ 1
cos θ2

)
dh (10.11)
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Figure 10.4 Definition of the variations in the conveyance with the water depth

where θ1 and θ2 are the angles of the pipe wall with the vertical at the contact
line between the pipe and the free surface, respectively (Figure 10.4).

Substituting equations (10.10) and (10.11) into equation (10.9) gives

dConv = 1
3

R2/3

[
5B − 2R

(
1

cos θ1
+ 1

cos θ2

)]
dh (10.12)

If θ1 and/or θ2 tend to π/2, 1/ cos θ1 and/or 1/ cos θ2 become very large
and the derivative of the conveyance with respect to the water depth
becomes negative. Besides, in a pipe with a smooth section, there exists a
water depth above which B starts decreasing. A straightforward variation
analysis shows that when B becomes smaller than 4R/5, the deriva-
tive of the conveyance with respect to h as given in equation (10.12)
is necessarily negative, regardless of the value of θ1 and θ2. Figure 10.5
illustrates the variations in the conveyance with the water depth for a cir-
cular pipe. The conveyance is displayed as a ratio to the conveyance at
h = r. The graph indicates that the conveyance is an increasing function
of the water depth for 0 ≤ h/r ≤ 1.88. Above this depth, the conveyance
decreases.

The non-monotone behaviour of the conveyance with the flow depth is a
source of instability in the flow, as explained in the next section.

10.2.4.2 Flow instability

Consider steady-state flow in a drainage network pipe. Let hmax denote
the water depth for which the conveyance is maximum. Assume that, for
some reason (e.g. a rainy event with a subsequent inflow into the drainage
network), the discharge at the upstream end of the pipe increases. Two
possibilities arise depending on the initial, steady-state depth.
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Figure 10.5 The ratio Conv/Conv(R) as a function of the dimensionless water depth h/R for
a circular pipe

(1) If the initial water depth is smaller than hmax, the increase in the dis-
charge results in an increase in the water depth until the conveyance is large
enough to accommodate for the discharge.

(2) If the steady-state water depth is larger than hmax, the increase in the
discharge results in an increase in the water depth. This triggers a decrease in
the conveyance and an increase in the head loss. As a result, the discharge in
the section decreases, which in turn yields a decrease in the conveyance. This
positive feedback process leads to filling the pipe very quickly. The discharge
flowing from upstream can be conveyed only at the expense of an increase
in the hydraulic head upstream of the saturated section. As a consequence,
the saturation wave travels in the upstream direction until a point is reached
where the conveyance needed to accommodate for the discharge falls below
the maximum conveyance of the pipe.

Note that, if Preissmann’s slot is used in the modelling, the height of the
water in the slot must not be taken into account in the calculation of the
wetted perimeter P′. It must be kept in mind that Preissmann’s slot is a
purely virtual construction.

10.3 Solution behaviour – initial and boundary
conditions

10.3.1 Initial and boundary conditions

(1) When the drainage system is not saturated, the governing equations are
the Saint Venant equations (see Section 7.2.2 for detailed considerations on
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the behaviour of the solutions of the Saint Venant equations). As shown in
Section 7.2.2, solution existence and uniqueness are ensured provided that
the initial flow conditions are known at all points of the solution domain
and that a boundary condition is supplied for each inflowing characteristic.
Consequently, one boundary condition is needed for a subcritical inflow and
two boundary conditions are needed for a supercritical inflow. Subcritical,
downstream boundaries require one boundary condition, while supercritical
outflow requires no condition.

(2) Under saturated conditions, the flow velocity becomes negligible com-
pared to the speed c of the waves in still water and the flow is always
supercritical. Then only one boundary condition is needed at each end of
the solution domain.

10.3.2 Junctions, lateral weirs and overspills

10.3.2.1 Junctions

A junction can be considered as an internal boundary where the law of
nodes and the equality of heads (or water levels) are applicable:

Np∑
p=1

Qp = 0 (10.13a)

η1 = η2 = · · ·= ηNp (10.13b)

η1 + V2
1

2g
= η2 + V2

2

2g
= · · ·= ηNp + V2

Np

2g
(10.13c)

where Np is the number of pipes converging to the junction and Qp, Vp

and hp (p = 1, . . ., Np) are the discharge, velocity and free-surface eleva-
tion, respectively, in the pipe p. Note that in equation (10.13a) the same
convention must be used for all the discharges, e.g. the discharge in a pipe
is counted positive if the water flows toward the junction.

Equations (10.13a) and (10.13b) (or (10.13c)) yield Np independent con-
ditions. This matches the number of (internal) boundary conditions needed
at the end of each pipe under subcritical conditions. Consequently, solution
existence and uniqueness are guaranteed provided that the flow is subcritical
in all the pipes at the junction.

10.3.2.2 Lateral weirs

Lateral weirs are often treated as local sink terms along the pipe. If the
length of the weir is important, the elevation of the free surface may vary
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substantially between the upstream and downstream ends of the weir. The
outflowing discharge per unit length q is computed as

q = C(η− zw)3/2 (10.14)

where C is the weir discharge coefficient and zx is the elevation of the crest
of the weir. Integrating q with respect to x along the weir leads to the
expression of the total outflowing discharge. In modelling packages such as
HEC-RAS (USACE (2008)), the discharge coefficient C is computed using
Hager’s formula (Hager (1987)):

C = 3
5

C0

(
g

1 − w
3 − 2y − w

)1/2

1 − (α+ S0)
(

3 − 3y
y − w

)
(10.15)

where the dimensionless numbers w and y are defined as

w = hw

H − zw + hw
(10.16a)

h = η− zw

H − zw
(10.16b)

where hw is the difference between the weir crest and the ground elevation
and H is the hydraulic head.

10.3.3 Manholes

A manhole can be considered as a junction with a storage capacity. The
available equations are the law of nodes, the equality of heads (or water
levels) and the continuity equation for the manhole. The equality of the
water levels or heads is given by equation (10.13b) or equation (10.13c).

The law of nodes (equation (10.13a)) must be modified so as to account
for the variation in storage in the manhole:

Np∑
p=1

Qp = Qm (10.17)

where Np is the number of pipes connected to the manhole, Qm is the dis-
charge to the manhole (positive if the water level in the manhole is rising,
negative if the water level is falling) and Qp is the discharge in the pipe p
(positive if the water flows to the manhole).

Applying the law of conservation of mass to the water stored in the
manhole leads to

Qm = Am
dηm

dt
(10.18)
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where Am and ηm are the plan-view area and the water level in the manhole,
respectively. Moreover, the discharge Qm is a function of the difference in
the heads in the pipes at the junction and the water level in the manhole:

HJ − ηm =α
|Qm|Qm

2g
(10.19)

where HJ = ηp + V2
p/(2g) is the head in the pipes at the junction (identical in

all the pipes if equation (10.13c) is used) and α is a head-loss coefficient.
Equations (10.13b) and (10.13c) and equations (10.17)–(10.19) provide

Np + 2 independent relationships. The unknowns are the Np discharges Qp

in the pipes at the junction, plus the water level ηm and the discharge Qm to
the manhole. As the number of equations matches the number of unknowns,
the solution is unique.

10.4 Numerical solution techniques

10.4.1 General – finite-difference solution

Although recent advances can be found in the solution of the conservation
form of the equations (León et al. (2009)), most existing software pack-
ages solve the non-conservation form (equation (10.3)) of the governing
equations. The most widely used techniques to do so are the Preissmann
scheme described in Section 7.3.3, or Abbott–Ionescu’s scheme described in
Section 7.3.4. Compared to river systems, however, urban drainage systems
exhibit rather specific features that are sources of computational difficulties.
As mentioned in the introduction to this chapter, the main three difficulties
are the subcritical/supercritical transition, the free surface/pressurized flow
transition and the modelling of dry beds and small depths. These issues are
addressed in the following sections.

10.4.2 Numerical techniques for transcritical flow

Preissmann’s and Abbott–Ionescu’s schemes, the most widely implemented
schemes in urban drainage-network modelling systems, are not equipped to
handle transcritical flow (Johnson et al. (2002), Meselhe and Holly (1997)).
A possible solution to this problem consists of modifying the momentum
equations so as to minimize the influence of the inertial terms (that are
responsible for the possible appearance of supercritical flow). A proper min-
imization, or alteration, of the inertial terms allows either the flow pattern to
remain artificially subcritical for all possible values of the Froude number, or
the governing equations to switch from wave-propagation to diffusion-like
equations, the solution of which remains unique provided that one bound-
ary condition is supplied at each boundary of the computational domain.
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This allows the same algorithms to be used for the computation of the
solutions, irrespective of the subcritical or supercritical nature of the flow.

Three approaches are used in practice: the local partial inertia (LPI)
approach, the reduced momentum equation (RME) technique, and the par-
tial discretization of the momentum flux. These approaches, as well as
the consequences on the wave-propagation properties, are detailed in the
following sections.

10.4.2.1 The local partial inertia (LPI) approach

In the LPI technique (Jin and Fread (2000)), the momentum equation is
modified to become[

∂Q
∂t

+ ∂

∂x

(
β

Q2

A

)]
ε+ ∂

∂x

(
P
ρ

)
= (S0 − Se)gA (10.20)

where ε is a function of the Froude number

ε= max
(
1 − |Fr|M,0) (10.21)

where Fr is the Froude number and M is a user-defined exponent.
Equation (10.21) ensures a continuous transition from ε= 1 for Fr = 0 to
ε = 0 for Fr = 1. When the absolute value of the Froude number is equal
to or larger than unity, the inertial terms disappear and the diffusive wave
approximation is obtained (see Section 7.2). The system of equations is no
longer hyperbolic and the notion of wave celerity is meaningless.

As the switch in equation (10.21) is continuous over the whole range
0≤|Fr|≤ 1, it acts on the propagation properties of the solution even under
subcritical conditions. The LPI technique has consequences on the propaga-
tion properties of the solutions of the flow equations. Equation (10.20) can
be rewritten in conservation form as

∂Q
∂t

+ ∂

∂x

(
β

Q2

A
+ 1
ε

P
ρ

)
= 1
ε

(S0 − Se)gA (10.22)

The Jacobian matrix A of the flux vector with respect to the conserved
variable is modified to

A =
[

0 1
c2

ε
− βu2 2βu

]
(10.23)

The wave celerities are given by the eigenvalues of the matrix (see Chapter 2)
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λ1 = βu −
[
(β− 1)βu2 + c2

ε

]1/2

(10.24a)

λ2 = βu +
[
(β− 1)βu2 + c2

ε

]1/2

(10.24b)

Figure 10.6 shows the variations in the dimensionless ratio λp/c(p = 1, 2)
with the Froude number for β = 1 and various values of the power M. The
ratios λp/c are obtained from equations (10.24) as

λ1

c
= βFr −

[
(β− 1)βFr2 + 1

ε

]1/2

(10.25a)

λ2

c
= βFr +

[
(β− 1)βFr2 + 1

ε

]1/2

(10.25b)
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Figure 10.6 LPI approach. Dimensionless wave celerities λp/c as functions of the Froude
number for β=1. Dashed lines: wave celerities of the Saint Venant equations.
Solid lines: wave celerities computed from equations (10.21) and (10.25)
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As shown in Figure 10.6, λ1 and λ2 tend to infinity as the absolute value
of Fr approaches unity, regardless of the value of M. Increasing the power
M in the switch (equation (10.21)) makes λ1 and λ2 closer to the wave-
propagation speeds of the original Saint Venant equations over a wider
range of the Froude number. Although strongly inaccurate when the abso-
lute value of the Froude number approaches unity, this approach has the
advantage that λ1 is always negative and λ2 is always positive, therefore
allowing classical schemes like Preissmann’s or Abbott–Ionescu’s scheme to
be used throughout all the computational domain without any specific treat-
ment of the boundaries or critical point. Shifting from the subcritical Saint
Venant equations to the diffusive wave approximation does not induce any
change in the number and location of boundary conditions, because the
existence and uniqueness of the solution of the diffusive wave approxima-
tion are guaranteed provided that one boundary condition is specified at
each end of the computational domain.

10.4.2.2 The reduced momentum equation (RME) approach

In the RME approach, the momentum advection term βQ2/A in the impulse
is multiplied by a weighting coefficient ε between 0 and 1. The momentum
equation then becomes

∂Q
∂t

+ ∂

∂x

(
εβ

Q2

A
+ P
ρ

)
= (S0 − Se)gA (10.26)

which yields the following expression for the matrix A:

A =
[

0 1
c2 − εβu2 2εβu

]
(10.27)

The ratio of the wave celerities to the speed c is given by

λ1

c
= εβFr − [(εβ − 1)εβFr2 + 1

]
(10.28a)

λ2

c
= εβFr + [(εβ − 1)εβFr2 + 1

]
(10.28b)

In the original approach, ε was set to zero. It is easy to check that in such a
case equations (10.28) yield

λ1 =−c (10.29a)

λ2 =+c (10.29b)
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Figure 10.7 RME approach. Dimensionless wave celerities λp/c as functions of the Froude
number for β=1. Dashed lines: wave celerities of the Saint Venant equations.
Solid lines: wave celerities computed from equations (10.21) and (10.28)

and the flow is always subcritical. Figure 10.7 shows the variations in the
dimensionless wave celerities in the less trivial case where ε is given by the
switch (10.21).

Note that other formulations are proposed in (DHI (2005)), such as:

ε= max (1 − Fr2,0) (10.30a)

ε= min
[
(1 + |Fr| − a)−b

,1
]

(10.30b)

where a and b are positive constants to be specified by the user.

10.4.2.3 Partial discretization of the momentum flux

A third possibility for the discretization of the momentum equation is to
drop one of the derivatives in the non-conservation form of the equations,
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as in the Mike11 implementation of Abbott–Ionescu’s scheme. As shown in
Section 7.3.4, in this implementation, the derivative of the momentum flux
is approximated as

∂

∂x

(
β

Q2

A

)
≈−βu2 ∂A

∂t
(10.31)

which leads to the following expression for the Jacobian matrix

A =
[

0 1
c2 −βu2 0

]
(10.32)

The wave celerities of the system are given by

λ1

c
=−(1 −βFr2

)1/2
(10.33a)

λ2

c
= (1 −βFr2

)1/2
(10.33b)

The celerities as given by equations (10.33) are meaningful only if the abso-
lute value of the Froude number is smaller than unity. Under supercritical
conditions, the term βu2 is cancelled in the discretization and the celeri-
ties are given by equations (10.29). The resulting wave-propagation-speed
diagram is plotted in Figure 10.8.

In industrial implementations of the scheme (DHI (2005)), the partial
discretization of the momentum flux is combined with the RME approach.
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–2 0 2
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λ / c

1

−1
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Figure 10.8 Partial discretization of the momentum flux. Dimensionless wave celerities
λp/c as functions of the Froude number for β = 1. Dashed lines: wave celeri-
ties of the Saint Venant equations. Solid lines: wave celerities computed from
equations (10.29) and (10.32)
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10.4.2.4 Advantages and drawbacks of the approaches

The LPI and RME approaches yield wrongly computed steady-state flow
near critical conditions. Indeed, for steady state, where ∂Q/∂t = ∂Q/∂x=0,
equations (10.20) and (10.26) become

(c2 − εu2)
∂A
∂x

= (S0 − Se)gA (10.34)

Introducing the definition c2 = gA/b and dA = b dh leads to

dh
dx

= S0 − Se

1 − εFr2
. (10.35)

In both the LPI and RME approaches, the coefficient ε tends to zero when
the Froude number tends to unity. In practice, this may result in wrongly
located hydraulic jumps, critical points, etc.

In contrast, the partial discretization of the momentum discharge pre-
sented in Section 10.4.2.3 does not exhibit this problem because the only
term dropped in the equations is the term in ∂Q/∂x, that is zero near steady-
state simulations. Of course, when the partial discretization approach is
combined with the RME approach, the issue of near-critical or transcritical
flow modelling arises again.

10.4.3 Transition from free-surface to pressurized flow

10.4.3.1 Non-monotone conveyance curve

The non-monotone character of the conveyance with respect to the flow
depth (see Section 10.2.4.1) is a source of numerical difficulty in the solution
of the Saint Venant equations. This specific feature of closed-conduit flow
may be a source of instability in the numerical solution process, for the
following two reasons:

(1) The instability of the exact solution of the equations is naturally trans-
posed to the numerical solution, with strong differences in the flow
variables from one time step to the next.

(2) As mentioned in Chapter 7 (see e.g. Section 7.3.3.3 dealing with Preiss-
mann’s scheme), solving the flow equations using implicit schemes
implies the iterative calculation of a number of parameters, among
which the energy slope is a function of the conveyance. The instabil-
ity described in (1) as occurring from one time step to the next is then
transformed into an instability from one iteration to the next within the
same time step.
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Figure 10.9 Artificial modification of the conveyance curve for solution stabilization:
(a) circular conduit, (b) rectangular conduit. B = 2H

A standard solution to this problem (USACE (2008)) is to modify the con-
veyance curve artificially so as to make it monotone with the water depth.
Figure 10.9 shows an example of such a modification for a circular conduit
(Figure 10.9(a)) and a rectangular conduit, the width of which is twice as
much as the height.

10.4.4 Dry beds and small depths

Simulations may start from low flow (or no flow) conditions. Such con-
ditions may cause numerical instability of the solution of the equations.
As mentioned in Section 7.3.6, three types of problems arise: (i) problems
arising from the discretization, (ii) the non-uniqueness of the relation-
ship between the discharge and the water depth in the discretized equa-
tions, and (iii) unphysical computational results induced by too coarse a
discretization.

10.4.4.1 Conduits with zero bottom width

In conduits where the channel width B(Y) tends to zero when the depth Y
tends to zero, the solution of the equations in non-conservation form fails
owing to division by zero when the conduit becomes dry. Similar problems
may occur even when the initial depth is not zero, because very small depth
usually results in a dramatic overestimation of the variations in the water
depth. Repeating this problem over several time steps generally leads to
severe mass-conservation problems, if not to numerical instability.
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A standard solution, presented in Section 7.3.6, is the so-called ‘Abbott
slot’, an artificial slot introduced in the conduit bottom that prevents the
conduit from drying out, even under very low flow. Besides, a small, artificial
discharge can be introduced at the upstream end of each pipe in order to
preclude the pipe from becoming dry.

10.4.4.2 Wetting and drying fronts

Oscillations may appear near wetting and drying fronts due to the non-
uniqueness of the relationship between the discharge and the depth in the
discretized equations. As shown in Section 7.3.6, solving the flow equations
using Preissmann’s scheme under low flow conditions leads to the following
relationship between the discharge and the water depth at two consecutive
points:

Q = εB
n

[(1 −ψ)Yi +ψYi+1]
5/3

(
Yi+1 − Yi

�xi+1/2

)1/2

(10.36)

When Q is positive, i is the upstream point and i + 1 is the downstream
point. Q, as given by equation (10.36), is not a monotone function of Yi+1

for a given Yi, unless ψ is set to zero. Conversely, for a negative discharge,
Q is a monotone function of the downstream point Yi only if ψ is set
to 1. The non-uniqueness of the relationship between the discharge and the
downstream depth may lead to artificial oscillations in the computed flow
variables during the (iterative) numerical-solution process.

Cunge et al. (1980) suggest that ψ should be set to zero for positive values
of Q and to unity for negative values of Q. In other words, the conveyance
B/nY5/3 should be estimated using only the upstream point. This numerical
stabilization procedure is known as ‘conveyance upwinding’ and is to be
used only for small depths.

10.4.4.3 Computational grid

As shown in Section 7.3.6, a wave travelling into a region with a con-
stant depth A0 and constant discharge Q0 yields the following relationship
between the variation in the cross-sectional area and the discharge:

An+1
i+1 = A0 + 2θ�t

�Q
�x

−�A (10.37)

where i is the point that has just been passed by the wave, and �A and
�Q are the variations in the cross-sectional area and discharge from the
time step n to the time step n + 1. If A0 is small and the conveyance of
the channel is small (owing to high roughness, narrow free-surface width
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or a combination of both), even a small value of �Q may lead to a large
variation in �A, and An+1

i+1 may drop below the initial value A0 without any
physical reason, thus creating artificial oscillations in the computed water
depth and discharge. An+1

i+1 may even become negative for some combinations
of the initial water depth, geometry, and hydraulic and numerical parame-
ters. This undesirable behaviour can be prevented by keeping �x sufficiently
small to ensure the positiveness of the quantity 2θ�t�Q/�x −�A. Alter-
natively, increasing the value of θ also has a stabilizing effect on the
solution.

10.5 Case study

10.5.1 Introduction

The purpose of the present case study is to illustrate the typical behaviour
of an urban drainage system subjected to a short rainfall event, as well
as the main steps of the construction of an urban drainage model using
a commercially available software package. The package used is Mike 11
(DHI (2005)).

Figure 10.10 shows the layout of the network. The geometric character-
istics of the conduits are given in Table 10.1.

The boundary conditions are the following: at nodes A, G and I, the
inflowing discharge is a known function of time. Node F is prescribed level
boundary. The hydrographs are shown in Figure 10.11.

Such hydrographs correspond to short and intense rainfall events occur-
ring over impervious areas (such as urban catchments) with rather steep
slopes. In such situations, the concentration times of the catchments are
small and high peak discharges can be obtained within short times. In the
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Figure 10.10 Plan view of the network
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Table 10.1 Geometric characteristics of the network.

Pipe Upstream
node

Downstream
node

Length
(m)

Diameter
(m)

Upstream node
elevation (m)

Downstream node
elevation (m)

1 A B 108.0 0.30 51.00 49.10
2 B C 5.0 0.35 49.10 49.05
3 C D 5.0 0.45 49.05 49.00
4 D E 5.0 0.50 49.00 48.70
5 E F 72.0 0.50 48.70 48.30
6 G H 61.0 0.30 49.20 49.10
7 H C 40.0 0.30 49.10 49.05
8 I J 60.0 0.30 50.00 49.10
9 J D 10.0 0.30 49.10 49.00

0

0.1

0.2

00:00 05:00 10:00
t (min)

Q
 (m

3 /
s)

QA
QG
QI

Figure 10.11 Input hydrographs for the example simulation. Note that the solid line for
QG corresponds to a zero discharge

present case, the numerical difficulty is willingly increased by considering a
scenario where the inflowing discharge QG remains very small, thus yielding
initial conditions with low flows and very small depths in pipes 6 and 7.

10.5.2 Model construction

In defining the computational model, it is necessary to define as many links
in the model as there are pipes with different slopes and/or diameter. This
is because the geometric tables at the computational points between the
nodes are usually precomputed by the model from an interpolation between
the conduit geometry at the closest neighbouring nodes. Therefore, it is
essential to capture the changes in conduit slope and shape as accurately
as possible, otherwise leading to wrongly estimated conduit conveyances,
storage volumes or slopes, which in turn may lower the accuracy of the
numerical model.
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Figure 10.12 Characteristics of the cross-section at the node A as functions of the ele-
vation computed by the software: (a) free-surface width, (b) cross-sectional
area, (c) conveyance curve

Commercially available packages incorporate predefined conduit shapes,
such as circular or rectangular conduits. This precludes the user from
defining each point of the cross-section manually, which would be very
time-consuming. The only necessary data to define a cross-section are the
shape of the pipe (circular/rectangular), its dimensions (diameter for a cir-
cular conduit, height and width for a rectangular conduit) and the bottom
elevation of the conduit. After processing the data, the software produces
precomputed tables that give the correspondence between the water level in
the cross-section and the cross-sectional area, free-surface width, hydraulic
radius, conveyance, etc. Figure 10.12 illustrates the precomputed tables for
B, A and Conv as computed by the software for the node A. The point values
stored in the table are indicated by the crosses. The solid line connecting the
crosses indicates how B, A and Conv are interpolated linearly by the software
between the point values.

(1) The bottom of the Preissmann slot is clearly visible in Figure 10.12(a).
In order to avoid sharp transitions in the function B(z), the transition
between the lid of the conduit and the slot is progressive between z=49.4m
(the lid of the conduit) and z = 49.5m. Besides, the width of the slot
is automatically set by the software to 1% of the diameter of the con-
duit. For a conduit diameter D = 0.3m, the width of the slot is therefore
3 mm, which is much more than the theoretical 10−5 to 10−4 m that would
actually be needed to reproduce the propagation speed of the pressure
waves correctly. This overestimated value for the width of the Preissmann
slot is reflected by the curve A(z) in Figure 10.12(b), whereby it can be
clearly seen that the variations of A with z are not negligible even when
z rises above the lid. Note, however, that such an overestimation of the
width of Preissmann’s slot makes the numerical solution more stable by
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reducing the propagation speed of the waves c = (gA/B)1/2 compared to the
theoretical value.

(2) As indicated in Section 10.2.4, the conveyance curve is made artificially
monotone in order to avoid instabilities (see Section 10.4.3). The classical
numerical procedure consists of clipping the conveyance curve at the value
of the conveyance for a full conduit (note that, in a circular conduit, the
hydraulic radius for a full conduit is half the radius of the conduit):

Conv = min
[
KAR2/3,Kπr2

( r
2

)2/3
]

(10.38)

If equation (10.38) is applied, the conveyance becomes constant after the
full conduit value is reached. However, Figure 10.12(c) shows that the con-
veyance is an increasing function of the water depth h for h> 2r. A close
inspection of the numerical values shows that for h = 10m, the conveyance
is 150% of its value for a full conduit. Although it is very unlikely for the
specific hydraulic head to reach 10 m given the overestimated width of the
Preissmann slot, this shows that the variations in the conveyance with the
head in a saturated conduit are far from negligible.

The governing equations are discretized using a user-specified cell width
�x=1m and a time step�t=0.01 s. Although rather small, these numerical
parameters allow the propagation of the hydraulic transients through-
out the network to be captured accurately. The time-centring parameter
θ in Abbott–Ionescu’s scheme is set to 0.7, which is a good compro-
mise between solution accuracy and stability, given the strong oscilla-
tions that usually occur near wetting or drying fronts in free-surface-flow
simulations.

10.5.3 Simulation results

The simulation results are shown in Figures 10.13–10.15.
Figures 10.13(a) and (b) show the water-level profiles along the segments

[ABCDEF] and [ABCHG], respectively, at t=5min. Figures 10.13(c) and (d)
illustrate the propagation of the hydrograph in the segments [AC] and [DF].

An interesting feature of the computed solution is the return flow in the
conduit [GHC]. This return flow is due to the discharges coming from the
nodes A and I. The large discharges in the segments [ABC] and [GHC] cause
the water level to rise at the node C. As a consequence, the sign of the gradi-
ent in the free surface changes between nodes C and H (see Figure 10.13(b))
and a return flow appears. The appearance of a return flow in the simula-
tion results is confirmed by the inspection of the hydrograph at the node H
(see Figure 10.14).
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Figure 10.13 Simulated free-surface profiles at t = 5 minutes and computed hydrographs
along the segment [ABCDEF]
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Figure 10.15 Computed Froude number along the segment [ABCDEF] at t = 5min

Note that such features could not have been identified if the flow
equations had been solved using, for example, the kinematic wave approx-
imation, which allows neither for backwater effects, nor for changes in the
direction of the flow. Although some commercial packages propose the kine-
matic wave approximation as one of their standard solution schemes, it is
strongly advised never to use this approximation in the simulation of flows
in complex urban drainage systems with mild slopes or potentially strong
backwater effects such as that shown in the present example.

Another aspect of the simulation is illustrated in Figure 10.15, where the
simulated Froude number is plotted as a function of the longitudinal coor-
dinate along the segment [ABCDEF]. As in Figure 10.13(a), the profile is
drawn at t = 5min. This graph clearly illustrates two direct consequences
of the partial discretization of the momentum flux technique combined
with the RME approach (see Sections 10.4.2.2–10.4.2.4) on the computed
profiles.

(1) The flow is supercritical upstream of the junction node C and sub-
critical downstream of it. If the full Saint Venant equations were solved, a
hydraulic jump would be visible in the free-surface profile. However, the
RME approach being applied in the Mike 11 software for the computa-
tion of supercritical flow, the diffusive wave approximation is obtained for
the supercritical part of the profile, thus eliminating the possibility of a
hydraulic jump appearing in the computed profile.

(2) The Froude number becomes larger than unity in the downstream
part of the segment [EF]. Once again, if the full Saint Venant equations
were solved using the software, it should not be possible to prescribe the
water level at the node F because point F is a supercritical, outflowing
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boundary. However, because the computational code uses the RME
approach for supercritical flow, the diffusive wave approximation is applied,
thus allowing a downstream boundary condition to be prescribed (see
Section 7.2.3.2).
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Chapter 11

Modell ing of estuaries

11.1 Introduction

Practical applications of hydraulics require numerical and graphical results,
and if analytical expressions that describe phenomena of interest cannot
be derived from a mathematical model, it becomes necessary to obtain the
results by physical modelling or by purely numerical methods. This can
involve the solution of various types of mathematical problems, some of the
most important of which involve the solution of ordinary and partial dif-
ferential equations (see Chapters 2 and 3). In this chapter, the application
of hydraulic theories to problems arising in estuary management are dis-
cussed. Before delving into detailed mathematical models, this introductory
section describes some of the key features and characteristics of estuaries
that are later used to develop appropriate mathematical models. The discus-
sion focuses on a particular estuary but the issues raised are fairly generic
and serve to illustrate key points.

Figure 11.1 shows a photograph of the Exe estuary on the south coast of
the UK. Numerous features evident in the photograph are common to many
estuaries:

• the entrance is partially enclosed by spits and bounded by large offshore
sandbanks;

• it has a narrowing funnel shape;
• it covers a large surface area, (in the case of the Exe estuary ∼1,810 ha);
• there are extensive intertidal flats;
• there are large areas of salt marsh habitat;
• it has large ebb (Pole Sand) and flood (Bull Hill Bank) deltas;
• the estuary is shallow and characterized by a long meandering tidal

channel (in the case of the Exe estuary, 16.7 km in length);
• there is a sizeable freshwater source feeding the estuary;
• there is significant development along and around the estuary.

The mean spring tidal range at the mouth of the Exe estuary is ∼3.8 m
while the mean neap tidal range is ∼1.48 m, and the estuary is therefore
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Figure 11.1 Aerial photograph of the Exe estuary in Devon, UK, looking approximately
north–north-west. The village of Exmouth is at the mid-right-hand edge, the
village of Dawlish just out of view to the front left, the nature reserve Dawlish
Warren is at front centre and the city of Exeter towards the back and left.
The mainline railway track from London to Penzance runs through Exeter and
stations at Star Cross, Dawlish Warren and Dawlish (courtesy of Halcrow)

considered macrotidal (i.e. a tidal range in excess of 4 m). Tidal currents as
strong as 3.0 m/s have been reported immediately seaward of the mouth
of the estuary. The estuary is ebb dominant and the tidal currents are
concentrated at its narrow inlet between Dawlish Warren and Exmouth
beach (the terms ‘tidal range’ and ‘ebb dominant’ are explained in the next
section).

The Exe estuarine system is dominated by Atlantic swell waves from
the south-west, although the shallow water offshore attenuates incoming
waves. In addition, wave refraction takes place due to headlands, thereby
altering the wave approach angle at the mouth. Wave diffraction takes place
around the outer estuary banks and ebb shoal while the ebb tidal delta and
the Dawlish Warren spit limit wave penetration into the estuary. The terms
‘refraction’ and ‘diffraction’ are explained further in Chapter 12.

Marine-sediment input dominates the sediment influx into the Exe estuary
system, with both waves and tidal currents moving sediment in suspen-
sion and as bedload towards the entrance of the estuary. In a historical
context, the Exe estuary is an extremely dynamic system continuously
responding to changes in natural processes and human intervention. During
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the past 150 years, Dawlish Warren spit has been recorded as undergoing
sporadic cycles of erosion and accretion. The intertidal flats and sandbanks
have long been accreting due to wave-induced sediment transport along the
coast and sediment supply from the river Exe.

The evolution of the Exe estuary has been significantly influenced by
anthropogenic changes. Human interventions on the estuary include: recla-
mation of intertidal areas, dredging to maintain channel navigability, con-
struction of the south-west railway line, construction of coastal defences
along the Dawlish Warren and Exmouth frontages, light industrial develop-
ment, fishing and recreational activities. The majority of land reclamation
took place between the 18th and 19th centuries, largely through impound-
ing salt marshes on the west bank of the estuary. This has reduced the
tidal prism (the volume of water entering the estuary from low tide to
high tide), with a resultant effect on the hydrodynamics, sediment-transport
and pollutant-dispersion characteristics (SCOPAC (2003)). The approach
channel to Exmouth docks accretes, and regular dredging is undertaken
to maintain the navigability of the channel. The navigation channel is cur-
rently dredged to a depth of about −12 m CD. The width of the channel is
maintained so as to be between 100 m and 200 m (SCOPAC (2003)).

Construction of the embankment for the south-west railway line between
Exeter and Penzance took place in 1849. The embankment and associ-
ated groynes constrict the shoreline and interrupt littoral transport along
Dawlish Warren. A significant portion of the beach frontage at Dawlish
Warren and Exmouth is protected by coastal defence structures. This
includes the flood and erosion defence scheme at Dawlish Warren and
Exmouth beach, which comprises a combination of sea walls, revetments,
groynes and dune creation works (see Figure 11.2).

Figure 11.2 (Left) View from Dawlish Warren towards Dawlish showing timber groynes
and concrete seawall; (Right) Erosion of sand dunes exposing a rock gabion
underlayer at Dawlish Warren
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The example of the Exe estuary illustrates some of the complexity that
needs to be considered when modelling such a situation. The hydrodynam-
ics alone are complicated due to the combined influence of tides, waves and
river flow, as well as the potential for salinity gradients, temperature gra-
dients and stratified flow phenomena. The hydrodynamics driven by these
factors will determine the nature of the dispersion and/or accumulation of
pollutants entering the estuary from run-off, light industrial activity and
waste-water disposal. Introducing considerations of sediment transport and
morphological change compounds this complexity because of the feedback
between the morphology of the estuary, the tidal hydrodynamics and the
waves. The tides and waves may cause the spits and bars to migrate or
change, but in turn a new configuration of banks and bars may alter the
tidal flows and wave propagation. For those attempting to manage the estu-
arial area in terms of its sustainable development there are even further
considerations to take into account, such as fishing, trade, travel, tourism
and the terrestrial and marine environments.

It is easy to feel overcome by the complexity of trying to model the work-
ings of an estuary, but in the next few sections some ways of simplifying
the problem are described. Many of these simpler models provide a means
of understanding important elements of the natural dynamics of estuaries
and yield invaluable knowledge to inform effective estuary management
practices.

11.2 Hydrodynamic equations

11.2.1 Basic equations

In this section the general equations of motion (see Chapter 4) are reviewed
together with the equations for the temperature and salinity fields. The
scale of medium-to-large estuaries is such that effects arising from the rota-
tion of the earth become important. Other important factors in estuary
circulation are tidal motion, and wind-driven and bathymetrically driven
circulations. Tidal motions are regular and predictable, while wind-driven
circulations are ephemeral and episodic. Bathymetrically driven flows arise
from the physical constraints of the estuary bottom, and change only as the
morphology of the estuary changes.

From Chapter 4 (equation (4.7a)) we recall that the equation describing
the balance of momentum in the x-direction may be written as

du
dt

= X − 1
ρ

∂p
∂x

+ ν∇2u

where u is the component of velocity in the x-direction, X the body force,
p the pressure, ρ the fluid density and ν the kinematic viscosity. Similar
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equations apply for the y- and z-directions. By denoting x by x1, y by x2, and
z by x3 (and similarly for the components of velocity), the three equations
of motion may be written compactly as

dui

dt
= Xi − 1

ρ

∂p
∂xi

+ ν∇2ui (11.1)

for i = 1, 2, 3, corresponding to the x-, y- and z-directions, respec-
tively. Similarly, the equation of continuity can be written as (see also
equation (4.1a)):

1
ρ

dρ
dt

+ ∂ui

∂xi
= 0 (11.2)

with the repeated index i denoting summation. Or, for an incompressible
fluid,

∂ui

∂xi
= 0 (11.3)

The velocity components are understood to be measured relative to a rotat-
ing earth, so that the body forces include centrifugal and Coriolis forces
associated with the earth’s rotation. The former is absorbed into the gravity
force, as is customary, so that the body force is given by⎛⎝ X1

X2

X3

⎞⎠=
⎛⎝ 2�3u2 − 2�2u3

2�1u3 − 2�3u1

2�2u1 − 2�1u2 − g

⎞⎠≈
⎛⎝ 2�3u2

−2�3u1

−g

⎞⎠ (11.4)

where �i are the components of the earth’s angular velocity in a local-
coordinate system (see Figure 11.3). The magnitude of the earth’s angular
velocity is 2π radians in 24 h or �= 0.7292 × 10−4/s. The vertical compo-
nent of the angular velocity at a latitude θ is � sin (θ ). From a consideration
of the scale of motions we are concerned with in estuaries it is clear that
|u3|� |u1|, |u2|; hence the approximation of the first two components of the
body force in equation (11.4).

For many classes of motion the momentum balance can be simplified in
the vertical, as it is dominated by the gravitational force. The gravitational
acceleration is close to 10 m/s2. Typical horizontal velocities in nearshore
and estuarine waters are of the order of 1 m/s, so that the Coriolis acceler-
ations are of the order of 10−4 m/s2. The viscous stress term is of the order
of 10−5 m/s2. Vertical accelerations can be comparable to g in surface-wave
orbital motions, but in estuarine-scale flows the vertical velocities are more
typically of the order of 10−2 m/s and time scales of the order of 103 s, giving
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Figure 11.3 Local horizontal (x1, x2) and vertical (x3) coordinate system at latitude θ , and
components of the earth’s angular velocity. x1 is directed into the page at the
point of intersection of the x2- and x3-axes

vertical accelerations of the order of 10−5 m/s2. From these considerations,
the estuarine-scale flows are quasihorizontal and the gravitational force is
in approximate balance with the vertical pressure gradient:

∂p
∂x3

=−ρg (11.5)

This balance is identical to that in a fluid at rest, and its applica-
tion to moving fluids is termed the ‘hydrostatic approximation’. Whether
the hydrostatic approximation is made or not, the gravitational force is
many orders of magnitude greater than the vertical component of the
Coriolis forces; hence the approximation in the vertical component of
equation (11.4).

The hydrostatic equilibrium position of the free surface is taken as x3 =0.
In a moving fluid, the free surface will be displaced slightly upward or
downward to a position η(x1,x2, t). Integrating equation (11.5) from the
flat seabed (taken as x3 =−h) to the free surface yields

p = pa +
η∫

−h

ρgdx3 (11.6)

where pa is atmospheric pressure. Substituting this expression into the
equation for the horizontal pressure gradients gives (for i = 1, 2)

∂p
∂xi

= ∂pa

∂xi
+ ρsg

∂η

∂xi
+

η∫
−h

g
∂ρ

∂xi
dx3 (11.7)
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where ρs is the density at the sea surface. Equation (11.7) shows that the
horizontal pressure gradients in the water column arise from gradients in
the atmospheric pressure, gradients in the sea-surface elevation and interior
horizontal density gradients. For a fluid with constant density, the last term
is, of course, zero. Furthermore, for many applications the atmospheric-
pressure gradients are a second-order term, so that the first term is also
often neglected in analytical treatments.

In shallow coastal seas the density is primarily a function of temperature
T and salinity S. Equations governing the evolution of both these quantities
can be derived from concepts of continuity, and take the following form:

∂T
∂t

+ ∂

∂xi
(uiT)=− ∂

∂xi

(
qi

ρcp

)
(11.8)

∂S
∂t

+ ∂

∂xi
(uiS)=− ∂

∂xi

(
si

ρ

)
(11.9)

where cp is specific heat, qi are heat-flux components (Js−1m−2), and si are
salt-flux components (kgs−1m−2). In many cases the terms on the right-hand
sides of equations (11.8) and (11.9) are negligible, and the equations reduce
to a statement that temperature and salinity are conserved following the
motion; hence also density is conserved following the motion. Clearly, such
an approximation is not valid when considering large seasonal heating or
freshwater surface run-off.

An important driver of fluid motion in the sea is the boundary stress. At
the surface, this may be stress due to the wind blowing over the sea surface.
The wind stress (at the surface) is exerted along the direction of the surface
wind and is usually described by a quadratic drag law of the form

τi3 = ρaC10WiW (11.10)

where W is wind speed, Wi is the component of wind velocity along xi,
ρa and ρw are the densities of air and water, and C10 is a drag coefficient
related to the wind speed at a height of 10 m above the undisturbed sea
level. The drag coefficient is determined empirically, and Amorocho and
DeVries (1980) suggest

C10 =
{

1.6 × 10−3 W ≤ 7ms−1

2.5 × 10−3 W ≥ 10ms−1 (11.11)

Similarly, bottom stresses are also represented by a quadratic law that
applies at the seabed, with

τi3 = ρwCDuiu (11.12)
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where CD is a drag coefficient, often taken to be 2 × 10−3. As ρa/ρw ≈
10−3, wind stress in hurricane-force winds is approximately equivalent to
a bottom stress induced by currents of the order of 1 m/s.

Stresses applied at the boundaries of a fluid are rarely distributed uni-
formly over the entire water body. The physical mechanisms for prevent-
ing this are stratification and the earth’s rotation. The process whereby
the distribution occurs is through turbulence and, in particular, the ver-
tical transfer of horizontal momentum through the ‘Reynolds stresses’
that act within the interior of the fluid (see Section 4.3.3). A common
parameterization of the turbulent stresses is to relate the stresses to the
velocities:

τi3 = ρKV
∂ui

∂x3
(11.13)

where KV is an eddy viscosity (see also equation (4.35)). Similar rela-
tions are used for the stresses in the other directions with horizontal eddy
diffusivity KH.

At this point it is convenient to drop the suffix notation and use (x, y, z)
coordinates, with the z-axis vertically up, and velocity components (u, v, w).
Combining equations (11.10), (11.3)–(11.5) and (11.7) (neglecting atmo-
spheric pressure and density gradients), and neglecting viscosity but includ-
ing an eddy viscosity to account for turbulent stresses as in equation (11.13),
we have

∂u
∂t

+ u
∂u
∂x

+ v
∂u
∂y

− fv =−g
∂η

∂x
+ ∂

∂z

(
KH

∂u
∂z

)
(11.14a)

∂v
∂t

+ u
∂v
∂x

+ v
∂v
∂y

+ fu =−g
∂η

∂y
+ ∂

∂z

(
KH

∂v
∂z

)
(11.14b)

∂p
∂z

=−ρg (11.15)

∂u
∂x

+ ∂v
∂y

+ ∂w
∂z

= 0 (11.16)

where f = 2� sin (θ ) and is often termed the ‘Coriolis parameter’ in mete-
orological and oceanographic literature. These equations are supplemented
by boundary conditions at the surface and seabed:

ws = ∂η

∂t
+ u

∂η

∂x
+ v

∂η

∂y
(11.17)

wb =−u
∂H
∂x

− v
∂H
∂y

(11.18)
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where H is the total water depth. The first is a statement that water par-
ticles do not leave the surface, and the second that water particles do not
pass through the seabed. Additional boundary conditions at the free sur-
face and at the bottom can be used through the inclusion of the wind-stress
and bottom-stress terms in the momentum equations (11.14a) and (11.14b).
Equations (11.14)–(11.18) adequately represent the dynamics of fluid flow
in a well-mixed shallow sea, and are termed the ‘shallow-water equations’
(see Sections 2.12 and 4.6.2).

For many applications it is convenient to integrate vertically between the
seabed and the free surface. The depth-averaged equations retain the same
form, except that:

(1) the non-linear advective terms are multiplied by factors that depend on
the assumed vertical structure of u and v, but are often taken as unity
for simplicity;

(2) the eddy-viscosity terms are replaced by terms involving the surface and
bed stress (see equations (11.10), (11.12) and (11.13)). Thus, for the
x-component of momentum the eddy-viscosity term is replaced by a
term (τsx − τbx)/ρH, where the subscripts s and b refer to the stresses at
the surface due to wind and at the bottom, respectively;

(3) the boundary conditions (11.17) and (11.18) may be used to yield the
depth-averaged continuity equation:

H
∂η

∂t
+ ∂

∂x
(HU)+ ∂

∂y
(HV) = 0 (11.19)

where capital letters denote depth-averaged velocities; thus, U and V are
the depth-averaged components of velocity in the x- and y-directions,
respectively. The depth-averaged momentum equations may be com-
bined into a single equation for the vertical component of vorticity ζ

(see Section 4.2.4):

∂ζ

∂t
+ U

∂ζ

∂x
+ V

∂ζ

∂y
+ vβ + (ζ + f )

(
∂U
∂x

+ ∂V
∂y

)
=

1
ρ

(
∂

∂x

(
τsy − τby

H

)
− ∂

∂y

(
τsx − τbx

H

))
(11.20)

where β = df/dy.

In situations where the flow velocities and gradients are small, the non-
linear (advective) terms in equations (11.14)–(11.20) may be neglected,
leading to the linearized form of the equations. These will be discussed
further in the following sections.



Modelling of estuaries 427

11.2.2 Some elementary conceptual models

11.2.2.1 Geostrophic balance

Consider the very simplified situation when wind stress and bottom stress
are negligible, the water is homogeneous (constant density), the motion is
steady (all time derivatives vanish) and non-linear terms are neglected. The
momentum and continuity equations reduce to

− fV =−gH
∂η

∂x

fU =−gH
∂η

∂y

∂U
∂x

+ ∂V
∂y

= 0 (11.21)

This is known as ‘geostrophic balance’. The Coriolis force is balanced
by the pressure gradient, the flow is along contours of constant depth
(termed ‘isobaths’) and the sea level varies in the cross-isobath direction
only. The ‘topography’ of the seabed is normally termed the ‘bathymetry’.
As geostrophic balance predicts zero flow across isobaths it satisfies the
coastal constraint (i.e. at the coast there is zero flow across the boundary)
and hence, this can be considered an elementary coastal flow model.

11.2.2.2 Inertial oscillations

Now, far away from any boundaries we may postulate that η≈ 0. Suppose
also that there are zero stresses and that any motion is a remnant of earlier
forcing. The equations then become

∂U
∂t

− fV = 0

∂V
∂t

+ fU = 0 (11.22)

∂U
∂x

+ ∂V
∂y

= 0

These have solution U = U0 cos (ft), V =−U0 sin (ft), where U0 = constant
and the coordinates have been chosen so that V = 0 at t = 0. This motion
is periodic with period 2π/f , which is the half-pendulum day or ∼17 h at
midlatitudes. The entire water mass oscillates in phase, the particle paths
being circles of radius U0/f . This type of motion is known as an ‘iner-
tial oscillation’. It is not consistent with the presence of a coast however;
the balance expressed in equation (11.21) is between the local acceleration
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and the Coriolis force. The first unambiguous observation of this type of
motion in the ocean was presented by Gustafson and Kullenburg (1936)
from observations recorded in the Baltic Sea.

11.2.2.3 Ekman drift

Suppose η≈ 0 and that there are no nearby boundaries. Let the motion be
forced by a wind stress τsy applied along the y-axis, and further suppose the
motion is steady. Bottom stress, density variations and non-linear terms are
neglected. Thus,

− fV = 0

fU = τsy

ρ
(11.23)

∂U
∂x

+ ∂V
∂y

= 0

The solution of these is U = constant and V =0. This corresponds to flow
in a direction to the right of the wind (in the northern hemisphere, where f
is positive). This unexpected result is known as ‘Ekman transport’, after the
scientist who discovered it (Ekman (1905)). In fact, Ekman considered the
vertical structure of the wind-driven flow. The full beauty of the solution is
appreciated using the non-depth-averaged equations:

− fv = KH
∂2u
∂z2

fu = KH
∂2v
∂z2

Appropriate boundary conditions are:

KH
du
dz

= 0 z = 0

KH
dv
dz

= u2
∗ z = 0

du
dz

= dv
dz

= 0 z → ∞

corresponding to: zero wind stress in the x-direction; a wind stress in the
y-direction that obeys a quadratic drag law, where u∗ is the scaled surface
current (= C10

0.5W); and vertical velocity gradients that vanish in the limit
of large depth.
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These equations have the solution:

u =± u2
∗

fD
ez/D

(
cos

( z
D

)
− sin

( z
D

))
=±u2

∗
√

2
fD

ez/D cos
(π

4
+ z

D

)
v = u2

∗
fD

ez/D
(
cos

( z
D

)
+ sin

( z
D

))
= u2

∗
√

2
fD

ez/D sin
(π

4
+ z

D

)
(11.24)

where D = √
(2KH/f ) is known as the ‘Ekman depth’. The solution is

illustrated in Figure 11.4. At the surface the solution reduces to flow
at 45◦ to the right (left) of the wind direction in the northern (south-
ern) hemisphere. Below the surface the current speed decreases while
the direction changes clockwise (anticlockwise) in the northern (south-
ern) hemisphere. The negative solution for u applies in the southern
hemisphere.

45°

Figure 11.4 Diagram of the horizontal velocity vector for the Ekman spiral. The block
arrow shows the direction of the wind and the thin arrows show the water
flow at different depths through the water column
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11.2.2.4 Wind set-up

Wind stress is a significant driver of coastal ocean circulations. One well-
known result of this is known as ‘wind set-up’. This is essentially a balance
between the wind stress and the pressure gradient force. At the coast, wind
set-up is a well-known phenomenon for which there are empirical prediction
formulae. In fact, on the open coast wind set-up is a minor contributor, as
a process known as ‘wave set-up’ is usually dominant (see Chapter 12). It is
a similar process in that waves create a ‘radiation stress’ that is balanced
by a gradient in surface elevation. Here we use a simplified form of the
equations to illustrate the physics of wind set-up.

Consider a closed sea of constant depth H and let a constant wind stress
τsy = ρaC10V2 act along the y-direction. Assuming that the bed stress and
non-linear terms are negligible and that the velocity at the coast is zero, the
depth-averaged equations become

0 =−gH
∂η

∂x

0 =−gH
∂η

∂y
+ τsy

ρ
(11.25)

∂η

∂x
= 0

These equations have the solution

η= τsy

ρgH
y

This describes a steady-state balance between wind stress and the horizontal
pressure gradient. For open coasts, wind set-up is usually of the order of
centimetres. However, in confined basins, where a storm-force wind blows
over a long, narrow, deep (say 30 m) fetch for a reasonable duration, there is
limited scope for water to recirculate by flowing along the coast, and wind
set-up can be significant (a few metres).

Various extensions of this argument are possible. For example, by includ-
ing the time derivatives, Coriolis and viscosity terms, it is possible to derive
solutions for the time evolution of the set-up and its vertical structure. Also,
by defining the particular shape of the basin, specific solutions are possible
(see Csanady (1973), (1974), Csanady and Scott (1974)).

11.2.2.5 Western boundary current

Models of the currents on an ocean-basin scale (thousands of kilometres)
were developed in the 1940s. Perhaps the best known of these was the
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simple model due to Stommel (1948). It had been thought that the ocean
currents were primarily driven by convection. However, Stommel demon-
strated that wind-driven circulations had a number of characteristics that
matched the observations, in particular, the tendency for the circulation to
be concentrated on the western boundary. Stommel’s model was a linear
steady-state model driven by wind stress, in which the horizontal flow was
incompressible (i.e. the divergence is zero) and the ocean was of a fixed
depth H. In this case, the governing equations can be reduced to a single
equation for the vorticity (from equation (11.20)):

vβ = 1
ρ

(
∂

∂x

(
τsy − τby

H

)
− ∂

∂y

(
τsx − τbx

H

))
(11.26)

The ocean is confined to the region 0 ≤ x ≤ L, 0 ≤ y ≤ L, and
τ = τ0 cos (πy/L)I, which corresponds to westerly wind in the top half of
the domain and a return easterly wind in the bottom half. With these sim-
plifications we can write the vorticity in terms of a stream function (see
Chapter 4), and the vorticity equation (11.26) becomes

β
∂ψ

∂x
+ K∇2ψ =− τ0π

ρHL
sin
(πy

L

)
(11.27)

where K = constant, depending on the formulation of the bottom stress.
With the boundary conditions on the stream function being

ψ = 0
{

x = 0,L; 0 ≤ y ≤ L
y = 0,L; 0 ≤ x ≤ L

equation (11.27) can be solved to yield

ψ = τ0L
ρ0πKH

{
1 − e−ax

{
(e−2rL − e(a−r)L)erx + (e(a−r)L − 1)e−rx

}
e−2rL − 1

}
sin
(πy

L

)
where a = β/(2K) and r = (a2 + (π/L)2)0.5. This circulation is highly asym-
metric, with a strong jet from south to north along the western boundary
and a weak flow southwards in the rest of the domain. If the change in
the Coriolis parameter with latitude is omitted (β = 0), then the resulting
solution is symmetrical about the east–west and north–south axes, without
any jet on the western boundary. Figure 11.5 illustrates the shape of the
streamlines in both cases.

This simple model demonstrates both the importance of the change in
the Coriolis force with latitude on the ocean-scale dynamics and also the
wind in driving the ocean circulation. Further refinements of this model
by Munk (1950), who included an additional diffusion term but neglected
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Wind
stress (a) (b)

Figure 11.5 Illustrative diagram of the stream-function solution in Stommel’s model for (a)
β = 0, (b) β = 10−11 m/s

bottom friction, and Bryan (1963) and Veronis (1966), who retained the
time-derivative terms, led to a better understanding of ocean circulation
and the Gulf Stream’s fluctuating behaviour. This has since been further
improved by detailed numerical modelling of the ocean.

11.2.2.6 Kelvin wave

Kelvin waves are gravity waves that are distorted by the earth’s rotation.
They are an important form of wave for coasts and estuaries. Both the tides
and surges that affect the coast are Kelvin-type waves, although they are
caused by different forces. For the moment we consider here the simplest
‘free’ Kelvin wave (i.e. the means of wave generation is not included). We
consider the linearized equations of depth-averaged flow, including the Cori-
olis terms but excluding external and internal stress terms. Furthermore,
we consider a sea of constant undisturbed depth. The governing equations
become:

∂U
∂t

− fV =−gH
∂η

∂x
∂V
∂t

+ fU =−gH
∂η

∂y
(11.28)

∂η

∂t
+ H

∂U
∂x

+ H
∂V
∂y

= 0

Equations (11.28) are known as the Laplace tidal equations. Solutions are
sought that have a harmonic time dependence, that is, U = eiωtU′ (x, y) and
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similarly for V and η, where ω is the wave frequency. Substituting these
expressions into equation (11.28) yields solutions of U′ and V ′ in terms of
η′, and an equation for η′:(

∇2 + ω2 − f 2

gH

)
η′ = 0 (11.29)

This is known as the Helmholtz wave equation, the solutions of which
depend on the boundary conditions. For a Kelvin wave (named after Lord
Kelvin as it was he who first cast the Laplace tidal equations in the form of
equation (11.28) and found the following solution), we seek solutions for
which there is no flow perpendicular to the coast. Taking the coast to run
north–south, then U=0. With this condition, equations (11.28) and (11.29)
lead to the Kelvin wave solution:

η1 = A1e−fx/
√

gH cos

(
ωy√
gH

+ωt

)
(11.30)

where the coast is at x = 0 and A1 is the amplitude of the wave at the coast.
If there is another coast at x = L, then the solution is

η2 = A2e−f (x−L)/
√

gH cos

(
ωt − ωy√

gH

)
(11.31)

The superposition of these two solutions describes a Kelvin wave in an
estuary or canal. Figure 11.6 shows the shape and structure of a Kelvin
wave. In an estuary or shallow basin, Kelvin waves propagate up and
down in a manner similar to waves in a bathtub, although the wavelength
of coastal Kelvin waves is very large, typically hundreds or thousands of
kilometres. In the northern (southern) hemisphere they propagate around
basins with the coast on the right (left), with the highest amplitudes at
the coast.

When marked on a chart, the lines of constant amplitude and phase of
the Kelvin wave are termed ‘corange’ and ‘cophase’ lines. Figure 11.7 shows
such a chart for a Kelvin-type wave associated with the tides in the North
Sea. This is the chart for the M2 tidal constituent.

The corange and cophase lines show that the largest amplitudes of
the tide wave appear close to the coast and that the wave progresses
in an anticlockwise manner around the southern North Sea basin. Also
evident are spoke- or wheel-type structures in the cophase lines. These indi-
cate amphidromes – locations at which the amplitude is zero and about
which the wave propagates in an almost circular path. In fact, Figure 11.7
shows the result of a complex wave-interference pattern induced by the
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Cotidal
lines

Corange
lines

Figure 11.6 Illustration of a Kelvin wave propagating along a straight coast in the northern
hemisphere

shape of the land masses and the varying water depth due to the com-
plicated bathymetry of the North Sea. If the pattern were animated it
would show a wave crest starting to the north of Scotland and propa-
gating southward, with its largest amplitude along the east coast of the
UK. When it reaches the Norfolk coast, part of the wave crest would
refract southward toward the Channel and back up along the French,
Belgian and Dutch coasts – setting up a standing wave with a node at
the amphidromic point in the southern North Sea. A small part of the
energy of this branch of the wave would penetrate through the Chan-
nel and interact with tidal waves propagating northward along the French
coast and then westward along the UK south coast. Meanwhile, the other
portion of the wave that was not refracted southward at Norfolk makes
its way across the Dutch coast and then up to Denmark, where a second
amphidromic point forms. A tertiary amphidromic point is evident off the
Norwegian coast. Cophase and corange charts for various tidal constituents
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Figure 11.7 Tidal chart of the M2 tidal constituent in the North Sea. Solid lines: corange
lines(centimetres). Dashed lines: cotide lines (degrees relative to zero)

are published by specialist national hydrographic and oceanographic offices
(e.g. Howarth (1990)).

Tides and surges are similar wave-like phenomena. However, tides are
caused by gravitational forces due to the earth, moon and sun and are
predictable to a high degree of accuracy, whereas surges are driven by
the weather and are much less predictable. Storm surges are due to a
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combination of sea-surface pressure changes, wind stress and wave set-up
close to the shore where the waves break. Tidal constituents are now
explained briefly, but for details the interested reader is referred to specialist
texts on tides (e.g. Cartwright (1999), Defant (1961), Godin (1972)).

The tides arise primarily as a result of the gravitational attraction between
the earth, moon and sun. The rotation of the earth about its axis leads
to additional characteristics of the tides we measure. The tide-generating
force may be defined as the attractive force that does not affect the motion
of the earth as a whole. Consider first the earth–moon interactions. The
tide-generating forces arise because the resultant attractive force is not uni-
form over the surface of the earth. If the earth and moon are considered
as point masses, then it can be shown that they will rotate about their
common centre of gravity with the outward centrifugal force balanced by
the gravitational attraction. However, on an object with finite dimensions
(such as the earth) this balance is only achieved at the earth’s centre of
mass, E. At a point P on the zenith of the earth’s surface, (i.e. where the
line joining the centres of mass of the moon and the earth intersects the
earth’s surface), the gravitational attraction is greater than at the centre of
the earth because P is closer to the moon than is E (see Figure 11.8). Con-
versely, at the point N on the nadir of the earth’s surface, the gravitational
attraction is less than at the centre of the earth. The centrifugal force is the
same at each point on the earth because they all describe circles of identical

P

E
N

Z
θ

Figure 11.8 Illustration of the tide-generating force arising as the result of gravitational
attraction and centrifugal forces. The moon is to the left of the earth (shown).
The centre of the earth is E, Z and N are the zenith and nadir, and P is a point
on the surface at latitude θ . The full lines represent the gravitational attraction
due to the moon and the dashed arrows are the centrifugal force
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radius as the earth rotates about the common centre of gravity of the moon
and earth.

The resultant tide-generating force is such that at P the gravitational force
exceeds the centrifugal force, so there is a net force towards the moon, while
at point N the centrifugal force exceeds the gravitational force and the net
force is away from the moon. Thus, the tide-generating force gives rise to
‘bulges’ (or high tides) in the water surface in regions around the zenith and
nadir, and depressions (low water) at the poles. Imagining Figure 11.8 in
three dimensions, there are also depressions in the surface above and below
the page. That is, the fluid on the earth will tend to adopt the shape of a
rugby ball, rather than a (spherical) football, a shape that is described as a
prolate spheroid.

The rotation of the earth about its axis means that the tide-generating
force applied to a fixed point on the earth’s surface varies throughout
the day. So, following point P we start off with a maximum (high tide),
rotate out of the page to a minimum (low tide), continue to where point
N started (high tide again), continue into the page to a minimum and
eventually return to our starting point at P (high tide). We would thus
expect to experience two high and two low tides per day. This is, by
and large, what is observed. There are, however, important influences on
the progression of the tide ‘wave’, such as continents, varying depth of
bathymetry, and frictional and inertial effects. These act to modify the
shape, phase and period of the tidal variation at any point on the earth’s
surface.

Another complication is that the axis about which the earth spins is not
normal to the plane in which the moon orbits the earth. This angle is known
as the declination. An observer on the earth’s surface at latitude θ will be
moved relative to the prolate spheroid, and will observe the height of the
free surface to be given by

η= re

2

(
M
m

)( re

r

)3
[
(3 sin2

θ sin2
δ− 1) + 3

2
sin 2θ sin 2δ cos λ

+ 3 cos2 θ cos2 δ cos2 λ+ · · ·
]

(11.32)

where δ is the declination, λ is the earth’s angular displacement (0 → 360◦

in 24 h), θ is the latitude, re is the radius of the earth, M is the mass
of the moon, m is the mass of the earth and r is the distance between
the centres of mass of the earth and moon. The expression for η(θ )
(equation (11.32)) may be rewritten in terms of cos (nλ) using standard
trigonometrical relationships:

ηm = K0 + K1 cos λ+ K2 cos 2λ+ · · · (11.33)
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In this form it is clear that the tidal water-level changes may be considered
as the superposition of tidal harmonics that have distinct groups of periods
related to the day length. In equation (11.33) K0 corresponds to long-period
tides, which are generated by the monthly variations in the lunar declina-
tion δ, the K1 term corresponds to diurnal tides, with frequencies close to
one cycle per day, and the K2 term corresponds to semi-diurnal tides with
frequencies close to two cycles per day. The frequencies in each tide group
are termed ‘tidal constituents’ or ‘tidal harmonics’.

A similar analysis applies to the earth–sun system. However, although the
mass of the sun is many times that of the moon, the moon is much closer
to the earth than the sun. By virtue of the force of gravitational attraction
being proportional to the inverse square of the distance between the two
masses, the tide-generating force of the moon is approximately twice that
of the sun. The equilibrium tide due to the sun may be represented in an
analogous form to equation (11.33), but having somewhat different periods.
Table 11.1 summarizes the four main tidal constituents.

The diurnal constituents arise from the declination in the moon’s orbit
about the earth O1 and the corresponding solar declination K1. Returning
to equations (11.28), we see these are linear, and so the combined tide can be
found by superposition of the solutions for the different tidal constituents.
In reality, there are continents, the undisturbed water depth is not constant,
and there are frictional and non-linear effects to be considered. It turns out
that these are most important in shallow waters, where there may be con-
siderable interaction between the tide waves of different frequencies. These
interactions give rise to higher harmonics of the main tidal constituents, as
well as to frequencies arising from the sum of and differences between cou-
ples of frequencies. For example, the M4 tidal constituent arises from the
non-linear advective term, and has a period of 6.21 h.

This simplified account of tidal theory is sometimes termed the ‘equilib-
rium theory’ of tides. In this theory it is assumed that:

(1) water covers the whole earth, initially at a constant depth;
(2) water has no inertia (i.e. responds instantaneously);
(3) water is in equilibrium so that the water surface is normal to the

imposed force.

Table 11.1 The main tidal harmonics.

Symbol Period (hours) Description

Semidiurnal tides M2 12.42 Main lunar constituent
S2 12.00 Main solar constituent

Diurnal tides K1 23.93 Soli-lunar constituent
O1 25.82 Main lunar constituent
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The dynamic theory of tides requires the numerical solution of the non-
linear shallow-water equations (the non-linear version of equation (11.28)).
Such computations have been performed using fairly realistic continental
shapes and bathymetry (e.g. Accad and Pekeris (1978)) by using the tide-
generating force to drive the equations of motion.

The same equations can be used to forecast surge waves, only in this case
the generating mechanism is surface winds and pressure gradients. These
have to be specified through wind-stress and pressure-gradient terms. This
is normally done by using forecast wind and pressure fields from a mete-
orological model (e.g. Flather (1984), (1987)). Further discussion of tidal
analysis and surge modelling from an engineering perspective can be found
in Reeve et al. (2004).

Tides and surges provide the major forcing mechanisms for water-level
oscillations in estuaries. The bathymetry of an estuary (its depth and cross-
sectional shape) have a profound effect on the propagation of Kelvin-type
waves in estuaries, governing the tidal range (and navigability for port
operations) and the magnitude of surge waves (and flood risk).

11.3 One-dimensional modelling of estuaries

The approach and methods used in mathematical modelling of open-
channel systems have been dealt with in some detail in Chapter 7. In the
following section an introduction to the issues relevant to tidally forced
flows in estuaries is described.

The simplest treatment of estuary hydrodynamics considers an estuary
to be of fixed cross-sectional geometry. The starting point is the non-linear
shallow-water equations:

∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y

− fV =−g
∂η

∂x
+ ∂

∂z

(
KH

∂U
∂z

)
∂V
∂t

+ U
∂V
∂x

+ V
∂V
∂y

+ fU =−g
∂η

∂y
+ ∂

∂z

(
KH

∂V
∂z

)
(11.34)

H
∂η

∂t
+ ∂

∂x
(UH) + ∂

∂y
(VH) = 0

The first two of these are the depth-integrated versions of equa-
tions (11.14a) and (11.14b) and the last is simply the same as equa-
tion (11.19). Let the x-axis be aligned along the length of the estuary
and assume that transverse velocities may be neglected (i.e. V = 0). Then,
integrating across the breadth of the estuary yields

∂U
∂t

+ U
∂U
∂x

=−g
∂η

∂x
+ τsx − τbx

H
(11.35)
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A

B

Figure 11.9 Idealized estuary and definitions

BH
∂η

∂t
+ ∂

∂x
(BUA) = 0 (11.36)

where B and A are the breadth and cross-sectional area of the estuary,
respectively, see Figure 11.9.

In analytical models it is customary to neglect the non-linear advective
term in equation (11.35) and to replace the stress term with a simple lin-
ear friction term UF, where F is a constant coefficient. Equations (11.35)
and (11.36) then support wave-like solutions with wave speed c = √

(gH)
(see also equation (4.90)). In confined areas such as estuaries or bays, waves
may be reflected from boundaries and interfere with the incoming waves.
In this case a phenomenon known as a ‘standing waves’ occurs. This is a
wave pattern in which the superposition of the incoming and reflected wave
leads to a wave surface that has twice the amplitude of the incoming wave.
The reason for these standing waves is that progressive waves propagating
along an estuary are reflected at the upper end and interfere constructively
with the unreflected waves if the wave speed and the length of the estu-
ary are such that the time taken for a wave to travel from one end to the
other and back is a whole number of wave periods. If the length of the
estuary is L, then this time is 2L/c = nT, where n is a positive integer and
T is the period of oscillation. For the simplest case n = 1, L is one-half
of the wavelength and the oscillation is termed a ‘half-wave oscillation’.
This type of wave can occur in closed basins and lakes, where it is known
as a ‘seiche’. In estuaries, there is one open boundary (the sea) and one
closed boundary (upstream). In this situation it is possible to get resonant
behaviour with an estuary length equal to one-quarter of a wavelength –
i.e. a ‘quarter-wave oscillator’, with a natural period of oscillation equal
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Figure 11.10 Quarter-wave (left) and half-wave (right) oscillations in an open- and closed-
water body, respectively

to 4L/c. Figure 11.10 illustrates these types of oscillation. It is important
to note that the largest range in water levels occurs at the upper end of
the estuary (or at the shoreline in a closed basin). In other words, there
is an amplification of the tidal range. It is worth noting that the equilib-
rium theory of tides suggests a tidal range of about 0.8 m. This figure is
increased when the dynamic theory is used, and on open coasts can be as
much as 5 m.

Seiches are not always caused by tidal oscillations. Long-period swell
waves (see Chapter 12) and some meteorologically induced oscillations can
also be close enough to the resonant frequency to trigger seiches.

However, 0.8 m is small in comparison with the tidal ranges in some estu-
aries, which are close to satisfying the resonance condition. Perhaps the
best known example is the Bay of Fundy in eastern Canada. This bay is
relatively shallow (∼ 100 m) and its length (∼ 300 km) is quite close to the
length for resonance for semi-diurnal tidal constituents. The tidal range is
about 5 m at the mouth of this estuary, but a staggering 15 m near the head.
This is clearly not the factor-of-two amplification that might be expected
from the simple argument above. Indeed, friction, narrowing and shoaling
of the estuary and non-linear effects all combine to modify the wave as it
propagates in the estuary. A number of these complications are discussed
in detail by Prandle (2009) and in the references therein. Nevertheless,
it remains quite surprising how well the simple linear analysis works in
reality.

This section concludes with a short discussion of another important char-
acteristic of most estuaries, i.e. the asymmetry between the flood- and
ebb-tide flows. The ‘flood’ flow corresponds to the time when the tide
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is rising and floods the estuary. The ebb flow corresponds to the time when
the tide is falling and the water recedes from the estuary. The flows are
termed ‘asymmetric’ if the average peak flood or ebb current is stronger than
its opposing current (flood stronger than ebb or ebb stronger than flood).
The asymmetry is called ‘flood dominant’ if the flood current is stronger
than the ebb current, and ‘ebb dominant’ if the ebb current is stronger
than the flood current. An example of an ebb-dominant current is shown
in Figure 11.12.

Convention defines flood current as positive and ebb current as negative.
Peak ebb current is −1.15 m/s and peak flood current is 0.97 m/s. In an estu-
ary there is usually a contribution to the flow from a river. In the absence of
this flow the net discharge is zero through the estuary, even though there is
asymmetry in the tidal current. At first sight this might seem contradictory.
However, there are two properties that control the relationship between
discharge and tidal current. One is the shape of the velocity curve, and
the other is the difference in phase between the water level and the cur-
rent. Phase relationships between tidal constituents determine the flood–ebb
asymmetry (Aubrey and Speer (1985), DiLorenzo (1988)), in the absence of
significant non-tidal forcing. In a case where the river flow is a significant
component, ebb dominance will clearly be expected.

As an example, consider an M2 tidal current and its first harmonic M4,
having amplitudes of 1.0 and 0.1 m/s, respectively. The phase relationship
between the two constituents is described as

α= 2φM2 −φM4

where α is the phase difference between the two constituents, φM2 is the
phase of the M2 constituent, and φM4 is the phase of the M4 constituent. This
phase relationship holds because the frequency of the M4 constituent is twice
that of the M2 constituent. If the M4 tide lags the M2 tide by 30◦, the com-
bined tidal current has the ebb-dominated shape shown in Figure 11.11. The
duration of the flood tidal current (6.6 h) exceeds that of the ebb tidal cur-
rent (5.9 h). The greater peak ebb speed balances the longer flood duration
such that there is a zero mean velocity through the inlet.

It is possible for the mean discharge to be zero but the mean velocity not
to be zero, if the tidal curve for water levels and currents are not in phase.
In this case, as discharge is a function of water level and current, the phase
difference between the two variables creates a time-varying discharge that
has a net value of zero over a tidal cycle.

Ebb and flood dominance is important because it can affect the preferred
sand-transport direction in estuaries and tidal inlets. The differential in peak
velocity creates a difference in the amount of material being transported
on flood and ebb tides. For example, a flood-dominated estuary may
deposit sand onto flats and bars and can also infill channels, whereas an
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Figure 11.11 Asymmetric tide due to the superposition of two tidal constituents

ebb-dominated inlet will tend to transport sediment seaward, eroding bars
and scouring channels.

11.4 Two- and three-dimensional modelling of
estuaries

As discussed in Section 11.2, it is not always possible to consider the sea
to be a homogeneous fluid with constant density. Both temperature and
salinity affect the density of water. There are essentially three approaches to
modelling this:

(1) assume the flow is sufficiently turbulent so that the water column is
well-mixed, and thus the density is constant to a good approximation;

(2) assume that the changes in density are sharp so that the water column
comprises ‘layers’ of fluid that are essentially immiscible but momen-
tum can be transferred between layers through turbulent fluxes (see e.g.
Osment (2004));

(3) solve the dynamic temperature and salinity transport equations that
allow a continuously varying density field to evolve.

In the previous section, the ‘one-dimensional’ depth and cross-
sectionally averaged approach was described, in which the density was
assumed constant and a ‘well-mixed’ assumption was implicit. A simi-
lar condition applies when the two-dimensional shallow-water equations
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are used to model coastal and estuarine flow. In conditions where the
assumption that the water column is well mixed is not appropriate, the
water column is termed ‘stratified’. This tends to allude to vertical density
gradients, but horizontal density gradients can also have important effects.

This raises the question: ‘How can I tell if an estuary is well-mixed?’. Dyer
and New (1986) proposed a classification based on the ‘layer Richardson
number’ (see Sections 4.6.2 and 5.8.1):

Ri =
g
ρ

∂ρ

∂z(
∂u
∂z

)2

which represents the ratio of buoyancy forces to vertical turbulent force.
Vertical mixing becomes important for Ri < 0.25, and for such cases an
assumption of well-mixedness may be sufficient. However, the Richardson
number is likely to vary significantly along the length of an estuary, with the
stage of the tide and with river discharge; so a global Richardson number
should be used with care (Simpson et al. (1990)).

We conclude this section with a discussion of the wave-like motions
that are possible in a two-layer fluid, and a qualitative extrapolation from
this to the case of continuously stratified fluids. The situation is shown in
Figure 11.12. Subscripts 1 and 2 are used to denote quantities relating to
the upper and lower layer, respectively. There is an upper layer of density
ρ1 and depth H1 overlaying a more dense layer of density ρ2 and depth H2.
The total depth of fluid is H = H1 + H2. The undisturbed level of the upper
fluid is taken to be at z = 0 and that of the lower fluid to be at z =−H1. The
free surface of the upper fluid is z = η1(x, y, t) and the interface displace-
ment (upward) is η2(x, y, t). Assuming that the fluid remains in hydrostatic

H1

H2

ρ1

ρ2

H

η1

η2

Figure 11.12 Illustration of a two-layer stratified fluid
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equilibrium and that the surface pressure is zero (p = 0), the pressure in the
two layers is given by

p1 = ρ1g(η1 − z) −H1 + η2 < z<η1

p2 = ρ1g(η1 + H1 − η2) + ρ2g( − H1 + η2 − z) z<−H1 + η2 (11.37)

Neglecting non-linear terms, Coriolis effects and friction, the momentum
equations become:

∂u1

∂t
=−g

∂η1

∂x
∂v1

∂t
=−g

∂η1

∂y (11.38)
∂u2

∂t
=−ρ1

ρ2
g
∂η1

∂x
− g′∂η2

∂x
∂v2

∂t
=−ρ1

ρ2
g
∂η1

∂y
− g′∂η2

∂y

where

g′ = g
(ρ2 − ρ1)

ρ2

For the upper layer, equation (11.38) is just the same as for a single homo-
geneous fluid. The equations for the lower layer are obtained by integrating
the hydrostatic equation over depth and using continuity of pressure at the
interface. The continuity equations for each layer are

∂(η1 + H1 − η2)
∂t

+ H1

(
∂u1

∂x
+ ∂v1

∂y

)
= 0

∂η2

∂t
+ H2

(
∂u2

∂x
+ ∂v2

∂y

)
= 0

(11.39)

Using equations (11.38) and (11.39), the velocities can be eliminated to
derive an equation for the displacements η1 and η2:

∂2(η1 − η2)
∂t2

= H1g∇2η1

∂2η2

∂t2
= H2∇2(gη1 − g′η1 + g′η2)

(11.40)

These equations can then be used to eliminate one or other of the dis-
placements to obtain a fourth-order equation governing the other. However,
rather than doing this, it is customary to look for solutions for which the
displacements are proportional to each other. This leads to two solutions.
In the first, the displacements in both fluids are in phase with each other
and waves propagate with a phase speed c0 ≈√

(gH). In the second, the free
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Figure 11.13 Internal modes wave at the interface of two fluids of different density

surface of the upper layer remains virtually undisturbed while the interface
has a strong wave-like appearance. The velocity fields in the two layers are
in anti-phase. The phase speed of the wave at the interface is c1 ≈ √

(g′H1)
if H2 >>H1. The first wave is termed the ‘barotropic’ or ‘external’ mode,
as its characteristics are similar to those of a wave on a homogenous fluid.
The second wave is termed ‘baroclinic’ or ‘internal’, as it depends upon a
density gradient for its existence and the wave propagates within the fluid.
Figure 11.13 illustrates the second solution. There is negligible disturbance
of the upper surface but a large wave at the interface. The flows in the upper
and lower layers oppose each other.

In a continuously stratified fluid there will be a continuum of modes
as well as a barotropic mode. Further details can be found in Csanady
(1982) and Gill (1982). Whether such modes are actually present in a given
situation depends upon how the fluid column is forced. It is worth not-
ing that similar behaviour is found if the Coriolis and friction terms are
retained, so that one can have barotropic and baroclinic Kelvin waves.
Thus, a full description of the tidal dynamics requires stratification to be
included. However, the nature of tidal forcing (gravitational body force)
is such that it acts throughout the water column so that the barotropic
mode is strongly excited and reasonable predictions of tides can be obtained
with depth-averaged models. In some estuaries, where stratification is
strong, baroclinic modes may be excited and therefore affect the tidal
characteristics.

In general, the effects of stratification are not easy to treat in analytical
models except for the very simplest cases. There are numerous numeri-
cal models available that are capable of simulating forced stratified fluid



Modelling of estuaries 447

flow. As an example, a recent study by Marques et al. (2009) investigated
the freshwater plume that develops as two rivers discharge to the Atlantic
through the Patos Lagoon in the southernmost part of Brazil, between
30–32◦S and 50–52◦W, being connected to the Atlantic Ocean by a sin-
gle channel less than 1 km wide (see Figure 11.14). The principal rivers
contributing at the north of the lagoon have a mean annual discharge of
2,400 m3/s. A (finite-element) model was set up to investigate the move-
ment of the freshwater plume as it exited the channel and spread out into
the ocean. Tides, Coriolis force and wind stress were included in the set of
calculations. Figure 11.15 shows some of the results obtained by Marques

(a)27°S

30°S

33°S

36°S

39°S

60°W 56°W 52°W 48°W 44°W 40°W
–6,000

–5,000

–4,000

–3,000

–2,000

–1,000

0

(b)

Guaíba river

Camaquã river

(c)

km

0 111 222

Figure 11.14 (a) The southern Brazilian shelf (dotted rectangle), the Patos Lagoon and its
principal tributaries. (b) The finite-element mesh highlighting the fluid and
surface boundaries and (c) the lower Patos Lagoon estuary and adjacent
coastal area. The positions of the transversal and longitudinal profiles used
in the study are also shown (from Marques et al. (2009))
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et al. (2009). The depth variation in flow and salinity are evident. It is also
clear from Figure 11.15(c) that, although the plume remains fairly concen-
trated in the horizontal, a significant amount of mixing has occurred in the
vertical, with a ‘pillar’ of relatively low-salinity water penetrating all the
way to the seabed.

11.5 Environmental modelling of estuaries
and lakes

11.5.1 Water quality

Estuaries are very often the focus of human activity, whether for trade,
tourism, fishing or other activity. Most such activity will involve either the
abstraction of water from the estuary (i.e. for cooling in a power station,
or for processing prior to use in a chemical plant), or the deposit of waste
water into the estuary (i.e. sewage and stormwater outfalls, discharge from
power stations – in this case the ‘pollutant’ is hot water). As a result, the
estuary ‘environment’ is largely defined by the quality of the water avail-
able in the estuary and the movements of sediment within the estuary. In
this section we cover some of the issues around modelling the water and
bottom layers in terms of their ‘chemical quality’. Pollutants are first clas-
sified into those that are dissolved and are transported and diffused in
solution, and those that are solids and which may undergo some settling
as well as interaction with dissolved chemical compounds. The simplest
pollutants are those whose behaviour is independent of all other model
water-quality variables or determinants. Examples of such quantities might
include:

• salinity
• dissolved metals
• pesticides
• radioactivity
• faecal and total coliforms (bacteria)

These can be modelled by using an expression of the form (see also
Section 4.6.4)

dP
dt

=−(K1P + K2P)P + K3

H
(11.41)

where P is the pollutant concentration, K1P is a decay rate for the pollutant
P, K2 is a settling rate for P, K3 is a release rate for P and H is the water
depth. The first term on the right-hand side represents solute loss due to the
combined processes of decay and settling, while the second term represents
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solute gain due to the addition from benthic sources. The rate constant due
to decay is often considered to be temperature dependent, following a law
such as the van’t Hoff equation:

K1P(T) = K1P(20)θ (T−20)
P (11.42)

where θP is a temperature coefficient. If the speed of a chemical reaction is
roughly doubled by a rise in temperature of 10◦C, then θP = 1.07177 (the
10th root of 2).

In order to model the complex network of chemical and biochemical
reactions it is customary to consider the main reactions that particular
element groups undergo. These are often referred to as ‘cycles’. Thus, for
example, the nitrogen in the system will be defined by a set of chemical-
reaction equations that define the cycle of nitrogen exchanges within the
system.

11.5.1.1 Nitrogen and sulphur cycles

The main chemical processes involved in the nitrogen cycle are fairly well
understood and the models are well developed (see e.g. Orlob (1983)). The
model described here consists of the following processes: the oxidation of
ammonia to nitrate; the oxidation of nitrate to nitrite; and the reduction
of nitrite to nitrogen. The reduction of nitrate, which occurs when the dis-
solved oxygen concentration falls below 5% saturation, results in nitrogen
loss from the model system in accordance with its reduction to molecular
nitrogen and evolution as a gas:

2NO2−
3 . . .→ N2(evolved) + 3O2 (used in oxidation reactions)

At dissolved oxygen concentrations below 5% saturation, when the oxy-
gen demand cannot be met by the reduction of nitrate, further oxygen is
made available by the reduction of sulphate to sulphide:

H2SO4 . . .→ H2S + 2O2

The reaction rate is governed by the oxygen demand. It is usually
assumed that the availability of sulphate is not a limiting factor, as sea-
water has a high concentration of sulphates. Sulphate is thus not explicitly
included in the model as a water-quality determinant. As long as dis-
solved oxygen concentrations remain above 5% of saturation it is assumed
that denitrification will not occur and nitrification will dominate. This
is consistent with many field observations which show that the rate of



Modelling of estuaries 451

denitrification in water bodies is insignificant when compared to the rate
of nitrification if the dissolved oxygen concentration is not below 5% of
saturation.

The loss of ammonia by oxidation to nitrate proceeds at a rate that is
proportional to the ammonia concentration, so that

dNH3

dt
=−K1NH3NH3 (11.43)

Nitrite is formed by the oxidation of ammonia, and lost by oxidation
to nitrate. The rate of ammonia oxidation is given above, this being the
rate at which nitrite is formed in the process. The rate of nitrite oxi-
dation can be assumed to be proportional to the nitrite concentration,
so that

dNO2

dt
= K1NH3NH3 − K1NO2NO2 (11.44)

Nitrate is formed by the oxidation of nitrite, at a rate proportional to the
nitrite concentration. However, in the absence of denitrification, nitrate is
not lost by any modelled mechanism, so that only the nitrite oxidation term
appears in the equations:

dNO3

dt
= K1NO3NO2 (11.45)

Both K1NH3 and K1NO2 are temperature dependent and can be modelled
using equation (11.42) with K1NH3(20)=0.16 to 0.35/day, K1NO2 =0.43/day,
θNH3 = 1.106 and θNO2 = 1.072.

11.5.1.2 Oxygen balance

The large number of factors determining the dissolved oxygen concentration
requires a degree of simplification in order to have a manageable model.
A simple representation of the oxygen balance is adopted in which the
dissolved oxygen level is governed by the relative rates of oxygen consump-
tion by carbonaceous oxidation, ammonia oxidation, nitrate oxidation and
oxygen supply through surface reaeration:

dO2

dt
= RO2 (O2(sat) − O2)− K1BODBOD −αK1NH3NH3 +βK1NO2NO2

(11.46)
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This latter process is described using an oxygen-exchange-coefficient for-
mulation (see e.g. Klein (1962)), which relates the reaeration to the ambient
temperature and current speed. (RO2 is the reaeration coefficient.) The sat-
uration concentration ( in milligrams per litre) of dissolved oxygen at a
temperature T◦C can be expressed using the empirical function proposed
by (Dysart (1970))

O2(sat)=14.652−0.41022T +0.007991T2 −0.000077774T3 (11.47)

11.5.1.3 Carbonaceous biochemical oxygen demand

The carbonaceous biochemical oxygen demand (BOD), a measure of the
amount of oxygen that is used during biochemical oxidation of organic
compounds, is also often modelled using an equation of the form (11.41).
However, in order adequately to resolve the behaviour of such a wide range
of compounds, the total BOD is considered as the sum of two indepen-
dent ‘fast’ and ‘slow’ components. BOD is not ‘non-interacting’ because it
is linked to the sulphur, nitrogen and oxygen cycles. Most of the fast BOD
exerted by crude sewage is removed by biological treatment, so the BOD
of well-treated sewage effluent is predominantly slow; likewise, the residual
BOD of riverine, estuarine and marine waters is almost all slow. The loss
of carbonaceous BOD (or, what amounts to the same thing, the uptake of
dissolved oxygen by carbonaceous material) may be modelled by means of
a first-order reaction (i.e. the more of it there is, the faster it disappears, and
the rate at which it disappears is directly proportional to the concentration)
(see also equation (4.118)):

dBOD
dt

=−(K1BOD + K2BOD)BOD (11.48)

for both fast and slow forms of BOD. The rate coefficient K1 is usually taken
to depend on temperature, as in equation (11.42).

The set of equations above describes an admittedly simplified biochemi-
cal system, but one that is relatively standard within the water engineering
industry. Some key points to note are: variables that are not limiting,
such as sulphate, are not modelled explicitly; phosphate and ecological
modelling of plants and animals is not included; and the temperature depen-
dence of reaction rates can be significant and therefore must be modelled.
These equations can be solved simultaneously, with the hydrodynamic equa-
tions and equations governing the transport of determinants (usually an
advection–diffusion equation) to predict the evolution of water quality in
an estuary (see e.g. Cheng et al. (1984)).
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11.5.2 Ecological modelling

The previous section described how the chemical cycles associated with
waste-water treatment could be included within a hydrodynamic model
to predict how pollutants would disperse and diffuse within a com-
plex estuarine environment. In some environments, particularly those
where swimming, bathing and water sports are encouraged, additional
considerations are required. The primary criterion relates to the con-
centration of phytoplankton. These are microscopic marine plants that
rely on nutrients (dissolved nitrogen and phosphorus compounds) as
well as sunlight for photosynthesis. An abundance of nutrients together
with favourable water temperature and sunlight can lead to explosive
growth of phytoplankton to create ‘blooms’. These in themselves may
not be harmful, but the bloom will eventually be followed by a col-
lapse. This leads to a huge rise in the BOD as the dead plankton rot
and there is a sharp drop in dissolved oxygen levels. When the dis-
solved oxygen concentration falls below 5% saturation, further oxygen
is released through the reduction of sulphate to sulphide. This releases
hydrogen sulphide, which is both foul-smelling and noxious. Local author-
ities will seek to avoid blooms and consequent collapses, as they have
adverse effects on bathing-water quality and subsequently on health and
tourism.

To model this type of system requires additional cycles to be included
in a water-quality model. In fact, ecological-system models have been in
existence for many decades (e.g. Evans and Parslow (1985)), some concen-
trating on deep-water ecology and some on shallow-water ecology, some on
freshwater environments and some on marine environments. In this section,
equations for modelling a shallow marine environment are described, which
include phytoplankton, macroalgae (seaweed) and a sediment layer that can
act as a store of nutrients.

The model encompasses phytoplankton, macroalgae, zooplankton
(microscopic animals that feed on phytoplankton), suspended particulate
matter (detritus), dissolved nutrients (nitrogen, phosphorus and oxygen)
and sediment layers. Equations governing the biochemical interactions
essentially express the conservation of carbon, phosphorus and nitrogen
within the system. For brevity, the carbon, nitrogen and phosphorus con-
centrations in the plankton population are written in vector notation as
P = (PC,PN,PP). Similarly, for macroalgae, zooplankton, solutes, detritus
and sediment M = (MC,MN,MP), Z = (ZC,ZN,ZP), A = (AC,AN,AP),
D = (DC,DN,DP) and S = (SC,SN,SP), respectively. The changes in the
above state variables are expressed by a set of coupled ordinary differen-
tial equations. The details of the source and sink terms in any equation
are often very complicated and based on empirical relationships determined
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from laboratory experiments. The general structure of the equations is given
below:

dM
dt

= Mgro − Mde

dP
dt

= Pgro − (Pgrz + Pde + Psed

)
dZ
dt

= Zgro − Zde

dD
dt

= (1 − Vm)(Pde + Mde) + Zex + Zde − Dmin − Dsed

dA
dt

= Dmin + Zresp + Srel +
Srels

depth
) − Pgro − Mgro + Vm(Pde + Mde)

dDO
dt

= V0

[
PCgro + MCgro − DCmin − Zresp − SCrel

−Vm(PCde + MCde)] + DOre

dS
dt

= (Psed + Dsed − Srel

)
depth − Srels − Srem

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭
(11.49)

where

Zex = Pgrz − Zgro − Zresp and Zresp = KRPgrz (11.50)

The subscripts gro, de, grz, resp, rel, rels, rem, sed, ex, re and min refer to
the rates of change due to growth, death, grazing, respiration, instantaneous
release, release from the sediment pool, removal from the sediment, excre-
tion, reaeration and mineralization due to bacterial decay, respectively. The
units of all variables are grams per cubic metre (g/m3), except for S which
is in grams per square metre (g/m2). KR is a respiration parameter for zoo-
plankton, Vm is the proportion of nutrients that is released immediately for
use from the dead algal biomass and V0 is a reaction rate constant. Carbon
is normally available in abundance, and so equations for its concentration
in solution and in the sediment are not solved explicitly.

Many of the rates for phosphorus and nitrogen are directly related to the
associated rates for carbon, for example:

Pgrz = PCgrz

(
1,

PN
PC

,
PP
PC

)
(11.51)

and this is the case for Mde, Pgrz, Pde, Psed, Zgro, Zde, Zresp, Zex, Dmin and Dsed.
Figure 11.16 is a schematic representation of the processes described by the
model equations.
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Figure 11.16 Illustrative diagram showing the processes included in the ecological model
system

Equations (11.49)–(11.51) describe the main ecological processes of accu-
mulation and release of nutrients from the sediment and the competition
between macroalgae and plankton.

A variety of equations for modelling the processes described above are
available (a useful summary is given by Swartzman and Bentley (1979),
although this review is now somewhat dated). Detailed equations proposed
for modelling the ecological processes can be found in the literature, but the
rationale of some of the modelling approaches is outlined below.

The dependence of phytoplankton growth on external nutrient availabil-
ity and on the intracellular concentration of nitrogen and phosphorus has
been well documented (see e.g. Nyholm (1977), (1978)). A similar depen-
dence for macroalgae has been found in experiments by Hanisak (1979) and
McPherson and Miller (1987), and has been included explicitly in numeri-
cal models (e.g. Auer and Canale (1982)). Equations describing this process
may be summarized as follows: if the internal concentration is less than a
specified ‘critical’ concentration, the uptake is proportional to the external
concentration. If the external concentration is low, the uptake is set equal
to nutrient mineralization rates within the water column and from the sed-
iment. If the internal concentration is above the critical level, the uptake is
dependent on the external concentration with an upper bound equal to the
uptake with maximal content of nitrogen or phosphorus. This approach
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has four main advantages. First, the process kinetics are in agreement
with laboratory experiments. Second, ‘luxury consumption’ (i.e. organisms
absorbing more nutrients than they require at a particular time in order
to store it for use in times of stress) of nutrients is included. Third, for a
fixed nutrient loading a higher biomass production is obtained than under
the assumption of fixed nitrogen/carbon and phosphorus/carbon ratios in
the algae. Finally, resource competition between plankton and macroalgae
is simulated. Experimental evidence of the importance of this mechanism in
local coastal regions has been presented by Smith and Home (1988). Nutri-
ent uptake is modelled using the Michaelis–Menten relationship, which has
the general form for a determinand X:

dX
dt

= αX
k + N

(11.52)

where α is the upper limit on the uptake rate and k is a rate constant that
corresponds to the nutrient concentration when the uptake reaches half of
the maximum. The shape of the uptake curve is approximately linear for
small values of nutrient concentration, then levelling off asymptotically to
α as the concentration increases. The reader is referred to Dyke (2007) and
the references therein for further discussion.

All growth and reaction rates are temperature dependent, and are usu-
ally modelled using the van’t Hoff equations. However, Lassiter and Kearns
(1974) proposed the following form for macroalgae:

X(T) = (Tmax − T)ea(T−Topt)

(Tmax − Topt)a(Tmax−Topt)
X (11.53)

which reflects the relative insensitivity of macroalgae to subtropical temper-
atures and their marked sensitivity to heat stress.

The growth rates of algae depend strongly on light intensity, which can
vary for the following reasons:

• seasonal variations in average daily light intensity;
• seasonal changes in the day length;
• attenuation from dissolved and suspended matter;
• self-shading.

Seasonal variations in light intensity and day length are discussed by
Strahler (1971). The depth dependence in the model is limited but can
be represented by constraints on the possible interactions, as shown in
Figure 11.16 (e.g. phytoplankton cannot draw nutrients directly from the
sediment), and also by calculating a depth-average light intensity using
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Beer–Lambert’s law. The light intensity I at a depth d may be determined
from an extended form of the model proposed by Lorenzen (1972):

I = I0e{−(aPPCh+aDDC+aB+max(0,aM(MC−MIMC)))d} (11.54)

where PCh is the chlorophyll content of plankton (often taken to be in a
fixed ratio to the carbon concentration), DC and MC are the carbon content
of detritus and macroalgae, and aP, aD, aB and aM are the light-attenuation
coefficients for chlorophyll, detritus, water and macroalgae, respectively.
MIMC is the maximum concentration of macroalgae that can exist without
any self-shading. In addition, the growth rate of macroalgae is significantly
dependent on light intensity. As a first approximation, this can be modelled
using a simple piecewise linear function for a multiplicative growth factor
lying between 0 and 1:

IB =
⎧⎨⎩

ID/IKB
1
max (0,1 − (ID − IHB)/IKB

ID< IKB
IKB< ID< IHB
ID> IHB

(11.55)

where ID is the light intensity at a depth d, IKB is a light saturation inten-
sity and IHB is a photoinhibition constant. Physically, this models the fact
that for maximum growth the light intensity needs to be above a certain
threshold (IKB), while if the light intensity becomes too great (above IHB),
the growth rate is inhibited.

Zooplankton are included in the model as they make an important con-
tribution to phytoplankton depletion and the production of detritus. The
only slightly non-standard element in the zooplankton model is the expres-
sion for zooplankton death. This is taken to be proportional not only to
the zooplankton concentration (death proportional to ZC) but also density
(death proportional to the square of ZC). This allows ‘closure’ of the eco-
logical model, as higher forms of animal life such as zooplankton predators
are excluded.

Accumulation of pools of nutrients in the sediment is achieved through
the process of settling under gravity. Both detritus and phytoplankton set-
tle, but zooplankton are considered able to avoid this. The settling rates are
often taken to depend on concentration alone, but Farr (1983) included a
dependence on depth too. Golterman (1980) discussed the importance of
sediments acting as a nutrient-storage mechanism in eutrophic (i.e. well-
nourished) lakes. In ecology, it is used to describe water bodies that have
significant nutrient concentrations to support significant plankton and algal
growth. The interchange of nutrients between sediment and the water col-
umn is an extremely complex process. A relatively straightforward means
of modelling this is to have a sediment submodel, sufficient to model the
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accumulation and subsequent release of nutrients. The governing equation
for the pool of exchangeable phosphorus in the sediment PEX is

dPEX
dt

= (SPadd − SPrel)depth − SPrels − PEXrem (11.56)

where SPadd = (PP/PC) ·PCsed + (DP/DC) ·DCsed is the addition of nutrients
due to settling, SPrel is the release rate of newly sedimented phosphorus,
which is dependent on temperature and the dissolved oxygen level, SPrels is
the release rate of phosphorus from the pool of exchangeable phosphorus,
and PEXrem is the rate of removal from the pool of exchangeable phos-
phorus through immobilization and is a fixed percentage (40%) of the
net addition to the pool. A completely analogous equation for nitrogen
applies, with denitrification replacing immobilization as a process depleting
the pool.

In a pond or lake the equations governing this ecosystem might be solved
for a single ‘box’. That is, the water body would be considered to be well
mixed, with any stratification having negligible effect on the ecology. In
lakes with larger horizontal extent or in estuaries and coastal regions the
effects of advection become more important. The region may be repre-
sented by a collection of linked, well-stirred boxes. However, there will be
an exchange of dissolved nutrients, detritus and plankton between boxes
that is determined by the water motion. It is also possible that there will be
additions of nutrients at fixed locations (e.g. waste-water outfalls) as well
as abstraction (e.g. at treatment plants). Considering a linear arrangement
of boxes as shown in Figure 11.17, the equation governing the change in
concentrations due to water exchange between boxes is an expression of
the conservation of mass:

dCnVn

dt
=QnCn−1 +Rn+1Cn+1 +

∑
k

QnkCnk −
∑

l

QnlCnl − Qn+1Cn − RnCn

(11.57)

where Qn is the flow rate into box n from box n − 1; Rn is the flow rate
from box n into box n − 1; Qnk is the inflow from the kth source into box
n of concentration Cnk; Qnl is the outflow from the lth abstraction in box n,
and Vn is the volume of box n. For cases where the tidal variation is small,
Vn will be approximately constant for each box and may be removed from
the derivative on the left-hand side by dividing the whole equation by it.

Equations (11.49) and (11.57) may be integrated forward in time using
a standard ordinary differential equation integrator to predict the evolution
of a marine ecosystem. Two illustrations of ecosystem- and water-quality
modelling are given in Section 11.6.
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Figure 11.17 Linked-box model, showing the inputs and outflows to box n

11.5.3 Morphological modelling

Sediment transport affects many situations of practical importance for engi-
neers. Movement of sediment can lead to erosion or accretion, usually
occurring over relatively short periods of time and in localized areas. Over
longer periods of time the cumulative effect of local sediment movement
can have larger scale impacts, such as the silting up of ports and harbours,
transgression of sandbanks and sandbars, etc. (see Section 4.6.3).

In coastal waters most sediment transport is due to tidal currents, and
transport occurs via ‘bedload’, i.e. grains of sediment being rolled or
bounced along the seabed surface as the drag force due to the bottom
current exceeds friction and gravity forces. On the open shoreline, and
to a lesser extent in estuaries, transport is also caused by the enhanced
flow associated with waves. Where the flow is particularly turbulent or
violent, sediment grains can be picked up and entrained into the water
column, where they can be transported in the body of the flow before
settling out when the drag forces no longer overcome the gravitational
force.

There are several physical properties of sediment that are important in
the study of coastal sediment transport. The first is the nature of the sedi-
ment itself. Sediments that contain muds are termed ‘cohesive’. This type of
sediment can aggregate in suspension because of its cohesive nature, form-
ing flocs of sediment and thus changing the effective grain size. Sediments
that contain no muds are termed ‘non-cohesive’ and are, in general, easier to
model. The second property is the sediment density ρs, typically 2,650 kg/m3

for quartz. The remaining properties are required in recognition of the fact
that the shoreline contains a mixture of materials interspersed with voids,
which may be filled with air or water. Thus, the bulk density ρb is defined
as the in situ mass of the mixture/volume of the mixture, the porosity ps as
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the volume of air or water/volume of the mixture (typically ∼0.4 for a sand
beach), the voids ratio e as the volume of air or water/volume of the grains,
and the angle of repose (ϕ), which is the limiting slope angle at which the
grains begin to roll. This angle is typically 35◦ in air, and in water reduces
to about 30◦.

Bedload transport is the dominant mode for low-velocity flows and/or
large grain sizes. It is controlled by the bed shear stresses. Con-
versely, suspended-load transport is the dominant mode for high-velocity
flows and/or small grain sizes, and is controlled by the level of fluid
turbulence.

A detailed discussion of sediment-transport equations for non-cohesive
material can be found in Reeve et al. (2004), Svendsen (2006) and in
Section 4.6.3. Here, only the general principles for bedload transport of
non-cohesive sandy material are outlined, but the reader should also refer
to Chapter 8, and particularly to Section 8.3 dealing with computational
models for morphological processes in open-channel systems.

The general equation relates the transport rate (a vector quantity) to a
representative flow velocity. This has the form

q =α
∣∣un−1

∣∣u (11.58)

where the coefficient α is dependent on seabed and sediment properties
and has to be determined experimentally for practical applications. The
exponent n and the coefficient α are generally found to lie in the ranges

n = 3 − 6

α = (0.5 − 5) × 10−4 m(m/s)1−n

If bedload is the dominating transport mode, it is customary to take
n = 3. To acknowledge the fact that there is zero transport for small,
non-zero flow a threshold for movement is usually incorporated with equa-
tion (11.58) so that there is zero transport if |u|< ucr. The bed slope may
also play an important role, as downhill transport is enhanced relative to
uphill transport because of gravity. This is expressed by a modification to
equation (11.58):

q =
⎧⎨⎩ 0 | u |≤ ucr

α| u |n−1

{
u

| u | −β∇h
}

| u |>ucr

(11.59)

where β is a proportionality constant and h(x,y, t) is the seabed elevation
relative to a fixed datum. Direct measurements of this are not available
but comparisons of predicted and measured transport rates suggest it is of
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the order of 1. The transport equation governing conservation of sediment
is then

(1 − p)
∂h
∂t

+∇ · q = 0 (11.60)

In a numerical model, equation (11.60) is solved along with the hydrody-
namic equations. This allows the interaction between the hydrodynamics
and the seabed morphology to be captured. However, the time scale of
changes in morphology is usually much longer than the hydrodynamic time
scale, so a multiple scale integration of the equations is common, with the
seabed being updated less frequently than the flow equations.

In practice, morphodynamic models usually fall into one of two cate-
gories. The first is the dynamical approach described above, where the
equations governing fluid flow and conservation of sediment are solved in a
deterministic manner. An example of this is shown in Chapter 12 on coastal
processes. This approach is computationally expensive and the results can
be quite sensitive to both the choice of sediment-transport equation and
initial conditions. The alternative approach is termed ‘behaviour-oriented’
or ‘hybrid’ modelling, which seeks to simulate changes in the morphology
rather than compute the sediment transport. This approach usually focuses
on one or two physical processes and thereby simplifies the governing equa-
tions. Some successes have been achieved with this approach but it is often
difficult to get exact rates and quantities of sediment. The two approaches
are described below.

• Deterministic process models. These solve the equations of motion
expressing conservation of mass and momentum for water and mass
conservation for sediment. They include detailed descriptions of the
sediment-transport process, including suspension, transport and set-
tling. The models are iterative, requiring sequential solution of the
hydrodynamics, sediment transport q and bathymetric updating. The
time steps for the hydrodynamics �t are usually much shorter than
for the bathymetric updating �tmorph. Hence, the seabed is held fixed
for the hydrodynamic step until a ‘sufficient’ change occurs. At this
stage the bathymetry is updated and the hydrodynamics run with the
new bathymetry. The many uncertainties in the sediment-transport for-
mulae, as well as cumulative errors in the iterative scheme, make the
predictions highly uncertain. These models can also be prone to insta-
bility due to feedback between the hydrodynamics and bathymetric
changes. This is usually solved by controlling the bed steepness through
an ‘avalanching’ step to prevent unrealistically steep slopes developing.
An example of the structure of a dynamic process model is shown in
Figure 11.18.
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Figure 11.18 Typical flow chart for morphological updating

• Hybrid models. This type of model employs a simplification of the phys-
ical processes to derive a few evolutionary equations (e.g. Karunarathna
and Reeve (2008), Larson et al. (1997), Stive and De Vriend (1995),
Van Goor et al. (2001)). Predictions are made on the basis of parame-
terizing all but a few processes as a source function. These models have
had reasonable success in predicting changes in morphology but there
is no established method for defining the parameterization.

11.6 Physical modelling of estuaries

11.6.1 General

As stated in Chapter 1, hydraulic models have been in use since the lat-
ter part of the 19th century. It is interesting to note here that the first
estuarine model soundly based on physical principles was a tidal model
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of the Upper Mersey constructed by Osborne Reynolds at Manchester
University in 1885.

The introduction and rapid development of computational models in
the second half of the 20th century led to some suggestions that physical
models, particularly of rivers and estuaries, would no longer be needed.
Nevertheless, with time it became clear that, in spite of the obvious advan-
tages of computational models (see Chapter 1), there are problems that
can introduce uncertainty into their use. These include the effects of grid
resolution on computed results, the treatment of turbulence, sensitivity of
the solutions to boundary conditions, potentially unpredictable and chaotic
behaviour occurring in non-linear models and the huge computational
resource required for detailed simulation of large areas over medium- to
long-term time periods. Thus, at present, a combination of physical and
mathematical approaches is often used, i.e. hybrid modelling.

The background to physical modelling has been covered fairly com-
prehensively in Chapter 5. The reader is referred in particular to
Sections 5.4–5.7, which deal with the development of laws of similarity, the
main similarity laws, the limits of similarity and the scale effects. The appli-
cation of these laws to hydraulic models of open-channel flow is developed
in Section 7.5 and to the modelling of movable beds in Section 8.5; these
are, of course, relevant to physical modelling of estuaries. Section 6.1.2 then
gives some details of special equipment used in estuarine models (e.g. tide
and wave generators). Section 6.2 deals with the materials and construction
of river and estuary models; Section 6.3 describes the appropriate measuring
methods and instrumentation.

For physical modelling of estuaries, the following points must be noted
(for further details, see Novak and Čábelka (1981)):

• Estuary models usually represent substantial areas and thus vertical dis-
tortion is almost the norm; sometimes this is quite large, and a ratio
Ml/Mh = 10 is not unusual.

• In spite of this, distortion models may cover large laboratory areas
and, to save space, the upstream parts of the tidal area are some-
times schematized and folded into a labyrinth, while preserving the tidal
volume.

• In some situations it is possible to concentrate on the ebb and flood
flow; in this case it is possible to dispense with the tide generator and to
use steady-state sea conditions. It is also possible to simulate the whole
tidal cycle by a series of steady-state conditions (see e.g. the Dargle river
and estuary model in Section 7.6).

• If density differences and stratification are important, they can be con-
trolled on the model by brine injection into the ‘seawater’ circulation,
and in some instances the salinity distribution may be maintained by
extracting at the model periphery the surface layer of ‘fresh water’
flowing into the estuary.
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11.6.2 Scaling procedure

The following is a brief summary of the additional scaling procedures appli-
cable to estuary hydraulic models; for a more detailed discussion, see,
for example, Kobus (1980) or Novak and Čábelka (1981). In a distorted
model operated according to the Froude law the horizontal velocity scale is
given by

Mv = M1/2
h (5.28)

From the Strouhal criterion it follows that the time scale that must apply in
all directions throughout the model is

Mt = Ml M−1/2
h (5.32)

Thus, in the vertical direction the velocity scale is

Mw = MhM−1
t = M3/2

h M−1
l ((5.33)(11.61))

The difference in the vertical and horizontal velocity scales is acceptable
in the case of relatively slow vertical motion (i.e. for the rise and fall of
water levels in tidal models and/or the settling of suspended sediment). The
above equations have to be observed when programming a tide generator.
A horizontal acceleration will be reproduced on the model to a scale

Ma = MvM−1
t = M1/2

h M−1
l M1/2

h = MhM−1
l (11.62)

However, the geostrophic acceleration is reproduced as

Mag = Mv = M1/2
h (11.63)

Thus, this acceleration, when reproduced on the model, is too small by a
factor of MlM

−1/2
h . This discrepancy, which is significant only in large bodies

of water, can be rectified by using a number of rotating cylinders (Coriolis
tops) on the model (see Section 6.1.2).

In models where the density differences have to be considered, the densi-
metric Froude number (equation (4.96)) or the gradient Richardson number
(equation (4.97)) have to be the same in the model as in the prototype. From
the definition of these numbers it follows that

Mv = (MhM�ρ/ρ)1/2

As Mv = M1/2
h (equation (5.28)) and Mρ is usually 1, it follows that

M�ρ = 1 (11.64)

The correct modelling of dispersion of an effluent in a three-dimensional
flow in a model operated according to Froude law requires an undistorted
model; in a distorted model, scale effects inevitably arise; these can be
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mitigated to a certain extent in special cases and small areas by manipulating
the model bed roughness or by the use of two models – an undistorted one
for the near field and a distorted one for modelling the convective spread of
the effluent over the surface of the recipient, the modelling of surface cool-
ing and the mass transport of the effluent by ambient currents (which, of
course, can equally be modelled using a geometrically correct model).

11.7 Case studies

11.7.1 Seine estuary model

An extension of Le Havre harbour (known as the Port 2000 scheme) was
constructed in the Seine estuary. To study the impact of the scheme on the
morphodynamics of the estuary a distorted physical hydrosedimentological
model was built in 1997 at the Sogreah laboratory in Grenoble (Cazaillet,
personal communication, (2008)) at scales:

• horizontal: 1/1,000;
• vertical: 1/100.

The model represented the Seine estuary over 35 km from the sea to the
Tancarville bridge, and also the coast between Deauvelle and St Adresse (see
Figure 11.19). The purpose of the model was to study:

• the sedimentological impacts of the Port 2000 works (sedimentation,
erosion, evolution of navigation channels and other tidal channels);

• the impact of the dredging of the harbour access channel.

Existing
harbour

Extent of
port in
1910 

Figure 11.19 A panoramic view of the physical model with the existing and the future
(now built) Le Havre harbour (courtesy of Sogreah, Grenoble)
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Various port layouts were studied as part of the physical modelling study,
leading to the choice of the final scheme.

In 1997, the sedimentation in the Seine estuary was about 3 million
m3/year, mainly in the mouth, progressing seawards by 50 m/year. The cal-
ibration of the model was carried out by reproducing the evolution of the
estuary between 1975 and 1994. One year of morphological evolution in
the prototype was run in 5.6 h in the model, giving a sedimentological scale
of around 1/1,600 (see also Section 8.5). The model was equipped with:

• a tide generator (controlled by computer, to generate the complex tidal
curve in the Seine estuary);

• a Seine discharge generator;
• a wave generator to reproduce agitation at the mouth;
• a sediment-supply system at the downstream boundary of the model (to

provide sediment according to the tide at flood tide).

The sediment consisted mainly of treated sawdust of specific character-
istics to reproduce the very fine sand of the estuary (0.1–0.2 mm in the
prototype). Another artificial sediment was used to simulate the global
behaviour of the large north mudflat of the Seine estuary. The choice of the
final Port 2000 scheme, as well as other specific goals such as the creation of
a meandering north tidal channel as a compensatory measure, maintained
by groynes and breaches in the low north dyke of the navigation channel,
was reached as a result of the modelling study. The whole scheme is now
completed and works well.

It is interesting to note that training works and port development have
been ongoing in the Seine for many years. Hunter (1913) describes some
of the history of the construction of the high and lower training walls that
shape the entrance to the Seine, which were built to improve the navigabil-
ity of the estuary, but which also led to accelerated siltation along the banks
of the river, particularly upriver of the Havre harbour, as it then was. It is
not possible to follow here the further details of the continuing develop-
ment of the Seine, except to mention that the training walls were eventually
extended to the meridian of St Sauveur on the north side and to Honfleur
on the south, with the result that the navigation to Rouen and the depth in
the outer estuary were improved, which had a significant effect on the pros-
perity of Rouen. The solution for Havre was to create a port and entrance
to the open sea to the east, thereby circumventing the need for access from
the estuary.

Note: Not all attempts at estuarial training are as successful, particularly
those undertaken before the relatively modern understanding of hydrody-
namics and morphodynamics. The construction of a breakwater in the Gulf
of Ephesus, about 3,000 years ago, is a case in point. It was sheltered from
all winds except those from the west. At the head of the Gulf, emigrant
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Greeks founded the city of Ephesus, which over time became one of the
wealthiest and populous cities of the ancient world. Today, the site of the
Gulf of Ephesus is silted up and consists of a mixture of fertile land and
salt marshes – and the name of the once great city of Ephesus has all but
disappeared from the map.

11.7.2 Tunis north lake

The north lake of Tunis is a shallow seawater lagoon to the east of Tunis
connected to the Mediterranean Sea via a narrow inlet known as the Kherre-
dine Canal. The lake was heavily polluted by centuries of sewage discharge
from the city. It is approximately 26 km2 (∼10 km long, 2.6 km wide) with
a small island (Chekli Island) approximately 2 km from its western end
(Figure 11.20).

Prior to 1980, the lake had become eutrophic, with problems of excessive
growth of algae and weed, shallowing of the lake due to the deposition of
nutrient-rich muds, and release of hydrogen sulphide gas during extended
periods of calm winds and high temperatures. A programme of restoration
was launched in 1981. This involved:

• diversion of sewage effluents away from the lake;
• dredging of the lake to deepen it and to remove nutrient-rich sediment;

Boundary 4

Boundary 5

North lake of Tunis

South lake of Tunis

Gulf of Tunis

N
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B
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B
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gates

Port
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Figure 11.20 Plan of Tunis north lake. The boxes in the model were numbered anti-
clockwise, starting at the Kherredine Canal (adapted from Reeve et al.
(1991a))
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• harvesting of macroalgae;
• installation of a ‘separation dam’ running from Chekli Island to the

Kherredine Canal;
• installation of tide-driven gates to promote an anticlockwise residual

flow around the lake;
• initiation of a water-quality monitoring programme;
• mathematical modelling studies of the water quality and ecological

evolution of the lake.

The mathematical model was intended to be used for verification of the
efficacy of the restoration programme, for prediction of future conditions
and as a design tool for further water-quality improvement measures, while
being sufficiently economical in terms of computing power to run on a
modest microcomputer.

The modelling system consisted of two parts: a depth-averaged hydro-
dynamic flow model, together with a water-quality module to predict the
dispersion of waste-water inputs over the order of a few days; and an eco-
logical model driven by the net tidal flow, wind, temperature and light
variations. In addition to the flap gates at Kherredine, there was a cooling-
water discharge into the lake from the STEG electricity-generation plant,
and smaller outlet flap gates at Tunis Marine and Chekli gates. All gates
function independently, based on the local lake water levels. The tidal vari-
ation of water levels is very small (∼15–20 cm), so the net flow is small and
can be strongly influenced by the prevailing wind. Residual currents were
determined by averaging the flow over a tidal cycle. Figures 11.21 and 11.22
show the computed residual currents for the cases of no wind and a 10 m/s
wind from the south-west. The effect of the wind is very marked, producing
complex circulation patterns in the lake. The no-wind case shows several
dead zones in the southern half of the lake.
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Figure 11.21 Residual flow with no wind (adapted from Reeve et al. (1991b))
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Figure 11.22 Residual flow with a constant 10 m/s wind from the south-west (adapted
from Reeve et al. (1991b))

Residual flows for typical monthly wind conditions were computed using
the hydrodynamic model. In addition, the net positive and negative flows
across each of the boundaries shown in Figure 11.20 were computed for
use in the ecological model, which was set up as a sequence of six boxes.
The flows through the tide gates, across each box boundary and the inflows
(STEG) and outflows (Tunis Marine and Chekli outlet) were set at typi-
cal monthly values. Figure 11.23 shows examples of field measurements of
dissolved oxygen at the locations marked 1, 2, . . ., 5 in Figure 11.20. Of par-
ticular note are the drop in the dissolved oxygen concentration below target
levels in September 1988 and again in July 1989 at location 4 and the quite
low levels at location 5. The ecological model was set up with typical initial
concentrations of the state variables based on the values obtained in the field
monitoring and simulations computed for 5–10 years. Figure 11.24 shows
the computed time series of dissolved oxygen and nitrogen in the sediment
in the six boxes.

The cyclical nature of the population density of phytoplankton and
macroalgae are accurately reproduced. In the spring the phytoplankton pop-
ulation rises rapidly. This is followed several weeks later by a slower growth
in the macroalgae population. If phytoplankton predominate in the ensuing
competition there is a large-scale bloom throughout the summer months,
which diminishes if heat stress is excessive.

The bloom often lasts into the autumn, when the lower water tem-
peratures and reduced light intensity reduce the algae growth rate and
the population returns to its relatively low winter levels. If macroalgae
predominate they will flourish throughout the summer, limited only by self-
shading and nutrient supply. In times of high water temperature (>26◦C)
the heat stress can cause a high mortality rate in macroalgae, resulting
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Osment et al. (1991))
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Figure 11.24 (a) Computed time series of dissolved oxygen (mg/m3) in the six boxes. (b)
Computed nitrogen in the sediment in each box. (adapted from Reeve et al.
(1991a))

in very depressed dissolved oxygen levels. In years when a catastrophic
event (widespread release of hydrogen sulphide) occurs, the release of
nutrients from decaying macroalgae can cause a brief secondary bloom
in phytoplankton, while the high temperatures prevent the macroalgae
from re-establishing itself. As observed from measurements, the model pre-
dicted macroalgae growth in those parts of the lake that are shallow and
that have a steady supply of nutrients. In this particular ecosystem, in
regions where macroalgae dominate the phytoplankton, substantial reduc-
tions in the nutrient pools in the sediments occurred over the course of
three years. This is due to nutrient uptake by the macroalgae and then
transport out of the system by tidal pumping when the macroalgae die and
return nutrients into solution. The converse is true in areas where phyto-
plankton dominates. The modelling suggested that encouraging macroalgae
growth coupled with harvesting could be used to counter eutrophication.
However, very close controls are needed on nutrient inputs to ensure an
improvement.

11.7.3 Rivers Don and Dee dispersion and ecological
modelling

This example, courtesy of Halcrow Group Ltd, combines coastal tidal
modelling (see Chapter 12) and water-quality and ecological modelling.
Aberdeen, one of the main cities on the east coast of Scotland, has an
extensive sandy beach bounded by the Rivers Dee and Don, which is used
for water sports and bathing (Figure 11.25). The most popular stretch
of the beach was designated as Bathing Water in 1987 under EC Direc-
tive 76/160/EEC, which provides the quality standards that the beach
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Figure 11.25 Location map showing the extent of the regional and local area models, and
the location of the water-quality sampling stations

must meet. There are two sets of standards: Mandatory standards have to
be achieved, and Guideline standards that are more stringent. EU Direc-
tive 91/271/WWC (CEC 1991) concerns urban waste-water treatment. It
stipulates that secondary (biological) treatment of waste water should be
the normal practice. However, the Directive states that for population
equivalents below 150,000 a reduced level of treatment is acceptable for
exceptional circumstances, including regions that are designated as Less
Sensitive Zones. The Urban Waste Water Treatment (Scotland) Regulations
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1994 (Scottish Office 1994) expand on and clarify the EU Directive as it
applies to Scotland. In particular, it defines Areas of High Natural Disper-
sion, which are considered to meet the criteria for formal identification as
a Less Sensitive Zone. Thus, certain coastal waters of the Grampian region,
including the waters north and south of Aberdeen, have been designated
as Areas of High Natural Dispersion. Any application under Article 8.5
of UWWTD requires detailed investigations to discover whether or not
any adverse environmental impact will be experienced by adopting primary
rather than secondary treatment standards (MPMMG, CSTT 1996).

In the 1990s, the North of Scotland Water Authority commissioned stud-
ies to determine whether the coastal waters around Aberdeen might be
classified as a Less Sensitive Zone. Preliminary treatment of waste water
from Aberdeen and its environs was provided by a headworks and a long
sea outfall. This served a (then) current population of about 180,000 (an
estimated population equivalent of 400,000 based on standard BOD loads)
and had been in operation since 1988. The outfall discharged the raw
sewage effluent after preliminary treatment of screenings maceration and
grit removal.

Tidal-flow information included tidal ranges and Tidal Diamonds from
Admiralty Charts and Tide Tables, and tidal constituents from Proud-
man Oceanographic Laboratories’ coastal-shelf model. Additional flow data
were provided by drogue tracks obtained during two separate field sur-
veys carried out in 1972 and 1973 for the Aberdeen and Balmedie long
sea outfalls.

Field-sampling exercises provided measurements of physical and chemical
parameters, including currents, temperature, salinity, chlorophyll and other
water-quality determinants. Measurements were taken under spring- and
neap-tide conditions over the periods July–September 1994 and March–
May 1995. Seabed-ecology monitoring was undertaken in the area sur-
rounding the outfall in 1988, 1991 and 1995, and covered the period
both prior to the construction and commissioning of the outfall (1988) and
following its entry into operation (1991, 1995).

Monthly average values of water-quality determinants (including phos-
phates, nitrogenous compounds and chlorophyll) were derived from data
gathered over the course of many years, and are reported by Turrell
and Slesser (1992). Good agreement was achieved between the long-term
monthly average values of dissolved available inorganic nitrogen (DAIN)
and the sample data collected during the two surveys.

Inputs from the nearby Rivers Don, Dee and Ythan, together with outfall
flows and loads are summarized in Table 11.2.

The assessment of the initial dilution achieved at the outfall was based
on the design drawings of the Aberdeen Long Sea Outfall diffusers section
and the methodology of Metcalf & Eddy Inc. (1991). This relates initial
dilution to diffuser design, discharge rate, water depth, current speed, the
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Table 11.2 Summary of inputs and loads.

Source Flow
(m3/s)

DO
(mg/l)

BOD
(mg/l)

SS
(mg/l)

DAIN
(mg/l)

Escherichia coli
(coliforms/100 ml)

DAIP
(mg/l)

Aberdeen long
sea outfall
(dry-weather
flows)

Untreated (1991) 0.84 0.5 270 434 30.0 109 6.00
Primary (2001) 1.11 3.5 152 130 27.0 107 5.00
Secondary

(2001)
1.11 7.0 12 17 25.0 104 3.00

River Ythan 2.70 10.6 – – 7.5 – 0.05
River Don 9.50 10.6 – – 2.5 – 0.19
River Dee 23.60 10.6 – – 0.5 – 0.02
Fish factory 0.06 – – – – – –

BOD, biochemical oxygen demand; DAIN, dissolved available inorganic nitrogen; DAIP, dissolved
available inorganic phosphorus; DO, dissolved oxygen; SS, suspended sediment.

density difference between effluent and ambient, and the vertical density
structure of the water column.

In order to assess the hydrographic characteristics of the receiving waters
a three-tier system of numerical models was set up. The primary model
was a depth-averaged tidal flow covering the whole Grampian Region
coastline and having a grid mesh size of 1 km. This regional model pro-
vides boundary data to drive a local tidal flow and water-quality models
constructed within its boundaries. The regional model had three open-
sea boundaries along which values of surface elevation were applied to
each model cell along the boundaries at each time step. These boundary
data were generated from harmonic data for 61 tidal constituents defined
at 12 locations spaced at approximately equal distances around the open
boundary.

The secondary hydrodynamic model was used for short/medium-term
investigation of dissolved oxygen, BOD and suspended solids. This was
driven along its boundaries by the primary hydrodynamic model. The sec-
ondary model was approximately 50% larger than a single tidal excursion
either side of the discharge and covered a 36 km length of coastline (see
Figure 11.24) using a grid mesh size of 200 m. This model was also used to
compute the residual flow information to drive the third model in the sys-
tem: the ecological model which predicts interannual variations in nutrient
and chlorophyll concentrations.

It is necessary to calibrate and validate the models against data inde-
pendent of those used to drive the model. For the regional tidal model,
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Figure 11.26 Validation of the local hydrodynamic model. Dashed line: observed float
track. Solid line: track predicted using the local model. Dotted line: track
predicted by the regional model

surface-elevation data computed from Admiralty Tide Tables and current
velocities presented on Admiralty Charts for specific locations shown by
Tidal Diamonds were used. For the local model, drogue measurements were
used for validation (Figure 11.26). The track predicted by the local model is
up to 1 km away from that observed in some places. This is not uncommon
because the actual drogue can be affected by surface winds (not included
in the hydrodynamic model) and will drift with the surface current, not the
depth-averaged current. The agreement is considered good, and the results
provide a conservative estimate of the dispersion.
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Figure 11.27 Example of the output from the ecological model. DAIN, dissolved available
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The equations for the water-quality variables were solved in conjunc-
tion with a two-dimensional version of equation (11.57) to describe the
exchange of water between the boxes. The model was run to create
predictions for several years. Figure 11.27 shows an example of the type
of prediction that can be achieved. Note that, in this case, there is a strong
annual cycle, with gradual changes between successive years.

Figure 11.28 shows the good level of comparison achieved between
the ecological model predictions and the sampling results at one of the
most frequently monitored sampling stations. Dissolved available inorganic
phosphorus (DAIP) and dissolved oxygen are slightly overestimated, while
chlorophyll and particulate organic carbon are slightly underestimated. In
comparison with the variability in measured values, these differences are
modest. Dissolved oxygen levels remain very satisfactory, suggesting that
the waters are not eutrophic.

Also of interest was the rate at which enterobacteria present in the waste
water would be dispersed to safe concentrations in the event of a leakage
from the outfall arising from, for example, a fault in the diffuser or failure
of a pipe joint. To investigate this, the local model was used to calculate
the bacterial concentrations over a few tidal cycles, on the assumption of a
large continuous release of waste water from the long sea outfall. Worst-case
conditions (for the beaches) would be an onshore wind, which was included
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Figure 11.28 Comparison of the ecological model output and sampled determinants.
[DAIN-dissolved available inorganic nitrogen]

in the simulation shown in Figure 11.29. Even with an onshore wind the
tidal action moves the plume predominantly north–south, which has a rapid
diluting effect.

As a result of these studies, secondary treatment at the waste-water plant
was postponed while further data gathering continued and the local author-
ity considered further options. It was known that bacteria had also been
present in the Rivers Don and Dee due to point-source discharges of sewage
or to rainfall run-off from urban or agricultural land. Quantification of
these loads was felt to be quite uncertain.

Nevertheless, Aberdeen beach has always met at least the Mandatory
standards, and achieved Guideline standards in 2006 for the first time since
1999. In March 2006 the revised Bathing Water Directive (2006/7/EC) came
into force and was enacted in the UK by Regulations in March 2008. As a
result of the technical and legal considerations, the main waste-water treat-
ment plant serving Aberdeen was upgraded to provide secondary treatment.
Furthermore, part of the Dee and Don catchments was designated as a
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Figure 11.29 Predicted bacterial concentrations over 28 h under adverse (onshore) wind
conditions in the event of a spill from the outfall

Nitrate Vulnerable Zone. Farmers with land within the zone are required
to develop Farm Action Plans to reduce the polluting impact of their activi-
ties. The plans are specifically aimed at controlling nutrients, but they may
lead to a reduction in bacteria levels as well.
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Chapter 12

Modell ing of coastal and
nearshore structures and
processes

12.1 Introduction

Accurate predictions of storms are required to design sea defences to protect
against flooding and erosion. These predictions are also used by govern-
ments to support cost-effective schemes and by operational agencies for
emergency flood planning. Novel approaches to coastal defence that har-
ness, rather than combat, the energy of the sea are being developed but are
in relative infancy. A better understanding of their long-term environmental
impacts is necessary.

The threat of rising sea levels and the associated coastal erosion give an
increased impetus to the modelling – both mathematical and physical – of
coastal processes. In this chapter the focus is on the associated physics and
processes forming the necessary background to any modelling procedure,
and on the practical modelling aspects, with a few examples. The complex
interaction between waves, currents, coastal, nearshore and offshore struc-
tures and their foundations is the subject of ongoing research. Key principles
of the underlying theory and approaches to this topic are given in this text.
The reader is referred to the papers in the references for further detail – and,
indeed, to some other topics in this chapter – can be given in this text.

12.2 Physics and processes

12.2.1 Water-level variations

Water-level variations at the coast very often take the form of long-period
waves, and can be classified as:

• Astronomical tide – periodic variations due to the tide-generating
forces. These are well understood and can be predicted with good
accuracy many years in advance;

• Storm surge – variations in water level due to the passage of atmo-
spheric weather systems across the surface of the sea. Storm systems
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are significant because of their frequency and their potential for causing
large water-level variations in conjunction with large wind waves;

• Basin oscillations or seiches – resonant responses of partially enclosed
water bodies to external forcing.

Tsunamis are also surface waves; they are associated primarily with sub-
sea seismic disturbances. Apart from a few examples in Japan, defences
against tsunamis are rarely constructed. There are several reasons for this.
It is extremely difficult to predict when and where an earthquake will occur,
and if it has occurred, it is still very difficult to determine whether it will
generate a tsunami. Although there are models that can predict the gen-
eral propagation characteristics of tsunami waves, they are not so good at
predicting the details of the wave height and period on a local scale. For
small tsunamis, existing defences can provide a partial defence; for large
tsunamis, the cost of constructing a suitably robust defence is exorbitant.
The design of tsunami defences is in its infancy, and there is little practical
or tested experience of successful tsunami defence design. A detailed discus-
sion of tsunamis is beyond the scope of this book, and the rest of this section
focuses on tides and surges.

12.2.1.1 Tides

Sea charts (known as Admiralty Charts in the UK) provide depth, tide and
landmark information for seafarers and mariners. There are thousands of
charts available from the UK Hydrographic Office which cover most of the
world in various levels of detail. Approaches and entrances to harbours are
usually covered in the greatest detail, with medium-scale charts covering
coastal areas and small-scale charts covering the open seas. Primarily meant
for navigational assistance, the charts are also a useful first source of infor-
mation for coastal engineers. They provide depth contours and spot heights
of the bathymetry as well as information on the tidal currents (in the form
of ‘tidal diamonds’), tide levels and other information useful for navigation.
Depths are usually given relative to ‘Chart Datum’ (CD). By convention, on
UK and many other charts, the zero of Chart Datum is the level of Lowest
Astronomical Tide (LAT). A notable exception is the United States’ National
Oceanic and Atmospheric Administration (NOAA), which uses as a datum
the mean lower low-water level, defined as the average of the lowest tide
recorded at a tide station each day during the recording period.

The tide levels commonly quoted on tidal charts and tables are:

• HAT – highest astronomical tide, the maximum tide level possible given
the harmonic constituents for that particular location;

• MHWS – mean high water of spring tides;
• MHWN – mean high water of neap tides;
• MTL – mean tide level;
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• MLWN – mean low water of neap tides;
• MLWS – mean low water of spring tides;
• LAT – lowest astronomical tide, the minimum tide level possible given

the harmonic constituents for the location.

These levels are illustrated in Figure 12.1(a). The Mean Sea Level (MSL) is
calculated as the average level of the sea at a given site over a long period
of time (usually years). If atmospheric effects do not cancel out to zero, the
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Figure 12.1 (a) Commonly used levels related to tides. (b) Illustration of the type of
information available on sea charts – tidal diamonds and depth contours
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MSL will be different from the MTL as it contains sea-level fluctuations
due to atmospheric and wave effects as well as the tidal forces. Tidal dia-
monds are symbols on UK Admiralty Charts that indicate the direction and
speed of the tidal flow at different stages of the tide. The symbols consist
of a capital letter in a ‘diamond’. There may be many or no tidal diamonds
on a particular chart, depending on the information available to the chart
compositor. Each tidal diamond has a unique letter, starting from A and
continuing alphabetically. Somewhere on the chart will be a table similar
to the one shown in Figure 12.1(b), which contains thirteen rows and three
columns for each diamond. The rows are the hours of the tidal cycle show-
ing the 6 h from low water to high water, high water itself and then the 6 h
from high water to low water. The columns show the bearing relative to
north of the tidal flow and its speed (in knots) at both spring tide (Sp) and
neap tide (Np).

Tide tables are normally produced by national oceanographic or port
organizations. For example, in the USA tide tables are published by NOAA,
and in the UK they are produced by The Admiralty. These tables will often
contain predictions for high and low water for the main ports in a defined
region of the world. Also included in the tables is information on the main
tidal constituents from which a tidal curve can be constructed.

Water levels are measured by a variety of means. In estuarine and port
locations it is quite common for recording to be only semi-automated. A
popular method used to be to take manual readings from a tide board (a
timber or metal rule that has levels relative to a known datum marked on it).
Nowadays, many tide gauges are automated and the data recorded digitally
in a form suitable for analysis. (‘Tide gauge’ is actually a misnomer because
the gauge measures total water level, not the water level due to tides alone.)

Tides display an inherent regularity, due to the regularity of astronomi-
cal processes. As a result, certain harmonics can be identified easily from
observations of tide levels. Harmonic analysis describes the variation in
water level as the sum of a constant mean level, contributions from specific
harmonics and a ‘residual’:

η= Z0 +
n∑

i=1

ai cos (�it −φi) + R(t) (12.1)

where η is the water level, Z0 is the mean level above (or below) local datum,
�i is the frequency of the ith harmonic (obtained from astronomical theory –
see Chapter 11), ai is the amplitude of the ith harmonic (obtained from
astronomical theory), φi is the phase of ith harmonic, n is the number of
harmonics used to generate the tide, t is the time, and R(t) is the residual
water level variation or ‘surge’.

Given a sequence of water-level measurements, equation (12.1) may be
used to determine ai, φi and R(t) for a selected group of i tidal harmonics.
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The numerical procedure involves fitting a sum of cosine curves to the
measurements. Values of �i are taken to be known from equilibrium theory,
and ai and φi are determined by choosing the values that give the best fit
to the measurements. The difference, or residual, is R(t). This represents
a combination of numerical errors arising from the fitting calculations,
measurement errors and water-level fluctuations not attributable to the
selected tidal harmonics.

The general form of the tidal variations at a given location can be
categorized by the tidal ratio F, which is defined as

F = K1 + O1

M2 + S2
(12.2)

where the tidal symbols denote the amplitudes of the corresponding tidal
constituent. This ratio is a measure of the relative importance of the diur-
nal constituents to the semi-diurnal constituents. The forms of tide may be
classified as follows and are also shown in Figure 12.2:

(i) F = 0.0–0.25 (semi-diurnal form). Two high and low waters of approx-
imately the same height. Mean spring tide range is 2(M2 + S2).

(ii) F = 0.25–1.50 (mixed, predominantly semi-diurnal). Two high and low
waters daily. Mean spring tide range is 2(M2 + S2).

(iii) F =1.50–3.00 (mixed, predominantly diurnal). One or two high waters
per day. Mean spring tide range is 2(K1 + O1).

(iv) F>3.00 (diurnal form). One high water per day. Mean spring tide range
is 2(K1 + O1).

The tidal curves in Figure 12.2 all exhibit modulation of the diurnal or
semi-diurnal tide. This modulation arises from the superposition of two (or
more) harmonics. Times when the maximum amplitudes occur are known
as ‘spring tides’ and, conversely, times when the smallest amplitudes occur
are known as ‘neap tides’.

12.2.1.2 Surges

Figure 12.3 shows a typical set of measurements taken on the Norfolk (UK)
coast, the reconstructed tidal trace determined using the computed harmon-
ics, and the residual or surge. The time period is 1–16 April 2001 and the
vertical axis shows the level in metres relative to a local datum.

The residual, which is considered to be the contribution of all non-tidal
effects on the total water level, can be both positive and negative. For exam-
ple, a storm will be associated with low surface pressure, and consequently
a positive residual. Conversely, periods that are dominated by high surface
pressure are likely to coincide with negative surge.
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Figure 12.3 Water-level time series, reconstructed tidal curves and the residual (Reeve
et al. (2004))

As noted above, the residual computed from a harmonic analysis will be
the aggregation of measurement and numerical errors, errors arising from
any truncation of the harmonic series, as well as the ‘surge’. Surge is a
generic term that covers all non-tidal water-level variations. In a coastal
context, it can include static surge, dynamic surge, wind set-up, wave set-up
and seiches. Static or barometric surge is simply the barometric effect of low
surface air pressure leading to a slight upward ‘bulging’ of the sea surface.
In a hydrostatic fluid at rest, equation (11.7) gives

∂p
∂x

=−ρg
∂η

∂x
(12.3)

for a single space dimension. Integrating with respect to x and making the
appropriate dimensional adjustments for units we obtain

ηB = 0.01(1013 − pa) (12.4)
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where ηB is the barometric surge in metres and pa is the atmospheric pressure
in millibars.

Dynamic surge refers to propagating Kelvin wave disturbances that are
triggered by moving storm systems. To forecast this component of surge
it is necessary to use numerical prediction with, for example, the shallow-
water equations as described in Chapter 11. Another component of surge
is wind set-up. Wind blowing over the surface of the sea induces a surface
stress. This force is balanced by a gradient in the sea surface, as discussed in
Chapter 11, equation (11.27):

dηw

dx
= τs

ρwgd
= C10

W2

ρwgd
(12.5)

where ηw is the wind set-up, τs is the surface stress, W is the surface wind
speed, ρw is the density of water, d is the undisturbed water depth and C10

is a drag coefficient of the order of 10−3. In engineering manuals, the wind
set-up is usually estimated by first computing the gradient in equation (12.5)
and then noting that the set-up at the downwind coast will be the gradient
multiplied by half the fetch length. (The reason for this is that, by continu-
ity, there will be a corresponding wind set-down at the upwind boundary.)
That is,

ηw = C10
W2

ρwgd
F
2

(12.6)

where F is the fetch length. Under severe gale conditions with W ≈ 50m/s,
a fetch of 100 km, a water depth of 10 m and C10 = 0.0025, the wind set-up
is ∼3.2m. In practice, wind set-up is rarely as large on the coast because
storms there are relatively small in relation to the scale of the oceans and
the assumptions leading to equation (12.6) are not fully met; storms are
relatively localized, so the water rarely has time to take up the static equi-
librium shape suggested by equation (12.6). Nevertheless, under hurricane
conditions (W>73m/s) wind set-up on the coast can be several metres.

Seiches have been discussed in Chapter 11, and before wave set-up can be
described some background on ocean waves is required.

12.2.2 Waves

Ocean waves are mainly generated by the action of wind on water. The
waves are formed initially by a complex process of resonance and shear-
ing action, in which waves of different height, length and period are
produced, travelling in various directions. Once formed, ocean waves are
a very effective mechanism for transferring energy over large distances.
As they propagate away from the area of generation, waves spread and
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reduce in height, but maintain their frequency and wavelength. The wave
speed depends on the frequency, and therefore outside the storm-generation
area the sea state evolves as waves of different frequencies and direc-
tions separate. In the generation area waves of different frequencies are
not separated. This is termed a wind sea condition. Thus, wind waves
may be characterized as irregular, short crested and steep containing a
large range of frequencies and directions. The low-frequency waves travel
faster than the high-frequency waves, resulting in a swell sea condition.
Consequently, away from the generation area, long-period (low-frequency)
waves will predominate. Swell waves tend to be fairly regular, long
crested, directional and not very steep, and contain a narrow range of low
frequencies.

As waves approach a shoreline, their height and length are altered by
the processes of refraction and shoaling before breaking on the shore. The
region where waves break is termed the surf zone. It is in this region that
some of the most complex wave-transformation processes occur. The flow is
highly turbulent and energetic, which can create large amounts of sediment
transport. The energy in the waves is also converted into cross-shore and
longshore currents, as well as a set-up of the mean water level.

Where coastal structures are present, waves may also be diffracted
and reflected, resulting in additional complexities in the wave motion.
Figure 12.4 shows some of the main wave-transformation and wave-
attenuation processes that must be considered by coastal engineers in
designing coastal defence schemes.

Figure 12.4 Port at Ehoala, Madagascar, showing wave diffraction, reflection and breaking
near the breakwater head, and shoaling and breaking at the shore (courtesy
of RTZ)
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A brief introduction to the main points underlying much of the wave the-
ory used in coastal engineering is given here (see also Sections 4.2 and 4.5).
A more detailed discussion can be found in texts devoted to wave theory.
Consider first the idealized situation of a small-amplitude wave propagating
in the absence of any forcing. This simple case is known as Airy wave the-
ory. As the restrictions of this simple case are removed, so the complexity of
the solutions increases.

Under the following assumptions:

(1) The water is of constant depth and the wave is of constant period;
(2) The wave motion is two-dimensional;
(3) The waves are of constant form;
(4) The fluid is incompressible;
(5) The effects of viscosity, turbulence and surface tension are neglected;
(6) The wave height H is small in comparison to the wavelength L and

water depth h;

the conservation of mass can be written in terms of the Laplace equation

∇2φ= 0

The velocity potential φ is defined in terms of the horizontal and vertical
components of the velocity (u and w, respectively), as

u = ∂φ

∂x
w =−∂φ

∂z
(12.7)

where x and z are the horizontal and vertical coordinates, respectively, and

∂u
∂x

+ ∂w
∂z

= 0

The conservation of momentum is governed by the unsteady Bernoulli
equation. These equations, together with linearized dynamic and kinematic
boundary conditions for the bed and free surface, constitute the basic set
of equations for linear wave theory. Their solution can be found using
separation of variables (Airy (1845), Stokes (1847)):

φ(x, z, t) = Hg
2ω

cos h
{
k(h + z)

}
cos h{kh} cos (kx −ωt) (12.8)

where H is the wave height, ω is the wave frequency (= 2π /wave period),
k is the wave number (= 2π /wavelength), g is the acceleration due to the
earth’s gravity and h is the undisturbed depth of water in which the wave
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is propagating. Note that corresponding expressions for the components
of velocity can be obtained by substituting equation (12.8) into equa-
tion (12.7). We denote the wave period by T (and write f = 1/T) and the
wavelength by L. The speed of propagation of the wave (or phase speed) is
given by

c = L
T

= ω

k
= g

ω
tan h(kh) or ω2 = gk tan h(kh) (12.9)

The latter expression is known as the ‘dispersion relation’. It demon-
strates that the wave speed depends on water depth, wave period and
wavelength. It may be solved to find the wavenumber (and hence wave-
length and phase speed) given the wave period and water depth. The wave
energy is transmitted at the group wave velocity cg. For dispersive waves
such as linear water waves, the group velocity is not identical to the phase
velocity. The group wave velocity is given by

cg = c
2

(
1 + 2kh

sinh(2kh)

)
and the wave power, or rate of transmission of wave energy P, is given by

P = cgE

where E is the energy of the wave given by ρgH2/8, and ρ is the density of
seawater. Two important wave-transformation processes can be described
using linear theory. These are shoaling and refraction. Shoaling occurs when
waves travel over a seabed of varying depth. Consider a wavefront travel-
ling parallel to the seabed contours. Under the assumption that the wave
propagates without energy loss, the wave power transmission in deep water
and in shallow water is identical. Thus

H
H0

=
(

cgo

cg

)1/2

≡ KS

where KS is termed the ‘shoaling coefficient’. Physically, what happens is
that wave heights tend to increase as waves propagate into shallower water.
When a wavefront travels obliquely to the seabed contours, Snell’s law may
be used in conjunction with the assumption of no energy loss, to derive the
relationship

H
H0

=
(

cos (α0)
cos (α)

)1/2(cgo

cg

)1/2

≡ KRKS (12.10)
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where KR is termed the refraction coefficient. Physically, what happens is
that a wavefront crossing a contour line obliquely will start to realign
itself so that it is more closely parallel to the seabed contours. The pro-
cess of diffraction occurs when a wave passes an obstruction such as the
end of a harbour breakwater. The wavefront is curved in the lee of the
obstruction, as is evident in Figure 12.4. Diffraction cannot be treated in
quite such a straightforward manner as shoaling or refraction. However,
nomograms are available for evaluating combined refraction and shoal-
ing effects, as well as accounting for diffraction (e.g. Coastal Engineering
Manual (2009)), and provide a quick and reasonably accurate and practical
method.

Wave reflection can also be explained using linear theory by consider-
ing the superposition of two waves of identical amplitude and frequency
but propagating in opposite directions, and a boundary condition of zero
horizontal flow at the location of the reflecting structure. The result-
ing expression for the sea-surface elevation describes a standing wave
that has a maximum amplitude at the reflecting surface and at loca-
tions (antinodes) spaced regularly every half-wavelength away from the
reflector.

There are two criteria that determine wave breaking. The first is a limit
to wave steepness and the second is a limit on the wave-height/water-depth
ratio. The two criteria are given by:

(1) Steepness H/L < 1/7. This normally limits the height of deep-water
waves;

(2) Ratio of wave height to water depth. This ratio is known as the ‘breaker
index’ and, as a rule of thumb, can be taken as 0.78. In practice, the
breaker index can vary from about 0.4 to 1.2, depending on beach slope
and breaker type.

Goda (2000) provides a design diagram for the limiting breaker height
of regular waves, which is based on a compilation of a number of lab-
oratory results. Wave breaking is generally a difficult process to simulate
numerically because the overturning of the wave is difficult to capture using
methods that are based on a fixed grid of points. Various techniques have
been developed to simulate breaking, ranging from a simple restriction of
the wave energy to a maximum given by a breaker index, through more
sophisticated roller models that assume wave breaking of a particular form
(see Svendsen (2006)), to direct numerical simulation. The manner in which
waves break depends on the steepness of the slope they are propagating
over, as well as the wave period. Breaking waves may be classified as one
of three types, as shown in Figure 12.5. A reasonable guide to the type of
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Spilling ξ b < 0.4

Plunging 0.4 < ξ b < 2.0

Surging ξ b > 2.0

Figure 12.5 Wave-breaking classification (Reeve (2009))

breaking to expect can be determined by the value of the surf similarity
parameter (or Iribarren Number)

ξb = tanβ/

√
Hb

Lb
(12.11)

where tan β is the beach slope and the subscript b refers to values at the
point of wave breaking. A common form of classification of breaking-
wave types is shown in Figure 12.5, although there are variations in the
literature.

12.2.3 Wave set-up

A phenomenon known as wave set-up arising from the wave radiation stress
is also important for coastal locations. This is defined as the excess flow of
momentum due to the presence of waves (with units of force/unit length),
and is due to the orbital motion of individual water particles in the waves.
These particle motions produce a net force in both the direction of prop-
agation and at right angles to the direction of propagation. The original
theory was developed by Longuet-Higgins and Stewart (1964). Its applica-
tion to longshore currents was subsequently developed by Longuet-Higgins
(1970). Further derivations, as well as the application of this idea to a
simple model in which the radiation stresses are balanced by the sea sur-
face gradient, can be found in Reeve et al. (2004). In this case it is shown
that the wave set-up may be approximated by ∼25% of the breaking-wave
height.
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12.2.4 Random waves

The distribution of wave energy across frequency and direction is described
by the directional wave spectrum E(f , θ ), where f is the wave frequency
(in hertz) and θ is the wave direction (in radians). The directional wave
spectrum, the units of which are usually metres squared second (m2 s), is
often written in the form

E(f , θ) = S(f )G(θ, f ) (12.12)

where S(f ) is the frequency spectrum and G is a directional spreading
function that satisfies

2π∫
0

G(θ, f )dθ = 1 (12.13)

and the frequency spectrum therefore satisfies

S(f ) =
2π∫

0

E(f , θ)dθ (12.14)

Various analytical forms have been proposed for both S(f ) and G(θ, f )
on the basis of theoretical and observational considerations. Some of
the more widely used forms are the Pierson–Moskowitz, JONSWAP and
TMA spectra, which are applicable to open seas, fetch-limited conditions
and depth-limited conditions, respectively. For reference, the JONSWAP
spectrum is given here:

S(f ) = αg2

(2π)4f 5
exp

[
−1.25

(
f
fm

)−4
]

γq (12.15)

where α= 0.076(gF/U2)−0.22, with U the wind speed at 10 m above the sea
surface and F the fetch length, and

q = exp

(
− (f − fp)2

2σ 2f 2
p

)

with

σ =
{

0.07 f ≤ fp

0.09 f > fp
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and γ = 3.3. The frequency at which the spectrum attains its maximum
value is denoted by fp. The value for the peak enhancement parameter γ is
an average figure derived by Hasselmann et al. (1973). Gaussian or cosine-
squared functions are often employed for the directional spreading function.
Here, we give the modified cosine power law proposed by Mitsuyasu et al.
(1980):

G(θ, f ) = 1
2
√

π

�(s + 1)
�(s + 1/2)

cos2s

(
θ − θm

2

)
(12.16)

where

|θ − θm|<π s = sm

(
f
fp

)μ

sm = 9.77 (12.17)

and

μ=
{ −2.33 for f ≥ fp

4.06 for f < fp

}
Γ (x) is the gamma function (see e.g. Gradshteyn and Ryzhik (1980)) and θm

is the mean wave direction. The use of a Gaussian spread in wave directions
has since been supported by the theoretical work of Reeve (1992), who
considered the directional scattering effect of a plane wave propagating over
a randomly varying seabed.

Figure 12.6 illustrates the directional spectrum and an idealized direc-
tional spreading function. Random waves are often described by the sig-
nificant wave height Hs and mean period Tm. The significant wave height
is the mean height of the largest third of the waves and corresponds
(approximately) to the wave height by which an experienced observer would
characterize the conditions. The mean wave period is the average wave
period taken over a sequence of individual waves.

12.2.5 Wave overtopping

When waves meet a dune or wall, they will run up the slope. If the waves
are large enough, the wave will run up to the crest level and over the
top. This is known as wave ‘overtopping’ and can lead to damage of the
structure, erosion of the dune and flooding. When waves meet a structure,
they may be unbroken, already broken or actually break on the struc-
ture. This last case provides the most spectacular displays of overtopping,
like the one shown in Figure 12.7. For the majority of coastal structures it
is the amount of overtopping that determines the elevation of the crest of
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Figure 12.6 Directional spectra: (a) idealized directional spectral density, (b) idealized
directional spreading function (Reeve et al. (2004))

Figure 12.7 Waves breaking over Alderney breakwater, October 2002 (courtesy of
Dr C Obhrai)
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the structure. Modern design practice uses the mean overtopping rate as a
criterion rather than wave run-up, whereas early designs, in the absence of
reliable experimental measurements, used wave run-up as a surrogate for
overtopping.

Formulae for estimating overtopping rates are normally couched in terms
of a mean discharge (l/sec per metre run) and can appear to be rela-
tively small values. However, the actual discharge occurs as a sequence of
individual events. The formulae are empirical, being based on laboratory
experiments, so there are limitations to their accuracy, and it should be
borne in mind that the formulae represent the best fit to points that exhibit
considerable scatter. Some of the earliest work on wave overtopping was
carried out by a number of investigators, most notably Owen (1980), who
established the formulation framework that continues to be used today. It is
generally accepted that even the most reliable methods cannot provide abso-
lute discharges, and they can only be assumed to produce overtopping rates
that are accurate to within one order of magnitude. Indeed, there are many
ways to fit a curve to data, and Hedges and Reis (1998) provide an alterna-
tive model to Owen’s that is based on the same set of data but incorporates
additional physics-based constraints.

The most recent definitive and comprehensive work, which addresses
overtopping for different structural forms, has been carried out and pub-
lished as the on-line European Overtopping Manual (EurOtop), which
retains Owen’s framework as an option suitable for UK designs. For
reference, the formula due to Owen is given below.

The mean overtopping discharge (m3/s/m) for a plain, rough, armoured
slope may be calculated using the equation

Qm = TmgHsAe
−B Rc

rTm
√

gHs (12.18)

where Rc is the freeboard (defined as the height of the crest above the still
water level), Hs is the significant wave height, g is the acceleration due to
gravity, Tm is the mean period of the wave at the toe of the structure, A and
B are empirical coefficients dependent on the slope of the structure, and r
is the roughness coefficient (lying between 0 and 1). Values of A, B and r
can be found in Owen (1980) or EurOtop for a range of different structure
types and configurations.

12.2.6 Wave forces

Wave forces on coastal structures depend on both the wave conditions and
the type of structure being considered. Wave forces are highly variable,
and three different cases of wave impact need to be considered: unbroken;
breaking; and broken waves. Coastal structures may also be considered as
belonging to one of three types: vertical walls (e.g. quay walls and caisson
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breakwaters), sloping structures (e.g. rubble-mound breakwaters) and indi-
vidual piles (e.g. offshore wind-turbine towers, oil rigs and jetties). Here,
only a brief discussion of some of the main concepts is given, together with
references for further details. For a discussion of forces acting on cylindri-
cal structures (cylindrical members of offshore structures and submarine
pipelines), see, for example, Novak et al. (2007).

The forces exerted on a vertical wall by waves comprise three parts: static
pressure, dynamic pressure forces and impact forces. When the incident
waves are unbroken, a standing wave will exist seaward of the wall and only
the static and dynamic forces will exist. These can be readily determined
from linear wave theory (see Dean and Dalrymple (1991)).

However, more commonly, the structure will need to resist the impact
of breaking or broken waves. One of the most widely used formulae for
estimating the forces in such situations is that due to Goda. The paper
by Burcharth in Abbott and Price (1994) provides a fairly recent review
of methods. Waves that break on the structure can give rise to extremely
high impulsive shocks due to breaking waves trapping pockets of air.
This is an ongoing area of research (see Allsop et al. (1996), Bullock
et al. (2000)), and there are no really well-established design formulae at
present.

For sloping structures, waves will generally break on the structure itself,
and their energy is partly dissipated by turbulence and friction, with the
remaining energy being reflected and/or transmitted. Many breakwaters are
constructed using large blocks of rock or concrete units. Methods for deter-
mining the suitable weight of rock to ensure stability under a given design
wave condition are well established (see e.g. Coastal Engineering Manual
(2009), Reeve et al. (2004)). In the case of concrete units, the design criteria
are often provided by the manufacturers on the basis of extensive laboratory
experiments.

For the case of unbroken wave forces on piles, an equation proposed
by Morison et al. (1950) may be used. This equation is empirical and
describes the contribution of two separate components. These are a drag
force induced by flow separation around the pile and an inertial force due
to the accelerating flow associated with the passage of a wave. For a vertical
pile, Morison’s equation applies, as only the horizontal flow creates a force.
From linear wave theory it is noted that these forces are 90◦ out of phase,
so the maximum total force does not occur at the peak (or trough) of the
wave, as illustrated in Figure 12.8. As the velocity varies with depth, so too
does the force. The total force acting on the pile is found by integrating over
the length of the pile. Accurate values of CD and CI are difficult to estab-
lish from field measurements, but recommended values are quoted in the
Shore Protection Manual (1984) and BS6349 (1984). (CD is a function of
the Reynolds number, varying between about 1.2 and 0.7 as the Reynolds
number increases. CI has a relatively constant value of about 2.0.)
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Figure 12.8 Time plot showing the variation in the sea surface (η), drag force (FD), inertial
force (FI) and total force (FTOT) over a wave period for the case when CD and
CI are equal

12.2.7 Sediment transport

The equation for sediment transport given in Chapter 11 (equation (11.58))
is for bedload transport of non-cohesive material. In highly turbulent flow a
significant proportion of the sediment transport is in suspension. In practice
it is often impossible to make a clear distinction between suspended load
and bedload transport. As a result, some success can be found by using
one of the so-called ‘total load formulae’ that account for both types of
transport (see also Section 4.6.3). Engelund and Hansen (1972) proposed
such a formula for q, the sediment volume per metre per second, m2/s:

q = 0.04C1.5
D

g2

(
ρw − ρs

ρw

)2

d

U5 (12.19)

where CD is a drag coefficient, d is the grain size and U is the depth-averaged
velocity. For U > 1m/s the transport rate rises rapidly. Various sediment-
transport formulae for currents and waves and for oscillating currents have
been proposed. The details of this transport process are quite complex, and
the interested reader is referred to the monograph by Van Rijn (1993).

12.3 Computational modelling

Until fairly recently, simulating wave overtopping using the Navier–Stokes
equations was beyond both the computational power of available comput-
ers and the numerical methods required to capture the intricacies of wave
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breaking. Not only was it necessary to be able to describe wave overturn-
ing, but it was also necessary to describe the rapid energy dissipation caused
by the highly turbulent flow in broken waves. The development of the ‘vol-
ume of fluid’ method, described by Hirt and Nichols (1981), was a major
breakthrough in modelling highly distorted flows. The simulation of turbu-
lence required the solution of ‘turbulence equations’ simultaneously with
an averaged form of the Navier–Stokes equations, the ‘Reynolds averaged
Navier–Stokes equations’, (RANS), (see also Section 4.3.3).

Briefly, for a turbulent flow, both the velocity field and the pressure field
can be split into mean component and turbulent fluctuations as follows:

u =〈ui〉 + u′
i (12.20)

p =〈p〉 + p′
i (12.21)

The mean flow is governed by the RANS equations as follows:

∂ 〈ui〉
∂xi

= 0, (12.22)

∂ 〈ui〉
∂t

+ 〈uj

〉 ∂ 〈ui〉
∂xj

=− 1
〈ρ〉

∂ 〈p〉
∂xi

+ gi + 1
〈ρ〉

∂
〈
τij

〉
∂xj

− ∂
〈
u′

iu
′
j

〉
∂xj

(12.23)

in which 〈 〉 denotes the mean quantities, the prime represents the turbu-
lent fluctuations, ui denotes the ith component of the velocity vector, p is
the pressure, ρ is the density, gi is the ith component of the gravitational
acceleration, and τm

ij is the molecular viscous stress tensor. The product of
the density and the correlation of velocity fluctuation, ρ

〈
u′

iu
′
j

〉
, is called the

Reynolds stress. The correlation is modelled by a non-linear eddy viscos-
ity model (modified k–ε equations, where k is the turbulent kinetic energy
and e is the turbulent dissipation rate). More details of the mathematical
formulation can be found in Lin (1998), Lin and Liu (1998) and Liu et al.
(1999).

Figure 12.9 shows an example of the type of output that can be obtained
with this type of simulation. This approach has been used to simulate wave
overtopping of seawalls and good agreement with experimental results has
been obtained (see e.g. Soliman and Reeve (2003)).

Simulation using the RANS equations is still very computationally expen-
sive, typically requiring several hours of computer time (on a desktop PC)
to simulate a few minutes of real time. For this reason, simpler forms of
equation to predict wave propagation are valuable.

The type and sophistication of numerical wave-transformation model
employed in the design of coastal structures has been, and continues to be, a
function of many factors. These include: the available models; their ease and
practicality of use; the models’ computational requirements; and the nature
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Figure 12.9 Output from the RANS model showing the initial condition and waves running
up a sloping seawall after 45 s

of the engineering study (e.g. conceptual, preliminary or detailed design).
Broadly speaking, ray models are often used in situations where diffrac-
tion is not significant (but consideration of spectral behaviour may be). For
investigations of wave penetration around breakwaters and into harbours,
models based on a wave-function description are required. For situations
where wave–structure interactions are important, models based on non-
linear Boussinesq or shallow-water equations have been employed. Only in
the last few years have fully three-dimensional numerical wave models been
developed for application to coastal engineering problems (Li and Flem-
ing (2000)). Some of these models that are in widespread use are discussed
briefly below before describing some test cases.

12.3.1 Ray tracing

During the 1970s, numerical ray models were developed (e.g. Abernethy
and Gilbert (1975)) that allowed the transformation of deep-water wave
spectra to inshore locations, accounting for refraction and shoaling. These
models relied on the principle of linear superposition and worked as fol-
lows. The offshore wave spectrum was discretized in both direction and
frequency. A refraction and shoaling analysis was performed for each
direction–frequency combination, and the resulting inshore energies were
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summed to assemble an inshore directional spectrum. From this, the stan-
dard wave parameters such as Hs and Tm could be computed. In short, the
inshore spectrum was computed from

S(f , θi) = E(f , θ0)K2
R(f , θ0)K2

S(f ) (12.24)

where the subscripts 0 and i refer to offshore and inshore, respectively. The
refraction coefficient was determined from a numerical ray tracing over a
digital representation of the seabed.

With the development of the TMA shallow-water spectrum (Bouws et al.
(1985)), which provided an upper bound on the energy content of the fre-
quency spectrum, ray-tracing models could be extended to incorporate wave
braking and other surf-zone processes in an empirical manner. This was
done by reducing the energy content of the computed inshore frequency
spectrum to the value predicted by the TMA spectrum.

Such models could provide a spectral description of the nearshore wave
climate at a point and account for refraction and shoaling, together with
an empirical treatment of wave breaking. However, they could not account
for diffraction, and were limited to describing conditions at a selected posi-
tion. Nevertheless, ray models remain in current use because of their very
modest computational requirements and because they can provide a spectral
description of nearshore wave conditions. Figure 12.10 shows an example
of this type of model. Figure 12.10(a) shows the location of Marsaxlokk Bay
(southeast end of Malta) together with a contour plot of the bathymetry
around the bay. Note the submerged spur protruding seaward from the
western side of the bay.

Figure 12.10(b) shows the results of some ray-tracing calculations. In
the top diagram, forward tracing is shown. This involves computing the
ray path of a wavefront from offshore towards the coast. Rays start at a
selected number of points along the wavefront. As they pass over (slightly)
different seabed elevations, the rays gradually diverge or converge. Indeed,
in this case, the submerged spur acts to focus wave energy in the entrance
to the bay.

12.3.2 Mild slope equation

As computer hardware has gained in power and our understanding of
wave processes has increased, so the sophistication of numerical wave-
transformation models has developed. A significant step in this development
was the introduction of the mild-slope equation by Berkoff (1972). The
mild-slope equation is derived from the linearized governing equations
of irrotational flow in three dimensions under the assumption that the
bottom varies slowly over the scale of a wavelength. The mild-slope equa-
tion has been used widely to date to predict wave properties in coastal
regions. The equation, which can deal with generally complex wave fields
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Figure 12.10 (a) Location map of Marsaxlokk Bay, Malta and bathymetry of the bay.
(b) Ray-tracing calculations illustrating forward tracking (parallel rays prop-
agated forward from offshore) and backward tracking (rays traced from a
single inshore point back out to sea) (Al-Mashouk et al. (1992))

with satisfactory accuracy, accounts for refraction, shoaling and diffraction
(and, in some forms, reflection as well). The mild-slope equation may be
written as

∇.(ccg∇�) + ω2cg�

c
= 0 (12.25)

for the complex two-dimensional potential function �. In a three-
dimensional Cartesian coordinate system, � is related to the water wave
velocity potential of linear periodic waves Ξ (x, y, z, t) by

�(x,y) ="(x,y, z, t)
cos h(κh)

cos h
(
κ(h + z)

)e−iωt (12.26)

where the frequency ω is a function of the wavenumber k= (k, l) with κ=|k|
by virtue of the dispersion relationship

ω2 = gκ tan h(κh)

which is the three-dimensional version of equation (12.9).
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The local water depth is h(x,y), the local phase speed c = ω/κ and the
local group velocity cg = (∂ω/∂k, ∂ω/∂l). Writing ψ =�

√
(ccg) allows the

mild-slope equation to be cast into the form of a Helmholtz equation.
Under the assumptions of slowly varying depth and small bottom slope,
Radder (1979) showed that the equation for ψ may be approximated as the
following elliptical equation:

∇2ψ+ κ2ψ= 0 (12.27)

Several numerical models are available that solve the elliptical form of the
mild-slope equation by means of finite elements (e.g. Liu and Tsay (1984)).
However, a finite-differences discretization is generally easier to implement.
This approach produces reasonably good results, provided that a minimum
of 8–10 grid nodes is used per wavelength. This requirement precluded the
application of this equation from the modelling of large coastal areas (i.e.
with dimensions greater than a few wavelengths) due to the high computa-
tional cost. As a result, a number of authors have proposed models based
on different forms of the original equation.

Copeland (1985) has transformed the equation into a hyperbolic form.
This class of model is based on the solution to a time-dependent form of
the mild-slope equation and involves the simultaneous solution of a set of
first-order partial differential equations. In practical applications, numerical
convergence can be difficult to achieve with this approach. An alternative
simplification was proposed by Radder (1979). This involved a parabolic
approximation that relied on there being only small variations in wave
direction. The advantage of such an approach is that a very computationally
efficient time-stepping approach can be adopted, and this allows solutions
to be obtained over much larger areas. The disadvantages include an inabil-
ity to deal with reflections and neglect of diffraction effects in the direction
of wave propagation.

More recently, computationally efficient and stable solution procedures
for the elliptical form of the mild-slope equation have been developed (e.g.
Li and Anastasiou (1992), Li (1994)). These later developments have obvi-
ated the need to make approximations regarding wave angles, and, as a
result, models based on the parabolic and hyperbolic forms of the equa-
tion have fallen from favour. These elliptical models have been extended to
account for irregular waves (i.e. a wave spectrum) by Al-Mashouk et al.
(1992) and Li et al. (1993) using the model to compute solutions for indi-
vidual direction–frequency pairs. The results are then combined, following
Goda (2000), as a weighted integral to provide a combined refraction–
diffraction–shoaling coefficient. This can then be used to derive the wave
spectrum at any grid node, given the offshore wave spectrum.

Figure 12.11 shows the output from a solution of the elliptical mild-slope
equation run for a spectrum of waves with a relatively narrow directional
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Figure 12.11 Mild-slope computation of spectral wave conditions in Marsaxlokk Bay
(Al-Mashouk et al. (1992))

spread corresponding to a swell-type condition. The case is for the same
example shown in Figure 12.10, Marsaxlokk Bay in the Mediterranean Sea.
The focusing effect of the submerged spur is perhaps more clearly evident.
More importantly, by including diffraction effects, the formation of cusps
that can occur in ray models no longer occurs, with the attendant problem
of dealing with infinite wave amplitudes.

Another example of the power of the mild-slope equation for port and
harbour modelling is shown in Figure 12.12. In the 1990s, the author-
ities at the Port of Sohar on the east coast of Oman were considering
various options for extending the number and size of berths in the port.
Figure 12.12(a) shows the bathymetry around the main port, one option
for deepening and extending the berths within the harbour, and the exist-
ing fishing harbour to the northwest of the main port. In this elliptical
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Figure 12.12 (a) Bathymetry for one of the options for an extension of the Port of Sohar.
(b) Wave heights, computed from the mild-slope model, driven by storm
waves (courtesy of Halcrow)

model wave reflection is included so that reflections from the port break-
waters and quays can be incorporated. Figure 12.12(b) shows the results of
a computation for a slightly different port layout, in which the fishing har-
bour is extended and protected by an extension of the existing port break-
water. Furthermore, there is relatively little overlap between the two arms
of the main port breakwaters. The breakwaters have a reflection coefficient
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of 0.6 and the port quays have a reflection coefficient of 0.8. The model is
set up with a single wave condition corresponding to waves with Hs ≈ 6m
from the northeast approaching the port. The resulting wave-height pattern
shown in Figure 12.12(b) is the standing-wave pattern resulting from the
complex interaction of incoming and reflected waves; this would be much
smoothed out because, in practice, the waves would have a spectrum of
frequencies and directions. However, if the design were to proceed, further
measures to reduce the wave penetration into the port would be required,
such as increasing the breakwater overlap and decreasing the reflectivity of
the breakwaters and quays. Note also that the extended fishing harbour
shows excellent conditions in this case.

The disadvantage of linear mild-slope models is that they do not explicitly
account for non-linear processes such as wave breaking, harmonic gener-
ation or wave–wave interaction. Boussinesq models (e.g. Beji and Battjes
(1994)) or ‘phase-averaging’ models that solve a predictive equation for the
wave spectrum (e.g. Booij et al. (1996)) and non-linear shallow-water mod-
els (e.g. Dodd (1998), Hu et al. (2000)) have been developed to simulate
wave run-up and overtopping of beaches and seawalls.

We conclude this discussion of wave models with a brief mention of a
meshless method that has been the subject of much recent research. Known
as ‘smoothed particle hydrodynamics’ (SPH), in this method the fluid is rep-
resented by a large number (usually thousands) of particles of fluid. Forms
of the Navier–Stokes equations that govern these particles can be derived for
both incompressible and compressible flow. Each particle is tracked in the
computation. A significant amount of the computational effort is spent on
keeping track of the particles. However, one distinct advantage of the tech-
nique is that it appears to be able to capture the distortion of the free surface
that can occur in wave breaking and impacts with structures. Some applica-
tions of the method to coastal engineering are presented in Monaghan and
Kos (1999) and Shao et al. (2006). Figure 12.13 shows an example SPH
simulation of waves running up a beach and hitting the base of a vertical
wall. The method is good in cases where there is a strong deformation of the
free surface, although full testing of the method against careful laboratory
experiments is lacking.

12.3.3 Sediment-transport modelling

There are two main schools of research in respect of sediment-transport
modelling. The first, known as the ‘bottom-up’ approach, tries to solve
the hydrodynamic equations and the sediment-transport equation simul-
taneously, updating the seabed depth as the computation proceeds. This
approach works reasonably well when applied to sediment transport due
to tides. When surface waves are considered, the time scales become
much shorter and the whole computational strategy becomes extremely
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Figure 12.13 SPH calculation of a wave breaking against a vertical wall

computationally expensive. Also, due to the uncertainties in many of the
sediment-transport formulae, as well as the numerical inaccuracies that can
accumulate because many small time steps are taken, the results obtained
using this approach can be extremely sensitive to the initial conditions and
assumptions made. The advantage of this approach is that of determinism;
if the equations that are being solved include all the necessary physical
processes, then the correct solution will be obtained as long as the com-
putational procedure is sufficiently accurate and the model parameters are
specified appropriately.

The second approach, known as ‘top-down’, dispenses with the detailed
hydrodynamic and sediment-transport equations and instead uses equations
that describe a small subset of what is assumed to be the physical processes
important for describing the evolution of the coastal morphology. Typically,
such models have a small number of governing equations that are amenable
to efficient numerical solution, and so can be run to simulate long periods
of time (e.g. decades), which are of most interest to designers and coastal
managers. The advantages of this approach are: solutions can be obtained
very quickly; repeated calculations with slightly varying conditions can be
performed to investigate sensitivity to particular parameters; and the sim-
plified physics means that the predicted morphological responses can be
understood in a relatively straightforward manner. The disadvantage is that,
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Figure 12.14 Schematic of the one-line model

without a long period of observations against which to validate the model,
it is not possible to be sure that all the necessary physical processes have
been included.

We conclude this section with a brief description of a top-down model
that has been used widely for predicting the response of beaches to waves.
It is known as the ‘one-line’ model and stems from work undertaken by
the French engineer Pelnard-Considère (1956). The primary assumption is
that the beach profile (cross-section) remains unaltered but can move sea-
ward or landward depending on the net alongshore sediment transport
(Figure 12.14). The alongshore transport of sediment is considered to be
driven by the action of waves alone.

The continuity of sediment is expressed as

∂y
∂t

=− 1
Dc

∂Q
∂x

+ q (12.28)

where y is the position of the shoreline from a fixed datum line, usu-
ally taken to be the x-axis, which runs parallel to the shoreline trend so
that x is the alongshore distance, t is the time, Q is the longshore par-
ticulate sediment-transport rate, Dc is the depth of closure (i.e. the depth
below which no appreciable profile change takes place), and q denotes line
sources/sinks of sediment along the shoreline. To solve equation (12.28) an
expression for Q is needed. One such expression is the CERC formula, the
general form of which may be written as

Q = Q0 sin
{

2
[
α0 − arc tan

(
∂y
∂x

)]}
(12.29)

with

Q0 = K
ρ

16(ρs − ρ)σ
H2

bcgb (12.30)
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where Q0 (m3/s) is the amplitude of the longshore sand-transport rate, α0

is the angle between the breaking wave crests and the x-axis, ∂y/∂x is the
local shoreline orientation, K is a proportionality coefficient, H is the wave
height, cg is the wave-group velocity, ρ is the seawater density, ρs is the
sediment density, and σ is the sediment porosity. The subscript b denotes
quantities at breaking. Equations (12.29) and (12.30) are the elementary
equations of a one-line model.

Analytical solutions can be derived on the basis of assuming that wave
crests approach the shore at small angles from shore parallel. This reduces
the continuity of sediment equation to a diffusion-type equation; analytical
solutions to the latter are common, and have been derived in a number of
studies for different cases of shoreline change using simple wave-driven,
sediment-transport models (e.g. Grijm (1961), Larson et al. (1997), Le
Méhauté and Soldate (1977), Pelnard-Considère (1956), Wind (1990)).
Apart from the assumptions of a small local shoreline orientation (i.e. of
a smooth shoreline) and of a small angle of wave approach, analytical
solutions are also limited by the assumption that waves are constant in
time and in space (i.e. the diffusion coefficient is constant). This constraint
was addressed to some extent by Larson et al. (1997), who allowed for
a sinusoidally time-varying breaking wave angle at a single groyne and at
a groyne compartment. Dean and Dalrymple (2002) discuss time-varying
wave conditions in the context of the longevity of beach nourishment on
an initially straight shoreline. They describe a solution technique based
on a Fourier decomposition in terms of the longshore dependence, and
present a solution for an individual Fourier component. Reeve (2006) used
a formal Fourier cosine transform to develop a new closed-form solu-
tion for the case of a single groyne, in which the wave conditions could
be specified as a time series. This approach has since been extended by
Zacharioudaki and Reeve (2008) to solutions for a free shoreline and a
groyne compartment.

Numerical solutions for the one-line model are, by their nature, more
flexible, and can include nearshore wave transformation, diffraction effects,
and so on. Gravens et al. (1991) and Hanson and Kraus (1989) describe one
such modelling system.

12.4 Physical modelling

12.4.1 General

Physical models of coastal engineering structures and processes have been
in operation at many major hydraulic laboratories since about 1930. How-
ever, only fairly recently has modern technology in wave generators enabled
a more correct modelling of the sea state and the resultant impact on coastal
structures. The increasing threat of coastal erosion and the development of
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ever larger offshore structures have given a new impetus for research in
this area.

The necessary background to physical modelling has been covered in pre-
ceding sections of this chapter and in previous chapters. The reader should,
in particular, refer to Sections 4.5 and 12.2 for the hydraulics background
and to Sections 5.4–5.7 for the development of the main laws of similarity,
their limits and the scale effects. Section 6.1.2 gives some detail of relevant
equipment used in coastal engineering models (wave flumes and basins, tide
generators, and wave generators reproducing a range of wave spectra and
directions) and Section 6.3 deals with the associated measuring methods
and instrumentation. Section 7.5 gives details of modelling friction losses
in fixed-bed models and Section 8.5 deals with the physical modelling of
movable beds.

Coastal models, including models of harbour engineering, are invari-
ably three-dimensional. Models of parts of offshore structures or of forces
acting on coastal-protection elements, including wave breaking and over-
topping, may be placed in wave flumes, and can also be combined with
wind simulation. Because most coastal and offshore models are undis-
torted or, at best, only slightly distorted (see below), their space require-
ment is large and the establishment of their acceptable boundaries is
important.

12.4.2 Scaling laws and scale effects

Although the predominance of gravity and inertial forces indicates that
models have to be operated according to the Froude law, Reynolds, Weber
and Mach (Cauchy) numbers and associated similarity laws and scale effects
must also be considered. Only the basic approach to scaling procedures can
be outlined here; for further discussion, see, for example, Kolhase and Dette
(1980), Novak and Čábelka (1981), Oumeraci (1984) and the associated
references therein.

Inspection of equations (4.89), (4.90) and (12.9) indicates that the scale
of the wave celerity Mc is given by

Mc = M1/2
h (12.31)

for a shallow-water wave (consistent with the Froude law) and

Mc = M1/2
L (12.32)

for a deep-water wave.
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For intermediate waves it follows from equation (4.84) that

Mc = M1/2
L = M1/2

h (12.33)

Also, from equation (4.82),

Mc = ML M−1
T (12.34)

Thus, equations (12.33) and (12.34) do not, in principle, exclude distorted
models, as the horizontal scale Ml can be chosen independently (of the
wavelength scale); however, in any case, such distortion should be small
(in contrast to estuarine models – see Section 11.6). For reproduction of
wave refraction, equations (12.31) and (12.34) are sufficient and a distorted
model is permissible; this applies also to movable-bed wave models. How-
ever, for reproduction of wave diffraction, the wave height at any point
along the obstacle must be reproduced correctly and the scale of the wave-
length must be equal to the horizontal scale of the model (ML = Ml); thus,
an undistorted model is required if scale effects are to be avoided. For
reproduction of wave breaking, overtopping and wave-impact forces act-
ing on obstacles and coastal protection works, undistorted models are also
generally required.

In Section 4.5 it was shown (equations (4.87) and (4.88)) that for the
effects of surface tension to become negligible a minimum wave celerity
c = 0.23m/s and minimum (gravity) wavelength L = 0.017m are required;
usually substantially larger values are considered when choosing model
scales.

Surface tension can also affect models of breaking waves and the
simulation of air entrainment, which plays an important part in the
turbulence-induced mixing by breaking waves; sufficiently large scales are
thus required to avoid surface tension and viscosity effects. A critical
Reynolds number of 3 × 104 is often quoted as necessary to maintain tur-
bulent flow in a protective armour layer. Special materials (epoxy resin,
plastics, porcelain) may also be required for model units to reduce their
mutual friction, as traditional materials (mortar) may overestimate their
stability.

As in very shallow water the effect of friction becomes important, sim-
ilarity dictates large enough Reynolds numbers (Re< Resq), or additional
roughness may have to be used.

In general, in three-dimensional models the depth should not be less than
0.05 m and the wave height not less than 0.02 m in order to avoid wave
attenuation by surface tension. Also, a minimum depth of 0.02 m is usually
specified to avoid viscous effects.
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For the reproduction of the elasticity of a structure subjected to wave
impact, the Mach (Cauchy) numbers and similarity laws have to be con-
sidered (see Sections 13.2 and 13.3). It is generally accepted that in order
not to distort unduly the pressure loading on a structure a wave height of
0.3 m is required. The dependence of the CD coefficient in the Morison equa-
tion (equation (12.19)) on the Reynolds number has also to be taken into
account.

Based on the above considerations, a model scale in the region of Ml =20
is usual for studies of the stability of breakwaters, Ml = 50 for models of
structures and wave reflection, and Ml = 100 for harbour models; all these
values are approximate averages and can be exceeded in either direction
depending on the specific conditions.

Figure 12.15 shows an example of a harbour model with a breakwater
Ml = 100 and Figure 12.16 shows an example of a movable-bed coastal
model with groynes.

Figure 12.15 Model of a harbour with a breakwater and wave diffraction (courtesy of HR
Wallingford)
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Figure 12.16 Movable-bed model with groynes (courtesy of HR Wallingford)

12.5 Practical modelling aspects and case studies

12.5.1 Feasibility study for a port at Vadhavan, India

In the late 1990s, proposals were put forward for the development of a port
at Vadhavan in Maharashtra State, India. The primary purpose of the port
was to provide berthing, servicing and maintenance for cargo ships carrying
minerals for import, processing and export. Figure 12.17 shows the main
ports in India and the location of Vadhavan.

In its 1996 Infrastructure Report, the Indian Government Ministry of Sur-
face Transport recommended the adoption of privatization schemes based
on the Build–operate–transfer (BOT) approach. BOT project proposals
for the development of new berths and/or terminals envisaged a maxi-
mum contract duration of 30 years, including the construction period, the
assets being transferred back to the port without costs at the end of the
lease or license period. In the State of Maharashtra, P&O was awarded a
BOT contract to develop the port of Vadhavan. At its final stage the port
was envisaged to consist of 29 berths able to handle up to 250 million
tonnes/year of cargo.

Prior to any construction, extensive studies were required, not just to
determine the port layout, size, orientation and construction quantities, but
also for financial forecasting and environmental-impact assessment. The
area around Vadhavan is known within India as the ‘lungs of Bombay’. It
also provides breeding grounds for both fish and endangered Olive Ridley
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Figure 12.17 Map of India showing the main ports of India and the proposed port at
Vadhavan

turtles. In the following the focus is on the work undertaken as part of the
studies investigating the potential port layout.

Figure 12.18 shows some of the port layout options that were considered.
The port was conceived as being positioned some distance offshore from
the mainland, connected by a breakwater/suspended link. This reduced the
amount of dredging and blasting that would be required to create suffi-
cient depth for the cargo ships. A preliminary part of the wave-modelling
work was an analysis of offshore wave conditions to determine extreme
wave heights for 30◦ direction sectors. From Figure 12.17 it is clear that
the largest fetch is to the west and southwest, and hence the options all
provide protection from these directions. It might be thought that waves
from the northwest would be relatively small due to the small fetch, and
indeed they are. However, initial assumptions that wave action from this
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Figure 12.18 Some options for the port layout (courtesy of Halcrow)

direction could be disregarded (as in Option A in Figure 12.18) were soon
corrected by numerical wave simulation using a mild-slope model. Storm
waves from the northwest were of the order of 2 m. The port developers
sought to have a maximum wave height of 0.6 m during such conditions so
that port operations were interrupted as little as possible.

Option A was suggested as an easy-to-construct configuration, with
straight-line breakwaters and quays. Options B, C and D provided more
protection from waves from the northwest, with overlapping breakwater
arms to trigger diffraction and spreading and dispersion of wave energy,
but the length of the breakwater to the port area would make these options
expensive. They also included an additional area for future expansion of the
port, as well as a berthing area with non-parallel sides to avoid constructive
interference from reflections. Option E has hooked, curved breakwaters and
a large turning area in the lee of the northern breakwater.

An example of the wave modelling is shown in Figure 12.19. This shows
waves approaching Option A from the northwest. The breakwater arms
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Figure 12.19 Computed wave heights in Option A, demonstrating standing-wave beha-
viour in the berthing areas (courtesy of Halcrow)
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have a reflection coefficient of 0.5 and the quays a coefficient of 0.8. The
long, straight breakwater acts to reflect waves in towards the berthing area.
The rectangular berthing area acts as a resonant chamber, and a large
standing-wave pattern is evident. This type of wave behaviour would be
very damaging to moored ships, and this option was discarded.

In contrast, Option E performed much more satisfactorily, as shown in
Figure 12.20. Wave diffraction and some interference with waves reflected
off the inside of the southern breakwater is evident, but conditions in the
berthing area remain quiescent.

Option E provided a good solution for reducing the wave penetration.
However, consideration also needed to be given to its flushing by tidal flows
and scour or siltation effects. For this a depth-averaged tidal model of the

Figure 12.20 Computed wave heights in Option E demonstrating much better wave-
energy absorption for the berthing area. The orientation and shading are
the same as in Figure 12.19 (courtesy of Halcrow)



520 Modelling of coastal and nearshore structures and processes

area was set up to investigate the performance of the different options.
The tidal flow is reasonably strong, and flushing of the port occurred in
an acceptable time. The tidal model was also used to compute potential
sediment movements over a tidal cycle. This was done by using a combined
current and wave sediment-transport formula with results from the wave
model and the tide model to solve a sediment-transport equation over time.
Some local erosion and accretion were predicted but nothing so severe that
it would undermine the breakwater foundations or silt up the port entrance.

The proposal to construct the port was strongly opposed by the peo-
ple of Dahanu, an area which is situated near Vadhavan, and which is
one of the last green belts along India’s rapidly industrializing western
coast. Environmental groups argued that the port project would destroy the
‘ecologically fragile’ region and seriously affect the livelihood of Dahanu’s
300,000 inhabitants, who are mainly tribal and fisherfolk. In their argu-
ment they pointed out that Dahanu was ‘notified’, or classified, under the
Indian Coastal Regulation Zone (CRZ) by the Federal Ministry of Environ-
ment and Forests in 1991. The Notification restricts industrial development
and prohibits a change of land use in environmentally sensitive areas. Fol-
lowing the letting of the BOT contract, in 1996 the people of Dahanu took
the Maharashtra government to court for failing to implement the Notifica-
tion. After an extended legal battle, the Supreme Court of India upheld the
Dahanu Notification, prohibiting any change of land use in the region. The
Supreme Court also appointed the Dahanu Taluka Environment Protection
Authority (DTEPA) to ensure that the Notification was implemented, and
Dahanu remains a protected region. Along with the Notification, Dahanu’s
coasts were classified under the most stringent clause of the Coastal Reg-
ulation Zone (CRZ) Notification [CRZ I (i)], 1991, which prohibited any
development within 500 m of the high-tide line. The DTEPA held a series of
hearings with activists and the local communities, passing a landmark order
in 1998 that the port could not be permitted in Dahanu.

The environmental regime, along with civil action, prevented the con-
struction of the port. The proposed port development would have altered
the coastal environment and, arguably, damaged its communities. A decade
after the court proceedings, the Dahanu coastal environment remains pro-
tected but the residents of many fishing villages are struggling to live off the
natural resources.

12.5.2 Happisburgh to Winterton sea defence scheme, UK

Shore-parallel breakwaters can provide an effective solution for coastline
protection, together with substantial recreational development and low
environmental impact. They have been successfully used to control shore-
line evolution on many coastlines of the world, particularly in areas with a
small tidal range. The village of Sea Palling, located on the north Norfolk



Modelling of coastal and nearshore structures and processes 521

Complete (Reefs 5 to 13)

NORTH SEA

HAPPISBURGH

ECCLES-ON-SEA

SEA PALLING

WAXHAM

HORSEY

WINTERTON-ON-SEA

Cart Gap

Horsey Gap

NORFOLK

SUFFOLK

Felixstowe

Aldeburgh

Southwold

Lowestoft

Gt. Yarmouth

Winterton-
on-Sea

Happisburgh

Cromer
Wells-Next-

the-SeaHunstanton

King's
Lynn

Norwich

Figure 12.21 Location map of the Happisburgh to Winterton scheme (Reeve (2009))

coast, is a site where a shore-parallel breakwater scheme was implemented
between 1993 and 1997. The shore-parallel breakwater scheme provides
protection against sea flooding, not only to the village but also to a large
part of the hinterland, including the Norfolk Broads (Figure 12.21). The
tides at the site have a typical mean spring tide range of 3.2 m and mean
neap tide range of 1.58 m. The tidal regime is semi-diurnal, with two high
tides each day. The tidal range is from +1.85 m Ordnance Datum New-
lyn (ODN) at MHWS to −1.35 ODN at MLWS. The MSL at the site is
0.24 m.

The shoreline at Sea Palling faces toward the northeast. As a result, the
coastline is exposed to a wide range of wave directions, ranging from north-
northwest to southeast. Historic records show that this area of coastline has
suffered a series of major flood events over the course of several centuries.
For example, records show that in 1287 nearly 200 people were drowned in
extensive flooding. In 1604 a flood inundated some 800 ha of land, destroy-
ing over 60 houses and badly damaging the town church. In 1938 the whole
village was cut off, and an area of 3,000 ha was flooded, with consequent
disruption to the community and damage to agricultural land. On the night
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of 31 January 1953, a severe northwesterly gale, coincident with a period of
spring tides, produced a large tidal surge, which raised the sea level to 2.4 m
above normal high tide levels. The sand dunes at Sea Palling were washed
away, causing extensive damage to houses and seven deaths. The defences
at Horsey and Eccles were also damaged, and an area of almost 500 ha was
inundated.

The existing seawall and dunes protect a large area of low-lying hinter-
land from flooding during storm events. A significant proportion of the
coastline is of national importance for its landscape and has been desig-
nated an Area of Outstanding Natural Beauty. Inland, the freshwater lakes
known as the Norfolk Broads (that developed as a result of the extraction of
peat from the area dating back to the 12th century) are recognized for their
important landscape, historical interest and wildlife, receiving similar status
to a National Park. A breach in the defences would cause extensive dam-
age to properties, agricultural land and these sites of nature conservation
importance.

Figure 12.22 is an aerial photograph of the coastline taken in 2008. The
breakwater scheme is in the distance. Also evident is the decaying line of old

Figure 12.22 Aerial photograph of the north Norfolk coastline, looking southeastwards.
The village of Happisburgh and its church are in the foreground, the
Happisburgh lighthouse is to the right mid-ground and the breakwaters are
top mid-picture (courtesy of Mike Page)
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defences and groynes. At locations where these have been destroyed, rapid
erosion of the cliffs can be seen. By the late 1980s the beach in front of the
seawalls at Sea Palling had lowered to a critical level. The construction of
nine offshore breakwaters (Reefs 5 to 13) was approved by the government.
The breakwater scheme was constructed in two stages: Reefs 5 to 8 in Stage
1 (1993–1995) and the remaining reefs in Stage 2 (1997). In addition, beach
recharge was undertaken during Stage 2. The reefs constructed in Stage 2
used a modified version of the Stage 1 reef design, which had lower crest lev-
els, were shorter in length and had more closely spaced reefs. A subsequent
Stage 3 (2002–2004) was undertaken, which consisted of beach recharge,
the construction of a rock revetment south of Reef 13 and improvement of
several rock groynes. Reefs 1–4 were reserved for a subsequent stage, and
have yet to be constructed; thus, the northernmost reef is Reef 5. The beach
started to evolve in response to the initial stages of construction. Once Stage
1 was completed, tidal tombolos (features that are salients at high tides and
tombolos at low tide) developed. Landward of the five reefs built during
Stage 2, a sinuous shoreline has developed, which allows flow around the
breakwater system at all states of the tides. In association with periodic
nourishment programmes, the scheme has been recognized as a successful
one (Fleming and Hamer (2000)), although a full understanding of the sedi-
ment movements, the driving forces and their inherent variability has yet to
be gained.

Modelling a site such as this is extremely challenging. For the purpose
of this particular case the focus was on the beach shape in and around
the structures. A one-line model was chosen for this purpose. To drive the
model, offshore wave records were obtained from the UK Meteorological
Office, covering the period from 31 December 1994 to 1 January 2008.
The records consisted of time series of significant wave height, mean wave
period and mean wave direction. Over the period, significant wave heights
varied from 0.1 m to 3.9 m, wave periods lay between 1 s and 10 s and wave
directions showed a broad spread between north and southeast. At this site
the effect of the breakwaters is crucial in determining the beach response.
The breakwaters alter the distribution of wave energy and direction in the
surf zone, so the impact of energy redistribution has to be captured accu-
rately in order to simulate the morphological evolution. Figure 12.23(a)
illustrates the wave diffraction around two adjacent breakwater tips, and
Figure 12.23(b) illustrates the type of wave pattern that can occur across
the whole scheme.

To achieve this, an elliptical mild-slope wave model (described by Li
(1994)) was linked with the one-line model to simulate the complex wave
transformations around the offshore breakwaters. In addition to wave-
induced currents, there are strong tidal currents. For long-term simulations
it is not practical to include a detailed tidal flow process in a morphological
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model. Thus, prior to the shoreline simulation, tidal flows were simulated
using a tidal model. The effect of these tidal currents was then included in
the longshore sediment transport using the formula described by Hanson
et al. (2006). The model was calibrated against historical observations of

(a)

(b)

Figure 12.23 (a) Wave diffraction around the tips of two adjacent breakwaters. (b) After
completion (Stages 1 and 2), showing wave diffraction and interference
patterns as well as the sinuous evolution of the beach (courtesy of Mike
Page)
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Figure 12.24 Average shoreline (heavy line) with extreme positive and negative excursions
(light lines) over a 13-year period. Y-axis is position (in metres) from an
offshore reference line. X-axis shows distance along the shore with gridlines
every 500m

transport rates (i.e. the constant K in equation (12.30) was adjusted to get
the best fit). Repeated simulations for the period 1994 to 2008 were per-
formed with the calibrated model to build up a picture of the variability
that might exist in the beach position within the scheme. The outcome is
shown in Figure 12.24.

Figure 12.24 shows that the shoreline behind the Stage 1 breakwaters is
relatively fixed, whereas in Stage 2 the shoreline shows a greater variabil-
ity in position. The simulations included the effects of tide-level variation
but not long-term sea-level changes due to climate change. Neverthe-
less, plots such as the one in Figure 12.24 can provide a useful tool
for local engineers and planners when formulating coastal-management
strategy.

12.6 Concluding remarks

The challenge of providing predictions of how the coastal and nearshore
morphology will evolve in response to waves and tides is enormous. Not
only are the flows highly turbulent but the process of sediment transport
is still very poorly understood, particularly with respect to its aggregated
effect, such as in changes in morphology, and when there are multiple
grain sizes present. Computing power and numerical techniques are begin-
ning to reach a stage at which relatively sophisticated numerical simulation
can be performed over the short to medium term (i.e. days to months).
Longer- term simulations are still very onerous in terms of computer
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time and also suffer from sensitivity to the specification of initial and
boundary conditions. To perform simulations over periods of interest to
coastal planners, such as a 70-year planning window, is not realistic, and
a different approach is necessary. Simplified models, such as the one-line
beach model, provide a robust if somewhat simplified means of predicting
future changes. Recent research in this area has begun to see the devel-
opment of ‘systems models’ that seek to capture the interactions between
the elements of a coast–estuary–river system, rather than define equa-
tions that describe the detail of the physical processes (e.g. Karunarathna
and Reeve (2008), Reeve and Karunarathna (2009), Van Goor et al.
(2001)).

Our understanding of wave–structure interaction is also at a fairly early
stage. Despite the successes of quantifying overtopping rates using empir-
ical formulae, our ability to simulate the details of this is quite limited.
New techniques, such as SPH, may provide the means to extend our mod-
elling abilities. However, the role of air bubbles trapped in the water is
now being recognized as an important factor in determining the magni-
tude of the impulsive wave forces that can be exerted on coastal structures.
These are many times larger than previously thought, due to the compres-
sion that can take place in highly aerated water (Bullock et al. (2004)).
This has important ramifications for the performance of jointed sea and
harbour walls.
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Chapter 13

Modell ing of hydraulic
structures

13.1 Introduction

The term ‘hydraulic structures’ covers a variety of works, ranging from
dams and weirs, through hydroelectric development, navigation, irrigation,
drainage, water supply, river training and coastal structures, to public-
health engineering works. Our concern in this chapter is the aspects of
hydraulic engineering design of these structures, which in turn determine
the methods of their model investigations aimed at a well-functioning, eco-
nomical and environmentally friendly design. Investigations of hydraulic
structures are a perfect example of the interplay between theoretical anal-
ysis, numerical and physical models, and field observations, with emphasis
on the last two.

This chapter touches on the various types of hydraulic structure (with the
exception of river training, drainage, coastal and offshore structures dealt
with in previous chapters) with emphasis on their modelling. It is not the
intention to deal with details of the structures or their design but rather to
concentrate on the physical basis and processes involved.

In spite of the great diversity in both size and type of hydraulic structures,
most of the hydraulic principles associated with their design can be classified
under the broad headings used in the following paragraphs. The discussion
of these principles is necessarily brief, as the main aim of this chapter is to
establish the basis for their modelling as a design tool.

13.2 Physics and processes

13.2.1 General layout and the flow field

The general layout of structures is determined primarily by their func-
tion and their relationship to and interaction with the surrounding body
of water. This applies particularly to low-head structures (i.e. barrages,
weirs, low-head hydroelectric development, intakes, inland navigation
structures, etc.).
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The flow upstream and downstream of structures, and also within the
structure itself, is mostly three-dimensional. The boundary conditions are
often too complicated to express the flow field mathematically (except in
special cases), or this can usually be done only by means of strict assump-
tions and/or restrictions. The solution is thus based mainly on engineering
judgement and experience or on the results of physical-model studies,
sometimes combined with numerical modelling.

With few exceptions, we are dealing with three-dimensional, free-surface
flow governed by gravity that is barely influenced by viscosity or surface
tension. The design usually aims at an even distribution of flow without
vortex formation, and separation of flow from its boundaries.

Any mathematical solution, if at all feasible, will usually be based on the
application of the Navier–Stokes or Euler equations (equations (4.3)–(4.7)
and (4.33)) and a numerical treatment of finite-difference, finite-element or
boundary-element methods. In mathematical modelling of the flow field,
hydraulic structures often form internal boundaries to the model, with the
relevant equations (continuity, compatibility, stage–discharge relationship,
etc.) characterizing the influence of the structure.

Modelling of the far flow field on physical models usually concentrates
on the flow and velocity distribution and the effect of structures; numer-
ical modelling may use one-dimensional unsteady-flow models (based on
the Saint Venant equations) to study the effect of structures on the propa-
gation of waves in systems of channels, steady-flow computations (e.g. of
backwater curves) or two-dimensional modelling of steady flow.

Near flow field modelling of structures and their effect on flow – apart
from the usual physical modelling – includes the generation of vortices and
their driving forces (turbulent exchanges of momentum, viscous stresses,
non-uniform velocity distribution in the vertical) and/or turbulence models.
For further details, see Section 13.4.

The general layout, as well as the detailed design, often substantially influ-
ences the flow-induced forces. For example, in control structures we are
interested not only in the hydrostatic forces acting on gates in their closed
position, but also in the dynamic loading induced by the flow through the
control structure and, more importantly, during the operation of the gates
(see also Section 13.2.10).

13.2.2 Discharge capacity

One of the most frequent design problems is the provision of adequate dis-
charge capacity at free or gated dam spillways, barrages, outlets, culverts,
etc. The solutions of the discharge equations are invariably based on the
continuity and energy or momentum equations (equations (4.14)–(4.16)),
which can be found in many hydraulics textbooks (see e.g. Chadwick et al.
(2004)).



Modelling of hydraulic structures 533

The hydraulics of spillways (and gates and energy dissipators) is well
documented in the literature (see e.g. Novak et al. (2007) and associated
references). This applies to overfall, shaft, siphon, side-channel and chute
spillways (and to various types of notches); the need for modelling arises
mainly in non-standard shapes of these spillways, or the design of other less
frequent types (e.g. labyrinth spillways) or sometimes of gated spillways.

In essence, models used for the determination of discharge capacity of
overfall spillways concentrate mainly on the evaluation and optimization of
the discharge coefficient c in the equation for the discharge Q:

Q = c
√

2gbH3/2 (13.1)

where H is the head on the spillway crest and b the size (length) of the
spillway. The coefficient c is not only a function of the spillway shape and
the ratio of the actual and design heads but also of the mutual interaction
between the spillway, gates, piers, approach flow conditions, turbulence (see
Section 13.2.10) and friction (Section 13.2.3), and (for small discharges) can
be influenced by surface tension and viscosity.

The discharge capacity of gated spillways depends, among other things,
primarily on the shape and position of the gate(s) relative to the spillway.
For a partially opened gate, equations of the type (13.1) or (13.2) may be
used, i.e.

Q = c1b
√

2g(H3/2 − H3/2
1 ) (13.2a)

or

Q = c2ba
√

2gHe (13.2b)

where a is the height of the gate opening, H1 is the head on the lip of the gate
and He is the effective head on the spillway (= H) (Figure 13.1). For further
details, see Hager (1994), Kolkman (1994), Lewin (2001) and Naudascher
(1987). For flow over the gate, equation (13.1) applies.

Model investigations of gated spillways, apart from cavitation and vibra-
tion problems (see Sections 13.2.6 and 13.2.10), concentrate in special cases
on the shape of the water passage, the effect of piers and three-dimensional
effects of neighbouring gates on the discharge capacity, and hydrodynamic
forces acting on the gate(s) (see also Section 13.2.10).

Equation (13.1) assumes that the crest of the spillway controls the flow,
i.e. free-flow conditions. The discharge over low weirs may be substan-
tially influenced by the downstream water level if the crest is submerged
and the flow is non-modular. In this case, the shape of the weir and its lat-
eral walls and/or of the downstream part of the piers influence the discharge
capacity, which may require model studies. Submerged flow conditions can
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Figure 13.1 Gated spillway (Novak et al. (2007))

also be described by equation (13.1), with Q multiplied by a parameter
ψ(0<ψ < 1), which is a function of the submergence ratio H/H − H1 (the
ratio of the upstream and downstream head above the spillway or weir
crest) and the channel and structure geometry. For further details, see, for
example, Chadwick et al. (2004), Chow (1983) and Henderson (1966).

Equation (13.1) applies also to rectangular sharp-crested weirs. For a fully
aerated lower surface of the overfall jet with head h, the coefficient c can be
expressed by equations involving the effect of the velocity of approach and
the effect of surface tension. Thus, for example (Hager (1994)),

c = 0.3988
[
1 + 0.001

h

]3/2 [
1 + 0.150

(
h
w

)]
(13.3a)

where h is in metres, with the limits h>0.02 m (see also Section 5.8.2f), the
weir height w> 0.15 m and h/w< 2.2. A similar equation using a Weber
number We in the form We = ρgh2/σ is

c = 0.409
(

1 + 2.33
We

+ 0.122
h
w

)
(13.3b)

The discharge per unit width (specific discharge) q = Q/b is one of the
most important parameters in spillway design as it affects flood routing
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through the reservoir, the depth of flow on the spillway, self-aeration (see
Section 13.2.5), cavitation protection (see Section 13.2.6), energy dissi-
pation (see Section 13.2.7) and downstream erosion (see Section 13.2.8).
For the application of numerical techniques dealing with overfall spillway
design and capacity, see Section 13.4.

Investigations of discharge at shaft spillways are usually associated not
only with problems of capacity, flow regime and control (free flow with
crest control, or drowned with orifice control) but also with issues of
vortex formation, cavitation, aeration, vibration and flow control in the
tunnel downstream of the shaft proper. In a free-flowing shaft spillway
(with H/Dc < 0.225), the circumference of the crest (in a circular shaft
πDc, with Dc the crest diameter) takes the place of the spillway length b
in equation (13.1). For a drowned-flow regime, the normal orifice equation
applies:

Q = cdA
√

2gH∗ (13.4)

where A is the shaft cross-sectional area and H∗ is the difference between the
upstream water level and the level of the control orifice or the downstream
water level, if the outflow (from the tunnel) is submerged; Figure 13.2(a)
shows a cross-section of the spillway and Figure 13.2(b) a stage–discharge
curve.

The performance of the side-channel spillway is closely related to the
shape and size of the channel receiving the discharge from a (usually) stan-
dard free-overfall spillway and to the determination of the control section
where the flow in the channel changes from subcritical to supercritical.
The flow in a side-channel spillway is a typical case of spatially varied,
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Figure 13.2 Shaft spillway (Novak et al. (2007)). (a) Cross-section of the spillway; (b) stage–
discharge curve
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non-uniform flow governed by the equation (all the terms have their usual
meaning)

dy
dx

= S0 − Sf − 2Q/(gA2)dQ/dx

1 − Fr2 (13.5)

The numerical integration of the finite-difference form of equation (13.3)
(Chow (1983)) yields the water surface in the side channel (which must
not be so high as to influence the water level in the reservoir). An impor-
tant part of the procedure is to determine the critical section (usually at the
outflow from the side-channel spillway), which is the starting point of the
computation.

The discharge capacity of siphon spillways is often investigated using
physical models for more complicated shapes of the water passage and for
the air regulation of the flow. The basic form of the discharge equation is
given by equation (13.2), where H∗ is the difference between the upstream
water level and the siphon outlet (or the downstream water level if the
outlet is submerged) and the coefficient of discharge includes all head-loss
coefficients from entry to exit from the siphon.

The discharge over spillways is, of course, closely connected with the
pressure and velocity distribution in the overflow stream, which in special
cases (siphon, shaft and non-standard overfall spillways) may require model
investigations.

For a brief discussion of chute and stepped (cascade) spillways, see
Sections 13.2.4 and 13.2.5.

The complex hydraulic conditions at side weirs, which are another exam-
ple of spatially varied, non-uniform flow, are essentially governed by the
differential equation

dy
dx

= S0 − Sf − Q/(gA2)dQ/dx

1 − Fr2 (13.6)

and equation (13.1).
The solution of this system of equations is complicated because of the

uncertainties in the coefficient in equation (13.1), which is strongly influ-
enced by the boundary conditions and regime of flow at the side weir (see
e.g. Chow (1983), Henderson (1966), Jain (2001)). This is, therefore, a
fairly frequent case of physical modelling, particularly when the side weir
and/or the whole conduit are of an unusual shape as, for example, in some
storm-sewer separators.

The discharge capacity of (dam) outlets, culverts, etc., is, in principle,
governed by equation (13.3), and the physical-model studies concentrate
mainly on the entrance and exit conditions, and possibly on the effect of
the plan layout on the value of the coefficient of discharge. Other possible
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considerations (e.g. cavitation, aeration, vortex formation) are discussed
briefly in the following paragraphs.

The flow through culverts and outlets flowing full is governed by the equa-
tions discussed in Section 4.4 (see, in particular, equations (4.37) and (4.65)).

13.2.3 Friction

The head losses due to frictional resistance and surface roughness have
been adequately discussed in Section 4.4.1 and expressed in equations
(4.36)–(4.64) covering laminar and turbulent flow and hydraulically
smooth- and rough-surface conditions of flow in conduits flowing full or
with a free water surface. One aspect, however, which has a bearing on the
modelling of structures, has to be elaborated further. In Section 4.3.2 has
been demonstrated that the growth in the turbulent boundary layer δ and
the boundary resistance are a function of the Reynolds number, the shape of
the conveyance and the surface roughness. It has also been shown that the
turbulent boundary layer consists of a turbulent, transitional and laminar
part – see Figure 4.3, with a definition of the thickness of the laminar sub-
layer δ′ (equation (4.31)). As a free flow comes into contact with a structure
(surface) a laminar boundary layer develops, which under the influence of
surface roughness quickly changes into a turbulent one (see Figure 4.2) –
the rougher the surface, the closer to the leading edge this process occurs,
and the faster the boundary-layer thickness δ (and the laminar sublayer) will
grow. If the height of the surface roughness k is such that the value k/δ is
significant, the boundary resistance is mainly due to eddies caused by the
flow over the surface roughness. These eddy losses become insignificant as
the boundary layer develops and the surface roughness becomes submerged
in the laminar sublayer; thus, at high Reynolds numbers, the roughness of
the surface quickly becomes unimportant (this process must not be confused
with the transition from smooth- to rough-flow conditions as described in
equations (4.51)–(4.53)).

13.2.4 Supercritical flow

The flow through many parts of hydraulic structures is supercritical (i.e.
Froude number > 1). The flow is often associated with aeration (see
Section 13.2.5) and may exhibit waves of translation and interference.
A typical example is the flow in chute spillways.

Translatory waves (waves of translation, roll waves – see Novak et al.
(2007)) originate under certain conditions from the turbulent structure of
supercritical flow and, as their name implies, move downstream with the
flow. Their main implications are the requirement for (higher) freeboard
and possible (regular) impulses to the receiving downstream pool, which in
extreme cases may result in its failure. However, they occur only at shallow
flows with a Vedernikov number (see Section 5.8.1) of Ved > 1 – or usually
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with the ratio of depth to the wetted perimeter below 0.1 – and long chutes
with length L

L>−9.2
(

V2
0

gS0

) (
1 + 2/3(ϕ/Ved)

)
1 − Ved

(13.7)

where ϕ is the channel shape factor (ϕ = 1 − RdP/dA) and Ved = kϕFr
(k = 2/3) (see e.g. Jain (2001)) (ϕ = 1 for very wide channels). They thus
rarely present a real problem in the hydraulic engineering design of chute
spillways designed for the maximum discharge capacity.

On the other hand, a more serious design situation is presented by
interference waves (cross-waves, standing waves), which are shock waves
occurring whenever the supercritical flow is ‘interfered’ with, such as at
inlets, at changes of section, direction or slope, at spillway gates or bridge
piers, etc. Interference waves are dependent on the geometry and the flow
Froude number, and thus their position and size will change with discharge,
but for a given flow situation they are stationary. At points where the waves
meet obstacles (e.g. the side walls of a chute), water will ‘pile up’, requir-
ing substantially increased freeboard. Interference waves may also create
difficulties in energy dissipation downstream of chutes should they persist
so far (which is rarely the case, because once the flow becomes aerated
(see Section 13.2.5) the celerity of the shock wave is greatly reduced and
interference waves practically disappear).

The hydraulics of interference waves is reasonably well established, par-
ticularly for flow in rectangular channels (Chow (1983), Henderson (1966),
Vischer and Hager (1998)). For example, for a channel contraction with a
side-wall deflection θ , an angle of inclination of the wave to the flow direc-
tion β, upstream and downstream depths y1 and y2 and Fr1 an upstream
Froude number Fr1, the ratio y2/y1 is given by

y2

y1
= tanβ

tan (β − θ)
= 1

2
(
(1 + 8Fr2

1 sin2
β)1/2 − 1

) (13.8a)

For small values of θ (or y2/y1 approaching 1) equation (13.8a) reduces to

Fr1 sinβ = 1 (13.8b)

For small values of β and y2/y1 >2 equation (13.8a) can be simplified to

y2

y1
= 1 +

√
2Fr1θ (13.8c)

(Equation (13.8a) can be used in an iterative way in the design of transitions
with known upstream conditions (Q, b1, y1) and known width or depth
downstream.)
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The reduction of interference waves can be achieved by the reduction of
the product Fr1θ (the shock number), wave interference by channel geom-
etry (applicable to one approach flow only), or by bottom and/or side
reduction elements (or by a combination of these methods) (see e.g. Vischer
and Hager (1998)). The best method of avoiding shock waves in hydraulic
design is to remove their cause whenever feasible (e.g. not using bridge piers
in supercritical flow) or by using only very gradual transitions should these
be unavoidable.

Nowadays, studies on physical models concentrate mainly on waves
of interference in non-rectangular channels, shock diffractors, and special
cases of large waves and supercritical inlet conditions.

Stepped spillways have recently received increased attention, mainly
because of new material techniques (RCC dams and prefabricated blocks)
and their enhanced energy dissipation, which contributes to the economy
of overall design. The crucial problems encountered in their design are
the flow regime (nappe flow or skimming flow, with a transitional zone
between the two), air entrainment and energy dissipation. All investigations
of cascade spillways (see e.g. Novak et al. (2007)) indicate that the flow
regime is a function of the critical depth yc (= (q2/g)1/3, which, of course,
denotes a Froude number = 1). For a more detailed discussion of cascade
(stepped) spillways, see, for example, Boes and Hager (2003a) and Chanson
(2001).

Problems of air entrainment, cavitation and energy dissipation are dealt
with in the following sections.

13.2.5 Aeration

Aeration and air entrainment form one of the most frequent, but also
intractable, problems encountered in the design of hydraulic structures,
both large and small. They also form one of the most frequent causes of
scale effects in the physical modelling of structures (see Section 13.3.1).

A brief description of the various forms of air–water flows in free-surface
and closed-conduit systems is given in Chapter 4 (Section 4.6.5); the phys-
ical parameters and dimensional numbers involved have been mentioned
in Chapter 5 (Sections 5.8.1 and 5.8.2). It may be useful to state here
that, in hydraulic structures, air entrainment may have beneficial as well as
detrimental effects. The main beneficial aspects are prevention of excessive
negative pressures and cavitation, improved energy dissipation and (in most
cases) improved water quality. The principal negative effect is the increased
depth of flow (‘bulking’ of flow) requiring, for example, higher side walls
of chute spillways and the carrying of aerated flow into situations where
the flow becomes pressurized (e.g. in tunnels and culverts), with the result-
ing difficulties in flow and pressure fluctuations, ‘blowouts’, etc. (unless
measures are taken to release the air, e.g. in deaeration devices). The most
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pronounced effect of entrained air is usually in vertical flow configurations
(e.g. in drop shafts and shaft spillways).

The main mechanism of aeration at hydraulic structures is turbulence.
For example, initiation of surface aeration at high-speed flows on spillways
is primarily caused by the turbulent boundary layer spreading to the free
water surface; local aeration (e.g. by impinging jets or at hydraulic jumps)
is caused by turbulent shear layers. Another mechanism is air entrain-
ment through a vortex (e.g. at transitions to pressurized flow) (see also
Section 13.2.9).

The general controlling conditions for aerated flow (see also
Section 4.6.5) are the inception limit (i.e. the minimum velocity that has
to be exceeded for air entrainment to take place), the entrainment limit
(a function of the approach Froude number, which must exceed a critical
value), the air supply limit (a ducted air-supply system may limit the air
entrainment, e.g. at spillway aerators) and the transport limit, which is gov-
erned by downstream conditions (usually a function of velocity, turbulence,
wall shear and bubble size, and in closed conduits a function of the conduit
length/diameter ratio).

The bubble-rise velocity vb was discussed in Section 4.6.5, mainly as a
function of bubble size db; for a more detailed discussion of vb, see, for
example, Kobus (1991). The majority of large bubbles in turbulent flow
are 1< db < 10 mm, with the mean bubble diameter usually in the range
2.2–3.5 mm but decreasing with increasing turbulence (the above values
are valid for tap-water quality as they are also dependent on the liquid
parameter z (equation (13.11) – see also the discussion of oxygen trans-
fer below). High-speed flows (v>> vibe) usually exhibit a smaller range of
bubble size. There is also evidence that the mean diameter of entrained air
bubbles decreases as the upstream (jet) velocity increases (Ervine (1998)).

Neglecting air properties, the air–water flow will be a function of the
geometry, conduit size, velocity of flow, turbulence, air-bubble size, char-
acteristics of the air-supply system and physical properties of the water
(density, viscosity, surface tension and, in pressure transients, also compress-
ibility). For A denoting the air flow and Q the water flow their ratio β

can be expressed (e.g. by dimensional analysis) as (see also Sections 4.6.5
and 5.8.1)

Qa

Q
=β = f

(
geometrical ratio, Tu, Eu, Fr, Re, We, z,

db

y

)
(13.9)

where Tu denotes turbulence, Eu characterizes the air-supply system and z
is the liquid parameter

z = We3

Fr2Re4 = gμ4

ρσ 3
(13.10)
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The average air concentration in aerated flow C = Qa/(Q + Qa) and the
parameters β and ρ= Q/(Q + Qa) are linked through

C = 1 − ρ= β

β + 1
(13.11)

The computation of surface aeration in various flow situations (particularly
on chutes) has been the subject of hydraulic research for many years, and
purely empirical as well as semi-empirical methods of computation based on
model experiments and/or field observations are available. For a summary
of methods of the computation of depth of aerated flow on spillways (and
in steep partially filled tunnels), see, for example, Novak et al. (2007) and
the references therein.

The simplest computations link the parameter β and the Froude number
of the non-aerated flow (i.e. they neglect all other parameters in equation
(13.9)). For example, for flow in a chute (spillway) the empirical equation

ya − y0

y0
=β = 0.1(0.2Fr2 − 1)1/2 (13.12)

gives reasonable results (ya is the depth of the aerated uniform flow depth
and y0 is the depth of the non-aerated flow).

Equally, a very simple and approximate method for estimating the
average air concentration on a chute spillway is given by

C = 0.75( sin θ ) (13.13)

One of the difficulties of a more sophisticated computation of the depth
of aerated flow and air concentration is the fact that the friction coefficient
of the flow with entrained air (in contact with a rough or smooth boundary)
is smaller than it would be for non-aerated flow under the same conditions
(λa < λ); this is why the mean velocity of aerated flow is larger than the
velocity of the same water flow without air. The ratio λa/λ depends on the
air concentration, and a simplified equation (based on the data reported by
Anderson and Straub, Ackers and Priestly 1985) is

λa

λ
= 1 − 1.9C2 for C<0.65 (13.14)

with λa/λ= 0.2 for C>0.65.
On the other hand, the difference between the non-aerated depth of uni-

form flow y0 and the (imaginary) depth of the water component of aerated
flow y′

0 (reduced because of the increased velocity) becomes significant only
for C>0.4(y′

0/y0 <0.95).
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Figure 13.3 Aerated flow over a spillway (Novak et al. (2007))

The distance Li from the crest of a spillway to the point of inception
(Figure 13.3) is basically given by the point where the turbulent bound-
ary layer (see Sections 4.3.2 and 13.2.3) penetrates the full depth of flow
(see Figure 13.3), and can be determined by combining the equation for the
non-uniform non-aerated flow with the equation for the turbulent bound-
ary growth. Ackers and Priestley (1985) quote a simple equation for the
boundary-layer growth δ with distance L:

δ

L
= 0.0212

(
L
Hs

)0.11(L
k

)−1.10

(13.15)

where Hs is the potential flow velocity head.
Li(m) can also be estimated as a function of the unit discharge q (m2/s)

from

Li = 15q1/2(m) (13.16)

(sometimes a critical velocity vc = 6 m/s is also used, see Section 4.6.5).
Local surface aeration processes (e.g. plunge-pool aeration at weirs, drop

structures, siphons, shafts) depend on many parameters, and the boundary
geometry is extremely important. No generally applicable design criteria can
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be formulated (Kobus (1991)). In the following text a few examples of local
aeration are briefly quoted, together with the relevant relationships.

Experimental evidence suggests that for water jets plunging into a
downstream pool the minimum velocity that has to be exceeded for air
entrainment – the inception limit with a critical velocity vc – is a function
of the liquid parameter z, the relative turbulence intensity (

√
v′2/v) and the

dimensionless parameter v3
c/(gν). For constant values of z and turbulence

intensity
√

v′2/v> 4%, experimental evidence suggests that v3
c/(gν) is con-

stant = (0.5–1.0)105, resulting in vc = 0.8–1.0 m/s (Kobus and Koschitzky
(1991)) (see also Section 4.6.5).

Ervine (1998) discusses in some detail the mechanisms of plunge-pool aer-
ation and quotes a ‘broad-brush’ equation for aeration rates that is valid for
flat-jet velocities U up to 15 m/s, averaged over a range of conduit slopes, for
a jet thickness greater than 30 mm with qa (m2/s) being a function entirely
of the velocity at the plunge point v:

qa =0.00002(v−1)3 +0.0003(v−1)2 +0.0074(v−1)−0.0058 (13.17)

Another general relationship for β (for air entrainment on one side of the
jet) (Kobus and Koschitzky (1991)) is

β = kFr2
(
1 − vc

v

)3

(13.18)

At hydraulic jumps the entrainment process usually begins at Fr>1.7.
The length of fall of a jet required for disintegration can be approximately

expressed for flat jets issuing horizontally (e.g. under a gate) as

L = 6q1/3 (m) (13.19)

For hydraulic jump configurations, the expression

β = kl(Fr − 1)a (13.20a)

can be used (k, k1, and a are constants) (Kobus and Koschitzky (1991)).
Equation (13.20a) can also be used for dimensioning air vents for

conduit flow regulating gates that have a hydraulic jump or ring jump
downstream.

Rajaratnam and Kwam (1996) studied air entrainment at drops both for
plunging jets and for the case when a hydraulic jump is formed downstream
at a section where the deflected stream below the drop becomes parallel to
the bed. If h is the height of the drop (the difference between the upstream
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and downstream beds) and yt the downstream water depth, for the case of
the hydraulic jump

βx = qa

q
= 1.44

(
q2

gh3

)0.226

(13.20b)

and βp = f (yt/h) for the plunging jet with βpmax = 0.4 and βx = βp when the
downstream depth falls to a value ytx required for a free jump just below
the drop.

For spillway aerators a similar equation has been developed:

β = k(Fr − 1)a

(
K
y

)b

(13.21)

where y is the non-aerated supercritical flow depth and K is a factor that is
the function of the aerator-control orifice area and the chute width (Pinto
(1991)).

Air entrainment at various types of structures (weirs, gates, spillways) is
often a welcome means of improving the oxygen content in the water. Apart
from the hydraulic processes mentioned above, the actual transfer of oxygen
from the entrained air bubbles into solution will depend on the water prop-
erties – temperature, salinity (i.e. the liquid parameter z) – and on the initial
dissolved oxygen content. The resulting oxygen uptake is best described by
the deficit ratio, i.e. the ratio of the upstream to the downstream oxygen
deficit

r = Cs − Cu

Cs − Cd
(13.22a)

or the oxygen-transfer efficiency

E = 1 − 1
r

= Cd − Cu

Cs − Cu
(13.22b)

where Cu, Cd and Cs are the upstream, downstream and saturation oxygen
concentrations, respectively.

When comparing the results of mass transfer for various situations,
the data must be reduced to standard conditions, mainly by applying a
temperature, and sometimes also a water-quality, correction.

On the basis of extensive laboratory experiments with jets from weirs
falling into a downstream pool, Avery and Novak (1978) developed the
equation (r at 15◦C):

r15 − 1 = kFr1.78
j Re0.53

j (13.23)
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where Frj = (gh3/(2qj))0.25 and Rej = qj/ν. In this equation qj is the unit dis-
charge (discharge per jet perimeter) at impact into the downstream pool
and h is the difference between the water levels above and below the weir
(i.e. the height of the jet fall). For wide jets of width b with air access on
one side only (e.g. flow over a spillway) qj = q = Q/b; for free-falling jets
(e.g. flow over a gate or weir) qj = q/2. The boundary conditions for equa-
tion (13.21) are a solid (not disintegrated) jet, i.e. the height of fall h<6q11/3

(m) (see equation (13.17)) and the downstream pool depth d must be suffi-
ciently deep to allow full unimpeded penetration of the entrained air bubbles
(and therefore maximum contact time). This depth was given by Avery and
Novak (1978) as

d = 0.00433Re0.39
j Fr1.787

j (m) (13.24)

These boundary conditions are not extremely rigid, as good results have
been obtained by applying equation (13.21) to heights of fall somewhat
bigger and downstream depths smaller than those given above.

The coefficient k in equation (13.21) is 0.627 × 10−4 for tap water
but varies considerably with the salinity of the water, rising by 100%
(1.243 × 10−4) for a concentration of 0.6% sodium nitrite. The reason for
this was shown to be the reduction in the mean bubble size from 2.53 mm
for water with zero salinity to 1.57 mm for the saline water, and hence an
increased air/water interfacial area resulting in greater oxygen transfer.

Gulliver et al. (1998) extensively tested a number of predictive equations
for oxygen uptake at various types of structure by comparing the predicted
results with many field measurements. They concluded that, for weirs, equa-
tion (13.21) performed best. For ogee spillway crests they recommended the
equation

E = 1 − exp
( −0.263h

1 + 0.215q
− 0.203y

)
(13.25)

where y (in metres) is the downstream pool depth, and for gated sills they
recommended the equation

E =−1 − exp
(−0.0086hq

s − 0.118

)
(13.26)

where s (in metres) is the submergence of the gate lip.

13.2.6 Cavitation

The phenomenon of cavitation, its causes and prevention have been dis-
cussed in Section 4.6.5. At hydraulic structures, cavitation may occur mainly
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(but not exclusively) in high-velocity spillway and conduit flows, at gate
slots and at stilling basins with large velocity and pressure fluctuations. The
tendency for cavitation is greatest where the boundary configuration gives
rise to flow separation; this occurs at any discontinuity of the boundary,
such as steps (into and away from the flow), abrupt changes in bed (wall)
direction, slots, large roughness elements and uneven joints. For exam-
ple, for a step of only 3 mm height (into the flow) cavitation begins at
velocities of 11 m/s (at ambient atmospheric pressure) (Cassidy and Elder
(1984)).

Cavitation occurs if the cavitation number σ = (p − pv)/(ρU2/2) (see
equation (4.12)) falls below a critical value σc (which is strongly dependent
on the boundary geometry). A value of around σc = 0.25 is sometimes con-
sidered when assessing the critical velocity on ‘smooth’ concrete surfaces, or
for uniformly rough surfaces σc = 4λ, where λ is the Darcy–Weisbach fric-
tion factor (see equation (4.39)). The onset of cavitation will also depend on
water quality, particularly on the presence of dissolved gases and suspended
particles.

According to the ICOLD survey (Cassidy and Elder (1984)), of 123
spillways, about 60% of which operated in excess of 100 days, the dan-
ger of cavitation damage (unless exceptional care is taken in design and
construction) is acute at velocities in excess of about 35 m/s and at unit dis-
charges over 100 m3/sm. This does not mean that cavitation cannot occur
at lower velocities or discharges or that it must occur at these or even
higher values; its occurrence depends very much on the detail of the spillway
design.

The analysis of instantaneous pressure fluctuations underneath the
hydraulic jump provides an insight into the possibility of cavitation occur-
ring (e.g. on a stilling basin floor), even if the average pressure is well above
atmospheric. In the case of a free jump, experiments have shown that a cav-

itation number in the form σ =
√

p′2
(ρV1

2 /2)
, where V1 is the supercritical velocity

at the toe of the jump with depth y1, and p′ is the deviation of the instan-
taneous pressure from its time-averaged mean value, attains a maximum
value of about 0.05 at a distance 12 y1 from the toe of the jump. From
this an indication of the probability of cavitation may be obtained from the
value of k:

k = p′√
p′2

= (p0/(ρg) + 3y1)2g
0.05 V2

1

= f (Fr1) (13.27)

(1 < k < 5; for k > 5 there is practically no danger of cavitation). For
further details, see Locher and Hsu (1984) and Novak et al. (2007).
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13.2.7 Energy dissipation

Energy dissipation occurs at all flows through and over hydraulic structures.
Its most common manifestation is at dam spillways and stilling basins or
other types of energy dissipators.

Energy dissipation is a continuous process, but often it is useful to analyse
it in distinct stages. For example, at dam spillways five phases can be con-
sidered (Novak et al. (2007)): energy dissipation on the spillway surface, in
free-falling jets, at impact into the downstream water surface, in the stilling
basin or plunge pool, and at the outflow from the basin into the river. The
energy loss is usually expressed as a function of the velocity head (ξv2/(2g))
and may best be judged from the value of the velocity coefficient ϕ, which
is the ratio of the actual velocity at any section of the flow to the theoretical
velocity.

From the energy equation (see Section 4.3.1)

1
ϕ2

= 1 + ξ (13.28)

and the ratio of the energy loss e to the total energy E (relative energy loss) is

e
E

= ξ

1 + ξ
= 1 −ϕ2 (13.29)

For a ratio of the height S of a smooth spillway crest above its toe to the
overfall head H of S/H<30 (or in the case of the spillway ending in a free-
falling jet above the jet take-off point which may be S′ above the basin floor,
(S − S′)/H< 30) (see Figure 13.4), the velocity coefficient for the first phase
of energy dissipation is given by

ϕ1 = 1 − 0.0155
S
H

(13.30)

For a given spillway crest position ϕ1 increases with an increase in H (i.e.
for a given discharge with the decrease in the spillway length). Thus, for
S/H = 5, ϕ1 = 0.92 and the relative head loss e/E is only 15%, whereas
for S/H = 25, ϕ1 = 0.61 and the head loss is 62%. The head loss could be
increased by using a rough spillway; however, the increased energy dissipa-
tion could also result in an increase in the cavitation danger unless aeration
is provided at the spillway surface, either artificially or through self-aeration
(see Section 13.2.5).

For free-falling jets (stage 2) the energy loss will be a function of
turbulence, jet geometry, length of fall and degree of jet disintegration.
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Figure 13.4 Spillway with free-falling jet (Novak et al. (2007))

An energy loss of about 12% is achieved in this phase unless the jet col-
lides with another one or an obstacle, when the loss may be considerably
higher.

The main benefit in energy dissipation for spillways with free-falling jets
is in the third phase at impact into the downstream pool; here the collision
of masses of water and the compression of air bubbles (both entrained in
the jet and drawn into the pool at impact) contribute significantly to the
resulting energy loss.

Generally,

ϕ1−3 = (S′/S, q, geometry
)

(13.31)

The lowest (optimum) value of ϕ1−3 for a given q and geometry will be at
about S′/S = 0.6.

Stilling basins are the most common form of energy dissipators, convert-
ing the supercritical flow from spillways into the subcritical flow compatible
with the downstream river regime. The straightforward, and often the best,
method of achieving this transition is through a simple submerged hydraulic
jump formed in a stilling basin of rectangular cross-section (Figure 13.5).
The depth of basin below the downstream river bed is given by the differ-
ence of the submerged jump subcritical depth y+ and the downstream river
depth y0, where y+ is in turn given by the conjugate depth y2 of a free jump
multiplied by a safety factor (about 1.10). From the energy equation for
energy E above the basin floor

E = y1 + q2/(2gy2
1ϕ

2
1−3) (13.32)
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Figure 13.5 Hydraulic jump stilling basin (Novak et al. (2007))

y2 is then obtained from the free-jump equation (derived from the momen-
tum equation (4.16); see also equation (4.71)):

y2 = y1

2
(

−1 +
√

(1 + 8Fr2
1)
) (13.33)

The required length of the stilling basin is best expressed as a multiple of
the jump height

L = K(y2 − y1) (13.34)

With 4.5<K< 5.5; the lower value applies for Fr> 10 and the higher one
for Fr< 3. The energy dissipation in a jump basin may be estimated from
(see also equation (4.75)):

e = (y2 − y1)3

(4y2y1)
(13.35)

and the energy ‘loss’ at the outflow from the basin alone from

e = 0.25ycr (13.36)

where ycr is the critical flow depth.
For further details of the design of stilling basins, see Novak et al. (2007)

or Vischer and Hager (1998).
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13.2.8 Erosion at structures

Local erosion occurs at all types of hydraulic structures built on erodible
stream beds. Breusers and Raudkivi (1991) give a comprehensive survey
of the computation of scour at river constrictions, spur dikes, abutments,
bridge piers, culvert outlets, weirs and dams. It is clearly not practical in
this brief overview to give a full account of the various cases. Only the two
problems most frequently investigated by modelling are briefly discussed
here: the scour downstream of weirs and dams, and the depth of scour at
bridge piers.

The scour downstream of weirs and dams is caused primarily by the
residue of the energy not dissipated in the structure itself before the flow
enters the river (see Section 13.2.7), by excessive turbulence, and by the
flow structure of the (in most cases) two-dimensional stream with a dif-
ferent velocity distribution from that in the receiving water. Downstream
of weirs and low dams with a hydraulic jump-stilling basin, Novak et al.
(2007) propose for the depth of scour ys (in metres) below the river bed the
equation

ys = 0.55

(
6H0.25

∗ q0.5

(
y0

d90

)1/3

− y0

)
(13.37)

where H∗ (in metres) is the difference between the upstream and down-
stream water levels, y0 (in metres) is the depth of flow in the river and d90

(in millimetres) is the 90% grain size of the river bed.
For higher dams with a plunge pool, Mason (1989) suggested the

equation

ys = 3.27
(

q0.6H0.05
∗ y0.15

0

g0.3d0.1

)
(13.38)

For further details, see Breusers and Raudkivi (1991) and Novak et al.
(2007).

The depth of scour at bridge piers, mainly due to the three-dimensional
flow structure with a horseshoe vortex, is a function of the fluid properties,
the bed size and bed material, the pier size, and the geometry of the pier
and its alignment with the direction of flow. Furthermore, it will depend on
whether the river-flow velocity is below the critical velocity for initiation of
sediment transport – resulting in ‘clear water scour’ – or whether scour takes
place in a ‘live-bed’ situation, and on the flow regime (steady or unsteady).

There have been many experimental and some field studies of local scour
at bridge piers, some of which are summarized in, for example, Breusers
and Raudkivi (1991), Cop et al. (1988) and Melville and Coleman (2000).
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The equations for the normalized (‘maximum, equilibrium’) scour depth
ys/b (where b is the pier width – for circular piles of diameter D) – assuming
the absence of viscous effects – range from a numerical constant (e.g. 1.6)
to the form

ys

b
= f

(
V0

VC
,

y0

b
,

V0

(gy0)1/2
,

V0

(g�d)1/2

)
(13.39)

The pier form and angle of attack by the flow are usually expressed by
multiplying equation (13.39) by constants K1, K2, etc.

Several observations have to be added to the above:

(1) The scour will be influenced not only by the form and size of the
structure but also by the general flow configuration.

(2) For scour at culvert outlets the effects of the tailwater depth are clearly
important.

(3) For scour at spur dykes the relative length and inclination of the dyke
as well as the downstream recirculating zone are relevant.

(4) In unsteady flows (e.g. floods) the shape of the hydrograph, particularly
the duration of the maximum flow, has to be considered.

(5) For scour in oscillatory flow (e.g. at piles and pipelines in water
waves) the Keulegan–Carpenter number is an additional important
parameter. At sea walls scour rates depend on the type of wall,
the initial water depth, the wave height and period, and the sedi-
ment size. (For further details, see Sumer and Fredsoe (2002) and
Whitehouse (1998).)

A particularly important point concerns the definition of ‘maximum’,
‘final’ and ‘equilibrium’ scour. All these terms (as well as item (4) above)
indicate that scouring is a process with time-dependent results. This has
been the subject of many investigations for all types of scour. Generally it
has been established that a ‘final clear water’ scour depth is reached only
asymptotically with time. To express this process, a reference scour or a
finite rate of increase in scour has to be chosen. Thus, Melville and Chiew
(1999) define the time required for equilibrium scour at bridge piers te as
the time at which the scour hole develops to a depth yse at which the rate of
its increase does not exceed 5% of the pier diameter in the succeeding 24 h
period, i.e.

d(yse)
dt

<
0.05b
24
(
h
) (13.40)

The authors suggest the following equation for the temporal development
of ys:
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ys

yse
= exp

(
−0,03

(
Vc

V0

)
ln
(

t
te

)1.6
)

(13.41)

where yse has to be determined from an equation of the type of (13.39),
which can also be rewritten as

yse

b
= f

(
V0

Vc
,

y0

b
,

d50

b
,

t
te

)
(13.39a)

According to the authors, the scour depth ys at 10% of te varies between
50% and 80% of the equilibrium depth yse.

Oliveto and Hager (2002) suggest the use of a reference scour depth
(y0b2)1/3 for both bridge piers and spur dykes (perpendicular to the direction
of flow), and the equation

ys

(y0b2)1/3
= 0.086KFr1.5

d log
t

tref
(13.42)

where K is a form factor (K=1 for cylindrical piers and 1.25 for rectangular

spur dykes), Frd =
(

d84
d16

)1/6 − V0

(�gd50)
1/2 and tref =

(
y0b2

)1/3 (
�gd50

)1/2
.

Analysing model experiments on local scour below weirs, Novak pos-
tulated that, after a relatively fast initial development of scour, the depth
of scour increases asymptotically to its ‘final’ value independently of sedi-
ment diameter. Thus, taking the reference scour depth ys1 as the depth after
t = 1 h (t1), the equation for ys > ys1 becomes

ys

ys1
= a − be−c(t/t1+d) (13.43)

where a, b, c and d are numerical constants depending on the type of still-
ing basin used. For example, for a plain basin with a sloping end sill (see
Section 13.2.6) a = 1.65, b = 1, c = 0.23 and d = 1, and the ‘final’ scour is
yse = 1.65ys (for further details, see Novak and Čábelka (1981)).

An overview of scour in hydraulic engineering, including riprap failure,
has been given by Hager (2007), who emphasizes the densimetric Froude
number of the approach flow as the dominant parameter.

13.2.9 Swirling flows and vortex formation

Outflows from orifices or under spillway gates and, more importantly, all
types of intake structures are prone to swirling-flow problems and vortex
formation. The main features are air entrainment and swirl intrusion at
the transition from the free surface to the pressure flow. The aim of the
design is usually to avoid the first and minimize the swirl, which is most
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frequently caused by eccentricity of the approach flow and velocity gradi-
ents. The difficulties associated with the vorticity of flow are increased head
losses, reduced flow rates, reduced efficiency of hydraulic machinery, stimu-
lation of vibrations and cavitation, operational problems caused by suction
of debris and, of course, problems caused by entrainment of air into the
pressure flow.

The conditions for the prevention of swirling flow are difficult to quantify
as they are to a great degree design-dependent and, apart from the geometry
of the intake and its orientation to the approach flow ϕ, will be influenced
by gravity (Froude number), viscosity (Reynolds number), surface tension
(Weber number) and vorticity (circulation or Kolf number N� = �d/Q,
where � is the circulation �=2πc (see also Section 4.2.4) (c=vtr with vt the
tangential velocity at radius r). In very general terms, air entrainment can
be avoided and swirl entrainment reduced by increasing the submergence of
the intake. This concept leads to a critical submergence value h for different
types of intake (e.g. diameter d). Thus

(
h
d

)
c

= f (ϕ,Fr,Re,We,N�) (13.44)

Ignoring the Weber number (which is not likely to be important
at critical submergence conditions) and the Reynolds number (if suf-
ficiently large – see Section 13.2.1), and combining Fr and N� as
FrN� = v/(gd)1/22�c/(�dv/4) = 8c/(g1/2d3/4) leads to

(
h
d

)
= f1

(
ϕ,

c
(g1/2d3/4)

)
(13.45)

The above equation illustrates the difficulties of its application, as the
result depends on knowledge of the circulation constant c. Furthermore, not
taking the Weber and Reynolds numbers into account is not always correct
(this applies particularly to the effect of viscosity – see Section 13.3.1).

In simplified versions of the critical submergence (e.g. for pump intakes),
the recommendations range from h = 2.5d (rectangular pump sump), to
(h/d)cr = constant × Fr or (h/d)cr = constant × Frx (with moderate vortex
formation, the constants and x are geometry-dependent), and to h/D = a +
bFrn

DFrn
D, where D relates to the suction-bell diameter and a, b and n are

constants (usually a = 1.5, b = 2.5 and n = 1).
For a detailed state-of-the-art review of this complicated subject, see

Knauss (1987) (which contains contributions from 12 authors).
There are numerous ways in which vortices may be suppressed, all

depending on the details of the design and the approach flow. Free-surface
vortices – apart from ‘sufficient’ submergence – may be reduced by guide
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walls eliminating stagnant regions of water, vertical ‘curtain’ walls, hori-
zontal grids below the free surface, hoods, vanes, etc. Submerged vortices
may also be suppressed by increasing the distance between a boundary and
the intake and/or by increasing the boundary roughness.

Swirling flows are not necessarily always undesirable. For example, in
dropshafts, as encountered in storm sewer systems, or in shaft spillways,
they can result in increased energy dissipation, reduced vibration and
controlled air flow. The detailed design of these vortex-flow intakes is a
frequent subject of model studies. For further details, see again Knauss
(1987).

13.2.10 Turbulence

From the point of view of modelling, the most important aspect of reproduc-
ing turbulence and its effects is that turbulence is a system of eddies – large
ones generated by the main flow, with a size of the order of the flow field
(e.g. depth of flow), where viscous effects are negligible, and small eddies
(generated by the large ones) dissipating energy due to viscosity.

In the study of hydraulic structures using modelling as a design tool,
attention to turbulence is mainly concerned with fluctuating velocities and
the resulting forces (i.e. the outcome of turbulence). This applies, for exam-
ple, to the study of forces acting on stilling-basin appurtenances, and floors
and gates and their components. Section 4.3.3 described some aspects of tur-
bulence relevant to the interaction of flow and structures, and dealt briefly
with some physical and statistical aspects of turbulence; Sections 13.2.5,
13.2.6, 13.2.8 and 13.2.11 are also particularly relevant.

13.2.11 Hydrodynamic forces and vibrations

The main force acting on hydraulic structures is usually due to hydro-
dynamic pressures caused by non-uniform turbulent flow, with subsidiary
forces caused by waves, ice, impact of floating bodies, etc. The hydro-
dynamic forces are usually considered in two parts: the time-averaged
mean component (or steady flow part), and the fluctuating components
induced by various excitation mechanisms, which in turn are closely related
to structural vibrations. In the design of structures, often a probabilistic
approach based on the statistical distribution of loading (and knowl-
edge of the strength and failure mechanism of parts of the structure) is
required.

Taking a weir/dam crest gate as an example, the mean hydrodynamic
forces acting on a partially opened gate with overflow and/or underflow
will depend on the geometry of the gate and approach passage, the geometry
and position of the gate accessories (supports, seals, etc.), the surface rough-
ness, the upstream and downstream water levels (if the flow is submerged),
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the flow Froude, Reynolds, Weber and Mach numbers, the degree of tur-
bulence and the unsteadiness of the incoming flow (Tu), the aeration of the
space downstream of the gate (Ae), the gate elasticity (Ca) and the cavita-
tion number (Ca′). Denoting the mean piezometric head by h (i.e. the sum
of the mean pressure head and elevation above datum), and including the
roughness and water-level positions in the geometry term, we can write a
very general statement

(h − h0)/v2
0

2g
= f (geometry,Fr,Re,We,Ma,Ca,Ca′,Tu,Ae) (13.46)

It is obvious that the proper determination, even of the mean forces act-
ing on a gate, is a difficult task, partly because of the complexity of the
hydraulic conditions but also because the design often has to satisfy con-
flicting demands (the same applies to hydrodynamic forces acting on other
parts of hydraulic structures): vibration damping may conflict with keep-
ing the forces required for the gate operation to a minimum; the need to
avoid vibrations may conflict with the optimum shape and strength required
by the flow conditions and loading; the optimum shape of the gate edges
and seals may conflict with the demand for water tightness of the closed
gate; etc.

In a preliminary design it is useful to determine the loading by means
of potential-flow and/or finite-element analysis. In very simple cases the
momentum equation can be used. A combination of theoretical analysis
and experience, from field observations and measurements as well as model
experiments, is often required to achieve satisfactory determination of the
hydrodynamic loading.

Turning now to the fluctuating components of the hydrodynamic forces,
these can be induced by different excitation mechanisms and are closely
related to the structural vibrations, which they in turn may induce. The
main categories of these excitation mechanisms are extraneously-induced
excitation (EIE) (e.g. pressure fluctuations due to the turbulent flow down-
stream of a control gate and impinging on the gate), instability-induced
excitation (IIE) (e.g. flow instabilities due to vortex shedding downstream
of a cylinder), movement-induced excitation (MIE) (e.g. self-excitation due
to the fluctuation of a gate seal) and excitation due to a (resonating) fluid
oscillator (EFO) (e.g. a surging water mass in a shaft downstream of a
tunnel gate).

It is clear that, in a general case, equation (13.46) will also be applicable
for the fluctuating components of forces, with the inclusion of parameters
according to the individual case and excitation mechanism.

For a detailed analysis of fluctuating and mean hydrodynamic forces
acting on hydraulic structures, see Naudascher (1991). (Flow-induced)
vibrations can be forced by turbulence or flow structure (see EIE and IIE
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above); they can also be amplified by body vibrations synchronizing with
random turbulence excitation, or the flow excitation can be induced purely
by the body vibration itself – self-excitation or negative damping (see MIE
and EFO above). Vibrations can endanger the structure, and have many
troublesome environmental effects (e.g. noise).

The basic equation for an oscillator (or resonator) with mass m, displace-
ment y under a force F is

mδ2y
δt2

+ cδy
δt

+ ky = F(t) (13.47)

where c denotes damping and k the rigidity (the first term in
equation (13.47) is the inertial force and the second is the friction force).
The natural frequency f is given by f = √

(k/m)/2Π and the ratio γ of the
damping factor and critical damping is

γ = c

2
√

(km)

In the design of hydraulic structures it is desirable for excitation frequen-
cies to be remote from resonance frequencies (unless there is high damping),
and negative damping (self-excitation) should be avoided.

For a body submerged in a fluid, the mass m in equation (13.47) consists
of two components: the mass of the body itself, and the mass of the sur-
rounding fluid, which is accelerated (or decelerated) during vibration (i.e.
the virtual or added mass). If the external force applied to the system is of
a relatively short duration, equation (13.47) with F = 0 denotes free oscil-
lation, and it can be used to determine the damping characteristics of the
system.

As the vibration of a structure will be dependent on its elastic properties,
the Mach (Cauchy) number in equation (13.46) must apply both to the bulk
modulus of the fluid K and to Young’s modulus E of the structure material
(see also equation (3.19e)). Furthermore, the dynamic part of any acting
external force (i.e. the part additional to the time-averaged force) will have
a dominant (excitation) frequency f associated with the Strouhal number
S = fl/v. In the same way, we can define the Strouhal number of the natural
frequency Sn = fnl/v, where v is the velocity of the oncoming flow and l is a
representative length of the (vibrating) body.

In summary, for flow-induced vibrations we have to consider equa-
tion (13.46) with two Cauchy numbers K/ρv2 and E/ρv2 and the Strouhal
numbers S and Sn.

For further detailed treatment of flow-induced vibrations, see, for exam-
ple, ICOLD (1996), Kolkman (1984) and Naudascher and Rockwell
(1994).
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13.3 Physical (hydraulic) modelling

13.3.1 Scaling laws and scale effects for models of
hydraulic structures

As the flow in and at hydraulic structures is usually three-dimensional,
vertical accelerations cannot be neglected and distortion of the velocity dis-
tribution is not acceptable; thus, undistorted models are the norm. In some
cases, where the flow is essentially two-dimensional (e.g. flow over a straight
overflow spillway), sectional geometrically correct models may be used. In
exceptional cases, where the investigated problem is not dependent on the
local effect caused by the structure, distorted models including the structure
may be used (see e.g. Chapter 7).

As can be seen from the previous section, the compliance with Froude
conditions is also generally required (with the exception of some cavita-
tion experimental studies and the use of aerodynamic modelling). It has to
be appreciated that in a model of scale Ml, operated according to Froude
law and using the same fluid as in the prototype, the velocities will be
reduced by M1/2

l and hence the Reynolds (vl/ν), Weber (ρv2l/σ ) and Mach
(v

√
(ρ/K) numbers will all be reduced: the Reynolds number by M3/2

l , the
Weber number by M2

l and the Mach number by M1/2
l .

The reduction in the Reynolds number is particularly important as
another general requirement is that there should be fully turbulent flow on
the model, i.e. Rem >Resq (see equations (7.11) and (4.52)).

The choice of scales is, in most cases, subjected to certain limits (if scale
effects are to be avoided or minimized) to account for the effects of viscous
and surface-tension forces. The choice is further reduced by the presence of
erodible beds (e.g. in modelling of scour) or the need to reproduce the elastic
behaviour of a structure or its parts and to observe the boundary conditions
imposed by critical velocities.

Referring to the discussion of the physics and processes in Section 13.2,
we can reach the conclusions laid out in the following sections.

13.3.1.1 General layout

Modelling of both the far- and near-flow field requires undistorted models
operated according to the Froude law (see Section 5.7.1) (with the exception
of aerodynamic models). The scale of the conventional hydraulic models
should be large enough to ensure fully turbulent flow, i.e. the Reynolds num-
ber of the flow in the approach channel of the structure should comply with
the conditions set out in Section 7.4.3 for open-channel flow (Re>Resq as
defined by equation (7.11)).

Turning now to aerodynamic models of the general layout of hydraulic
structures, apart from geometrical similarity, these only require fully turbu-
lent flow (Re>Resq, see equations (4.52) or (7.10)) and a velocity below
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50 m/s (see Sections 5.8.2 and 7.4.4). Aerodynamic modelling is simple in
this case, as the water-surface elevation in the approach channel is known
and the iterative procedure outlined in Section 7.4.4 is not required.

13.3.1.2 Discharge capacity

From Section 13.2.2 and equations (13.1)–(13.5) it is evident that, apart
from geometrical similarity and the Froude law, special attention must be
paid to the coefficients of discharge and their dependence on viscosity and
surface tension.

For example, for flow over sharp-crested weirs it is easy from equa-
tions (13.3a) or (13.3b) to estimate when the terms involving 1/h or We
become insignificant or what their influence on discharge is likely to be.

In Section 5.8.2.6 some further limits applicable to the choice of scale for
modelling discharge and the shape of the outflow jets have been stated (these
are important for the determination of the optimum shape of the dam bot-
tom outlet intakes, bottom gate seals, the shape of overflow spillways, etc.,
which are relevant for the determination of the coefficients of discharge).
Briefly, for the extrapolation of the shape of the nappe from a sharp-edged
rectangular notch, the minimum head should be about 40 mm, a limit that
‘can be ascribed just to surface tension’ (Ghetti and D’Alpaos (1977)); at
20 mm the overflow parabola becomes almost a straight line. In the case
of flow under a gate the shape of the outflow jet can be extrapolated for
a gate opening a bigger than 60 mm and the head h> 3.3a; the outflow jet
shape from a circular orifice of diameter D is independent of the head for
h> 6D and D> 70 mm. These conditions translate roughly to a limiting
Reynolds number of Re> 105. For further details, see, for example, Novak
and Čábelka (1981), and for a detailed discussion of the nappe shape from
a sharp-edged rectangular weir, see Hager (1995).

As these conditions may lead to very expensive large models, a departure
from the above limits may be necessary, as long as it is not too large and the
consequences are taken into account in the final analysis.

13.3.1.3 Friction

Equations (4.36)–(4.64) cover the effect of friction in laminar to fully tur-
bulent flow, and particularly the effect of the Reynolds number and the
parameter k/δ (i.e. the ratio of roughness size and boundary layer thick-
ness). Sections 7.5 and 9.4 then deal in detail with physical modelling of
open- and closed-conduit flow and associated similarity issues.

In modelling of hydraulic structures the conditions for similarity of
flow in conduits has become important mainly when modelling flow in
long tunnels, bottom outlets and chutes. However, as has been shown in
Section 13.2.3, the growth of the turbulent boundary layer and the value of
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k/δ can become important in flow over surfaces of structures. For example,
it is likely that even a ‘smooth’ model spillway is going to be rougher than
the prototype, thus influencing the coefficient of discharge. Damle (1952)
showed that even with a scale 1:4 the error in the coefficient of discharge of a
smooth model weir was 5% smaller than that for a full-scale prototype; the
smaller the model, the bigger the ‘error’, i.e. the coefficient decreases as the
scale Ml increases, which, of course, acts in the direction of safety. However,
this local frictional effect is usually neglected in models of large spillways.

13.3.1.4 Supercritical flow

From equations (13.8) it follows that for flow on chutes – the surface aera-
tion issue apart (see next paragraph) – geometrical similarity, the observance
of the Froude law and a Reynolds number Re>Resq (equation (7.11)) are
sufficient to ensure similarity of interference waves. As far as the waves of
translation are concerned, the same conditions apply, as geometrical similar-
ity generally ensures also equality of the Vedernikov number; the condition
for the necessary length of the chute given by equation (13.6) is then satisfied
by the equality of the Froude number as ML = Ml = M2

v .
As models of concrete (i.e. ‘rough’) chutes are usually smooth, reproduc-

ing ‘correctly’ the mean values of velocity and depth, more exact modelling
of, for example, the velocity distribution (influencing aeration) requires the
development of the boundary layer (see Section 13.3.1.3) to be taken into
account (see the procedure outlined in Section 9.4). Any uncertainties in
this are, however, usually small compared with the scaling problems arising
from aeration.

As the criterion for the type of flow over stepped spillways is a function of
the critical depth, the condition of similarity will automatically be satisfied
on a geometrically similar Froude model.

13.3.1.5 Aeration

As evident from Section 13.2.5, aeration at various structures and flow con-
figurations is one of the most intractable problems in design and the cause
of scale effects in modelling. Equation (13.9) demonstrates the complexity
of the problem for expressing and modelling even the average air concentra-
tion in a general case of aerated flow (and even more so when considering
the distribution of air). Furthermore, the limiting conditions for aeration
inception, entrainment and transport have to be added to the parameters in
equation (13.9).

From the discussion of surface aeration at, for example, supercritical flow
(see Section 13.2.5) it follows that observing the previously stated general
conditions (geometric similarity, Froude law, Re> Resq) and for the same
water properties on the model as in the prototype (z = constant) the main
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problem in reproducing even the average air concentration and air trans-
port will be the effect of surface tension (Weber number) and air-bubble
size, which will remain the same on the model as in the prototype (i.e. the
parameter db/y will not be modelled correctly). On most models the flow
velocity will not be large enough to overcome the effect of surface tension
(see inception limit vc = 6m/s). Nevertheless, the point of air-entrainment
inception can usually be observed (e.g. on models of chutes) by a sudden
rough appearance of a previously smooth water surface. The effect of the
ratio vb/v on the model, too large by a factor M1/2

l , will be (should aeration
take place at all) faster deaeration of the entrained air and smaller transport
rates (according to downstream conditions). Also, the equation (13.16),
which is not dimensionless, if applied in the model when converted to the
prototype is bound to give ‘wrong’ results by a factor M1/4

l . On the other
hand, equations (13.12)–(13.14) indicate that in sufficiently large models
(usually Rem >105) some useful results are possible.

In the case of local surface aeration (see Section 13.2.5), equations (13.17)
and (13.18) would indicate, in general, the impossibility of correct mod-
elling of the aeration rate qa, as this is dependent on the velocity to a varying
power or the ratio of vc/v. Equally, equation (13.19) for the length of fall
of a jet required for disintegration cannot be correctly modelled, as it will
include a scale effect M1/2

l .
For hydraulic jump configurations and spillway aerators (see Sec-

tion 13.2.5) there is the possibility of correct modelling of β (equa-
tions (13.20) and (13.21)) as the entrainment-limit effect is predominant
with high turbulence levels and sufficiently high Reynolds numbers. Chan-
son and Gualtieri (2008), on the basis of experiments conducted with two
hydraulic jumps scaled 2:1, concluded that the smaller model showed scale
effects both in air entrainment and detrainment for Re1 < 2.5E + 4 (with
identical Froude numbers Fr1 = V1/

√
(gy1) on both models).

Kobus and Koschitzky (1991) quote an equation for the limiting condi-
tion of the boundary-layer length scale at the location of air entrainment:

le >

(
Resqv
Fr

√
g

)2/3

(13.48)

For a given configuration, equation (13.48) allows an estimate of the mini-
mum model dimensions required for fully turbulent flow. For example, for
a hydraulic jump for the lower limit (Fr = 1) the minimum water depth for
Resq = 105 is le = 100 mm.

Turning to oxygen transfer from entrained air (see Section 13.2.5) it
is obvious from equations (13.23)–(13.26) that a physical model oper-
ated according to the Froude law cannot predict the prototype oxygen-
transfer efficiency, as all equations also contain the discharge q (and
equations (13.25) and (13.26) are not dimensionless). However, as long as
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the appropriate boundary conditions are observed, good results are
obtained by computation using equations (13.23)–(13.26).

Boes and Hager (2003b) conclude that the smallest Reynolds and Weber
numbers required to minimize scale effects in modelling two-phase air–
water flows on stepped spillways are Re = 105 and We = 104 (We is defined
as v2ρL/σ , where L is the distance between step edges). This results typi-
cally in a limit Ml = 15. Chanson and Gonzales (2005) stress that physical
modelling of stepped chutes is more sensitive to scale effects than that of
classical smooth invert chutes; one contributing factor is the strong interac-
tion between free-surface aeration and turbulence (which extends from the
stepped invert to the pseudo-free surface).

For estimating aeration rates and scale effects on physical models, one
commonly used method is to use a series of models of different scales and
try to extrapolate the results to the prototype.

We can conclude that, although scale effects in models involving aeration
are often inevitable, useful results can be obtained, particularly when mod-
elling alternative design options and/or by supplementing physical models
by computational procedures and applying engineering judgement.

13.3.1.6 Cavitation

Cavitation (see Section 13.2.6) is characterized by the cavitation number
σ = 2(p − pv)/(ρv2), which is a form of the Euler number. For cavitation to
occur, σ must be smaller than the critical value σc (for incipient cavitation).
In models of hydraulic structures operated according to the Froude law,
σ would be identical to that in the prototype (assuming the pressure and
velocity values refer to mean values), if the pressures p and pv were to be
reduced to scale by Ml. This, however, clearly is not possible in conventional
models, as the atmospheric pressure p0, included in the value of p, and the
vapour pressure pv are not reduced. Hence, cavitation will usually not occur
on the model (due to reduced velocities); however, measuring the pressure
distribution on the model and converting this to the prototype can give some
idea of the areas where cavitation is likely to occur. In some situations, such
as in siphon flow, the local pressures in the model may be low enough to
actually produce cavitation.

Kenn (1984) demonstrates that even a small-scale model tested in a water
tunnel at full-scale heads and velocities can usefully indicate likely patterns
of cavitation and even cavitation erosion for elements of a large structure
(e.g. at gate slots).

For cavitation to be actually observed and to develop a design that avoids,
or at least minimizes, it, cavitation tunnels (see Chapter 6, Figure 6.3) gen-
erally have to be used. However, particularly when testing flow around
submerged bodies (e.g. turbines or ship propellers), substantial scale effects
in observing the degree of cavitation (incipient, etc.) have been noticed.



562 Modelling of hydraulic structures

The principal problem that makes comparison of exactly the same exper-
iments in different testing facilities difficult is the water-quality effect,
caused by the different tensile strengths of the test liquids, which depends
strongly on the gas content and suspended dust particles. However, even
when this problem is eliminated by filtering and measuring the ten-
sile strength of the liquid in a vortex nozzle chamber, real scale effects
remain.

Based on extensive tests in the laboratory at Obernach (Munich Univer-
sity of Technology), Keller (1994) reported scale effects due to velocity, size,
turbulence and viscosity, for which he proposed an empirical equation for
the cavitation inception number:

σ = K0

(
L
L0

)1/2 (v0

v

)1/4
(

1 +
(

V∗

V

)2
)(

1 + K0S
S0

)
(13.49)

where K0 is a constant characteristic of the body shape determined by a
separate experiment, and L0, ν0 and S0 are arbitrarily chosen values of the
length of the body, the kinematic viscosity and the standard deviation of the
free-stream velocity V∗, which is about 12 m/s.

Although the situation may be less complicated when testing elements of
structures with free-surface flow (e.g. the stilling-basin baffles in the con-
figuration shown in Figure 6.3(b)), it is clear that the interpretation of
cavitation experiments requires a series of tests and experience in handling
of cavitation tunnels.

13.3.1.7 Energy dissipation

From Section 13.2.7 it is evident that the main cause of any possible scale
effects, when predicting energy dissipation from geometrically similar mod-
els operated according to the Froude law, will be the effects of aeration
(see Section 13.3.1.5) and, to a certain extent, of losses due to friction (see
Section 13.3.1.3); there may also be scale effects due to the degree of tur-
bulence (see Section 13.3.1.10). Some of these effects will be eliminated,
or at least minimized, on large-scale models and with a sufficiently large
Reynolds number (at least 105).

Energy dissipation involving hydraulic jumps will be well represented on
models, as is evident from equations (13.33)–(13.36). The correct represen-
tation of the incoming supercritical flow depth will, of course, depend on
the value of the velocity coefficient φ1−3 (equations (13.31) and (13.32)). For
this the possible role of aeration and friction has to be assessed, but expe-
rience shows that most models of, for example, the performance of stilling
basins reproduce prototype behaviour well.

A typical example of possible scale effects in energy dissipation is the
modelling of a jet from a ‘ski-jump’ spillway. It is possible that even a very
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smooth model spillway will be rougher than required for a correct repre-
sentation of head losses, and thus the velocity of the jet at its origin may be
slightly lower than it would be in the prototype. However, due to the usu-
ally short upstream length this effect can be quite negligible. On the other
hand, the jet is likely to be less aerated on the model than in the proto-
type causing its impact into the river downstream to be further away from
the structure, resulting (for the correct representation of the river bed –
see Section 13.3.1.8) in a somewhat deeper scour than in the prototype.
Finally, when interpreting model results one may have to take into account
the increased air resistance to the high-velocity prototype jet. The overall
effect therefore could be a scour somewhat closer to the structure, but
possibly a shallower effect than indicated by the model. Thus, the mod-
eller and designer have to apply some degree of engineering judgement to
the interpretation of model results and the consideration of the safety of the
structure.

All experience shows that the main value of model testing of energy dis-
sipation lies in comparative tests of alternative design features, where any
possible scale effects often become irrelevant.

13.3.1.8 Erosion at structures

Section 13.2.8 briefly discussed local erosion downstream of dams and weirs
and at bridges, quoting some equations for the depth of scour and its devel-
opment over time. Although not all equations, particularly the older ones,
are dimensionless (e.g. equation (13.37)), they are useful for scour compu-
tations. Equations (13.38)–(13.43) are dimensionless, and their application
in modelling seems to be relatively straightforward. However, for modelling
the scour on geometrically correct models operated according to the Froude
law, there are some major problems.

(a) It is essential to reproduce the turbulence and velocity distribution in
the flow, as these are closely connected to the scouring process. This
requires a sufficiently large Reynolds number (say Re>105) and correct
simulation of the bed and structure roughness (see also Section 13.2.10
and the discussion in Section 13.3.1.10).

(b) Many of the relevant equations contain the bed sediment diameter (e.g.
equations (13.37)–(13.39) and (13.42)). Modelling of scour of coarse
granular material requires the use of the correct density and grading of
material, which is of sufficient size to be free of viscous effects (see
also Section 4.6.3). In general, a model scale resulting in sand with
d > 0.5 mm and d50 > 1.5 mm is acceptable; finer material could give
results with substantial scale effects. The use of lightweight materials to
avoid too small particles of correct density could be a possibility, but it
gives rise to some problems (e.g. in reproducing roughness effects and
particle shape). Generally, scour investigations require careful selection
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of bed material, sometimes with use of cohesion-reduction measures
(see Section 6.2.3).

(c) The mechanism of scour of a rocky bed is basically due to pressure fluc-
tuations and pressure propagation into the rock fissures. As it is usually
not practicable to reproduce this on a model, comparative studies of the
erosion of a suitable substitute material (see Section 6.2.3) have to be
used to optimize the design.

In general, model scour experiments produce very good and useful results
in comparative studies of various designs. However, as experimental stud-
ies in laboratory flumes (Ettema et al. 1998), field studies and the use
of computational fluid dynamics each have limitations, in particular in
more complicated structural configurations, the best results are likely to be
achieved by a combination of all three approaches (Ettema et al. (2006)).

For a more detailed discussion of modelling turbulence, roughness and
sediment in scour experiments, see, for example, Prins (1971).

13.3.1.9 Swirling flows and vortex formation

Section 13.2.9 demonstrated the impossibility of a generally valid design
procedure for determining the conditions for vortex formation, and the diffi-
culties of modelling swirling flows without any scale effects. Ranga Raju and
Garde (1987) discuss in some detail the various methods used in modelling
which, apart from the difficulty in establishing a uniformly valid procedure
even for one given geometry, also present problems in measuring circulation
swirl velocities.

As the Kolf number N� is dependent on the intake approach flow, overall
geometry and discharge, the modelling criteria for a given situation will be
primarily dependent on the Froude, Weber and Reynolds numbers. From
the discussion of experimental results by various authors (notably Knauss
1987) the following conclusions can be reached:

(1) The Weber number (defined as V
√

(ρd/σ ), where V is the flow velocity
through an intake of diameter d) does not affect vortex formation for
values over 11. As this will almost always be the case in model studies,
the influence of surface tension may be ignored.

(2) Practically all studies show the predominant influence of the Froude
number for investigations of critical submergence, with the possibility
of some distortion necessary to account for the non-constancy of the
Reynolds number.

(3) Viscous effects are likely to be absent for a ratio of Re/Fr =
Vd

√
(gd)/(Vν) = g1/2d3/2/ν >5 × 104.
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(4) Another way of establishing a limiting Weber and Reynolds number for
a horizontal intake is to use the critical submergence h, giving a value
We = Q2ρh/(A2σ )>104 and a radial Re = Q/(hν)>3 × 104.

(5) A series of models may be used to find a Froude number multiplying
factor, which can be used to model an air-entrainment vortex.

(6) The technique of testing a geometrically similar model at the prototype
velocity, as adopted in some studies, is likely to lead to a conservative
design.

In conclusion, it may be stated that for the most frequent modelling case,
i.e. where air entrainment and vortex formation can be avoided, the Weber
number may be neglected and a geometrically correct Froude model may be
used with useful results. But even situations with air-entraining vortices can
be reproduced correctly on models, although the procedure will be strongly
dependent on the studied geometry, and as far as possible the viscous effects
should be checked.

13.3.1.10 Turbulence

It follows from the fact that turbulence is a system of eddies – large ones
with negligible viscous effects and small ones dissipating energy due to
viscosity (see Sections 4.3.3 and 13.2.10) – that in small-scale models the
dissipation term of the turbulence–energy equation may represent a too
large proportion of energy consumption, leading to scale effects. It is impor-
tant, therefore, to reproduce as far as possible the fully developed range
of eddies, i.e. to use a geometrically similar (non-distorted) model of suf-
ficiently large size to reproduce correctly the macroscale of the eddies. In
this case a Froude model will reproduce well the mean values of fluctuating
velocities (and thus pressures), and with sufficiently large Reynolds num-
bers may also reproduce the MRS values and energy spectra. Thus, Lopardo
(1988), from a study of pressure fluctuations induced by a hydraulic jump
on stilling-basin appurtenances, concluded that a model scale Ml = 50, with
Re>105, a lowest model depth of 30 mm and power spectra in a frequency
band below 20 Hz reproduced well the amplitude and frequency of the
prototype pressure fluctuations.

However, it is difficult to apply all these conditions generally, but a
Reynolds number above 105 is always advisable when modelling turbulence
and its effect on hydraulic structures (see also Section 13.3.1.8).

13.3.1.11 Hydrodynamic forces and vibrations

The scaling laws for a preliminary assessment of hydrodynamic forces with
rigid models (e.g. of gates) without taking into account the consequences
of vibration would follow conventional procedures, with the emphasis on
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Froude modelling and large enough models to be able to ignore the effects
of viscosity and surface tension but with correct representation of geometry,
aeration, approach flow and turbulence.

Modelling of forces including vibration will be based on equa-
tions (13.46) and (13.47), with consideration of the two Strouhal numbers
S = fl/v2 and Sn = fnl/v2 (taking into account the dominant excitation and
natural frequencies). In principle, again the effects of viscosity and sur-
face tension can be ignored if the model is large enough. The size of a
‘large enough’ model scale will obviously depend on the circumstances;
for example, for barrage gates a scale in the range 8 < Ml < 25 is usu-
ally used and a Reynolds number Re> 105 is aimed at. Although both the
Mach and Cauchy numbers are included in equation (13.46) (the Mach
number for the fluid and the Cauchy number for the structure), it would
be a very rare case where the fluid compressibility has to be taken into
account, and thus the Mach number can be ignored (see also comment
below).

In general, two different cases have to be distinguished: the modelled
structure is submerged (e.g. thrash racks) or the modelled structure is in
free-surface flow (e.g. crest gates).

In the first case, it is sufficient to satisfy the identity of the Cauchy number
(ρV2/E), as the Froude law does not apply (and the model is large enough
to permit viscous effects to be ignored). Using the same fluid and material
in the model as in the prototype (Mρ = ME = 1) results in MV = 1, i.e. the
same velocity in the model as in the prototype.

In the second case, using Froude similarity, full use must be made of the
conditions arising from equations (13.46) and (13.47). Equation (13.47)
leads to scale conditions with respect to force for mass, damping and rigidity
coefficients for the amplitude of oscillations, and the resonance frequency
to have correct scales (with Mt = M−1

f and My = Ml):

Mm = MF

M2
f Ml

(13.50a)

Mc = MF

Mf Ml
(13.50b)

Mk = MF

Ml
(13.50c)

As MV = M1/2
l (Froude law), the scale for the two Strouhal numbers MS =

MSn = 1 automatically. As far as the cavitation number is concerned, theo-
retically its scale is also unity, but the problems associated with not reducing
the vapour pressure pv and other scale effects (discussed in Section 13.3.1.6)
have to be considered. Thus, ignoring the effects of viscosity and surface ten-
sion for a geometrically correct model with correctly modelled turbulence
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and aeration (see Sections 13.3.1.5 and 13.3.1.10), for the identity of the
Cauchy number in model and prototype:

Mρ,M1M−1
E = 1 (13.51a)

where ρ ′ is the specific mass of the material of the structure. As the structure
and part of the water vibrate together, using water on the model leads to
Mρ = Mρ′ = 1 and

Ml = ME (13.51b)

As for steel E = 20 × 1010 N/m2 and ρ ′ = 7,850kg/m3, and for con-
crete E = 20 × 108 N/m2 and ρ ′ = 2,500kg/m3, it is not easy to satisfy the
above conditions. The materials most frequently used for modelling steel
structures are PVC or one- or two-component epoxy resins, which with
E=6 × 109 N/m2 leads to a scale Ml =20 × 1010/6 × 109 =33. As ρ ′ for the
model material is less than that for the prototype (ρ ′ = 1,400kg/m3), extra
mass (e.g. lead) has to be added locally to the model to achieve Mρ′ = 1.

If the fluid compressibility has to be taken into account, similarity would
require the Mach number v

√
(ρ/K) of the model and the prototype to be

equal, i.e. MMa = 1. If water is used on the model with Mρ = Mk = 1, the
above condition would lead to MV =1, and thus on a Froude model Ml =1.
Clearly, this is not practicable and special models with reduced wave celer-
ity have to be used; this can be achieved by inserting an elastic element
into the model (e.g. a plastic container filled with air in the water pas-
sage or a rubber penstock in a model of a vibrating gate and penstock).
Models of vibrating structural elements require special instrumentation
that does not unduly restrict the movement of the model (e.g. strain
gauges).

It is clear that in modelling of often fairly complicated phenomena, scale
effects are unavoidable, particularly when modelling damping, which is
likely to be unduly large in the model, or in studying phenomena strongly
dependent on the Reynolds number (e.g. flow past cylinders with flow sepa-
ration and vibrations). Models of vibrating elements may contain irrelevant
information, and recorded data have to be interpreted carefully; a good
knowledge of hydrodynamics is essential.

For further information, see the references cited in Section 13.2.11 and,
for example, Haszpra (1979) and Naudascher (1984).

13.3.2 Inland navigation models

The most frequently used models for structures on inland waterways are
models of locks, their gates and filling systems. Other inland navigation
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models concern the movement of vessels on restricted-width waterways or
through construction sites of barrages.

Models of lock gates follow the procedures described in the previous
sections. A special case is models used as a design tool for lock fill-
ing/emptying systems, with the aim of reducing the forces acting on vessels
both inside and outside the lock and of increasing the speed of filling or emp-
tying the lock in order to increase the efficiency of the waterway. Sometimes
models are also used to monitor the forces acting on ships moored in har-
bours and on vessels in ship lifts. Although originally these problems were
investigated exclusively using physical models, nowadays mathematical or
hybrid modelling is often used.

Physical models of lock-filling systems and of the forces acting on vessels
require special instrumentation, particularly dynamometers and record-
ing equipment. The emphasis in lock experiments is on the investigation
of the longitudinal forces acting on the model vessel. These consist of
frictional and form-resistance forces, forces due to the action of the lock-
filling jet(s) and the effect of the (sloping) water levels in the lock, which
change during the filling (emptying) process. This is a typical case of
modelling complex phenomena, as described in Section 5.9, and if the nec-
essary inputs are determined experimentally the result can also be obtained
mathematically. The scale of the physical models is usually in the region
of Ml = 20.

Models of the movement of barges on restricted waterways are governed
by the Froude law and the condition that the scale of the model barge
(sometimes with remote control) must be the same as the scale of the sur-
rounding waterway. The required minimum Reynolds number for the body
of the vessel (related to its length) is about 5 × 106 (or 3 × 106 with artifi-
cially induced turbulence), for the rudder 1.5 × 106 and for the propeller
7 × 104 to 3 × 105. These values lead to large, and therefore expensive,
models, typically Ml = 15. On the other hand, useful, albeit qualitative,
results can be obtained with much smaller remotely controlled models (scale
50<Ml<100), assuming that the model barges are ‘steered’ by persons with
prototype-vessel experience.

For further details of instrumentation and models, see Delft Hydraulics
Laboratory (1985), Novak and Čábelka (1981) and Renner (1984), and the
following case studies.

13.3.3 Models of urban hydraulics structures

Although sometimes of a small scale, the design of the manifold structures
connected with water supply and waste-water treatment presents very simi-
lar problems to those encountered when modelling large structures, as dealt
with in the previous sections, and thus the same physics and processes and
scaling laws and scale effects described in Sections 13.2 and 13.3.1 apply
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to their modelling. In addition, in some cases we have to consider water-
quality effects.

If the prototype contains clean water or only some suspended matter, as
is the case in water supply or strongly diluted waste units, the previously
discussed criteria apply in the physical modelling (in most cases using the
Froude law). If the prototype contains a substantial concentration of par-
ticles influencing its density without affecting its viscosity, we may have to
consider also the need for the identity of the Froude densimetric number (see
equation (4.96)) (the coefficient of viscosity of sewage is usually the same
as that of clean water that is 6◦C cooler). When modelling density currents,
the identity of the Richardson number (see equation (4.97)) is required.
If surface-renewal and liquid-film coefficients are involved in the process,
such as in oxygen transfer (see also Section 13.2.5 and equations (13.22)–
(13.28)), the identity of the Sherwood number Sh = KLdb/Dm(KL is the
liquid film coefficient, db the bubble diameter and Dm the coefficient of
molecular diffusion) should be observed or scale effects will arise.

If the prototype fluid is non-Newtonian (e.g. flow of sludges and flow
in digestors – Bingham fluids with pseudoplastic properties) any modelling
has to take into account the laws of rheology and the preservation of the
Hedström number He = τρD2/μ (τ is the initial stress required to produce
a deformation of the fluid).

Problems connected with sewer flow and design of sedimentation tanks
are practically always dealt with using the equations given in Chapter 4
and by mathematical modelling, although some cases (e.g. distribution
of inflow into tanks) may require physical modelling. The most frequent
cases of physical modelling are connected with the design of sewer inter-
ceptors, cross-drainage and drop structures, and pumping sumps and
intakes.

Section 4.6 contains further information on, and the equations used
in, the mathematical modelling and design of urban hydraulics structures
(e.g. equations (4.110)–(4.114) for sewers with sediment transport), and
Chapters 9–11 deal with some relevant processes and their modelling.

For a comprehensive review of waste-water hydraulics, see Hager (1999),
and for some examples of physical models of associated structures, see
Novak and Čábelka (1981).

13.4 Mathematical modelling

The background to mathematical, computational and numerical modelling
(see Chapter 1) of hydraulic structures is given in Chapters 2–4. Chapter 4
gives the necessary hydrodynamics and hydraulics background and the
relevant equations (continuity, momentum, Navier–Stokes equations for
turbulent flow, Saint Venant equation, shallow-water equation, etc.), and
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Chapter 3 is a guide to the numerical solutions of the differential equations.
Section 13.2 then provides the equations for the physics and processes
that are the necessary input to modelling. Chapters 7, 9 and 10 contain
sections that are closely related to the computational modelling of hydraulic
structures.

Many of the software packages mentioned in the previous chapters (e.g.
DAMBRK, FLUCOMP, Mike 11, Flowmaster) are relevant in computa-
tional fluid dynamics applied to hydraulic structures.

Computational models applied to the design of hydraulic structures fall
broadly into two categories: those dealing with the general layout and (far)
flow field of the structures, and models of a part and detail of the struc-
ture (e.g. a spillway, piers). The following are examples of some of many
references dealing with the above.

For a general introduction to the subject, see, for example, Verwey (1983),
which includes a case study of the Oosterschelde storm-surge barrage in the
Netherlands. For a comprehensive treatment of the modelling of free-surface
flows (including application to gated spillways), see, for example, Bűrgisser
(1999), which contains a large list of references, and Schindler (2001),
which includes an application to flow over a raised bed sill. Hervouet (2007)
provides a detailed guide for the modelling of free-surface flows using the
finite-element method (using, for example, Telemac, developed by Electricité
de France).

An example of computational modelling applied specifically to a compo-
nent of hydraulic structures is the simulation of flow over spillways (see e.g.
Song and Zhou (1999), Assy (2001)). Akoz et al. (2009) provide an exam-
ple of the application of computational fluid dynamics to the modelling of
sluice-gate flow. For more general applications, using a FLOW-3D model
with a volume-of-fluid technique capable of dealing with rapid spatial and
temporal variations in water-surface elevation and providing a comparison
with physical model data (e.g. for weirs and pumping stations), see, for
example, Spaliviero and Seed (1998). Other examples are the application of
k − ε turbulence modelling to submerged hydraulic jumps using boundary-
fitted coordinates (Gunal and Narayanan (1998)), and the application of
computational fluid dynamics to sewage storage chambers (Stovin and Saul
(2000)).

In the design of gates, computational methods are applied mainly to
the determination of the strength necessary to accommodate hydrodynamic
loads and to compute added mass if the mode of vibrations can be predicted
(ICOLD (1996)).

Sumer (2007) provides a review of the mathematical modelling of local
scour around piers, below pipelines, and at groynes and breakwaters; the
review, which gives the main ideas, general features and procedures in the
modelling process, also contains an extensive bibliography for both physical
and mathematical modelling of scour.
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Leschziner (1995) deals with modelling turbulence in physically com-
plex flow, with particular emphasis on Reynolds-averaged modelling, and
compares the predictive capabilities of eddy-viscosity and second-moment
models.

Omid et al. (2005) give an example of the application of artificial neural
networks to a component of hydraulic structures.

It is important to appreciate that all computational models require
good-quality input data, and have to be calibrated and validated to give
reasonably reliable results.

13.5 Case studies

13.5.1 Kárahnjúkar dam

The Kárahnjúkar dam in Iceland is part of a 690 MW hydroelectric power
project completed in 2008. The 198 m-high, concrete-faced rockfill dam has
a spillway designed for a capacity of 1,350 m3/s, which consists of a free,
conventional, side-channel spillway followed by a transition bend and a
419 m-long chute with a spillway aerator 125 m from its end (as the flow at
that point would have otherwise reached a critical cavitation number), ter-
minating with a free-falling jet falling into a narrow 70–90 m-wide canyon
with the river bed about 100 m below. The canyon sides are unstable, with
cracks and soft rock, and the spillway jet has to avoid direct contact with
them as well as causing minimum possible impact pressures on the river bed.
These design requirements could only be met by a detailed hydraulic model
study, which was carried out at the hydraulic laboratory of the Versuch-
sanstalt für Wasserbau, Hydrologie und Glaziologie (VAW) at ETH Zurich
(Pfister et al. (2008)).

The chosen scale of Ml = 45, using Froude law, is large enough to study
on one model the flow over the spillway, the issuing jet with its disper-
sion, and the resulting downstream scour and energy dissipation. Although
viscosity and Reynolds-number effects could be neglected, inevitably scale
effects due to the aeration, surface tension and turbulence structure of the
jet had to be accounted for.

As the reservoir inflow from glacial rivers varies greatly between the sea-
sons, the spillway design had to account for a wide variation in discharge.
The model tests resulted in a chute of increasing slope and width in the
downstream direction, terminating in a special structure consisting of an
oblique upper chute end with wedges and baffles, and a minor lower plat-
form draining small discharges into the narrow canyon. As the velocities
at the end of the spillway varied according to the unregulated discharge
between 8 m/s and 36 m/s, the jet length and the point of its downstream
impact varied over a wide range. A tailwater dam provided a 15–20 m water
cushion in the plunge pool.
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Detailed model studies of the terminating chute structure, the free-falling
disintegrated jet and the plunge pool resulted in a design – the suitability of
which was proved by prototype observation – where the jet for the whole
range of discharges falls clear of the narrow canyon walls (although in the
prototype it is surrounded by mist) and the time-averaged dynamic pressure
head at the river bed was reduced to a maximum of 11 m for the design dis-
charge (the corresponding maximum pressure head on the opposite canyon
flank within the plunge pool was around 7 m).

Figure 13.6 shows a general view of the model, and Figure 13.7 gives a
detailed view of the jet and plunge pool, both with Q = 600m3/s.

The whole model study is an example of the processes and the application
of the principles outlined in Sections 13.2.5–13.2.8 and 13.3.1.5–13.3.1g.

Figure 13.6 Kárahnjúkar dam model (courtesy of VAW, ETH Zűrich)
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Figure 13.7 Kárahnjúkar dam model – jet and plunge pool (courtesy of VAW, ETH Zűrich)

13.5.2 Děčín barrage

This case study deals with a proposed barrage on the River Labe (Elbe)
at Děčín in the Czech Republic (Gabriel et al. (2007)); its main purpose
is to raise the water levels at low river discharges to improve the naviga-
tion conditions on this important inland waterway, as otherwise navigation
has to be severely restricted or abandoned altogether for long periods,
even in an average water year (see also the case study in Section 7.6.3).
The design of the barrage is complicated by difficult morphological con-
ditions, the restricted site and by its location in an environmentally and
ecologically sensitive area. The barrage raises the water level by 5.30 m
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for low discharges, without affecting the flood levels; it has three sections
with hydrostatic sector gates (43 × 5.2 m). The lock is 24 m wide and
200 m long, and the 9.7 MW power station has two direct-flow Kaplan
turbines.

A combination of aerodynamic, computational and, above all, hydraulic
modelling was chosen to finalize the design of the barrage and adjoining
low-head power station, navigation lock and fish passes. To explore vari-
ous solutions for the barrage layout and the inlet and outlet parts of the
power station and fish passes, two- and three-dimensional mathematical
k − ε turbulence models were used. The results of these studies (as well as
those obtained from preliminary aerodynamic models) formed an input to
a hydraulic model. For the far-field modelling of the upstream area a two-
dimensional model was used; the mean velocities in the verticals obtained
from this model just upstream of the barrage were used as a boundary
condition for the three-dimensional model of the flow at the structure.
Figure 13.8 shows an example of the three-dimensional mathematical model
for the design of the power-station forebay, with curved piers directing the
flow to the turbine inlets, and the same in the hydraulic model wherein
flow conditions were illustrated by cork floats (weighted to show the mean
velocities in the vertical).

The aerodynamic models and a large hydraulic model were constructed in
the laboratory of the T. G. Masaryk Water Research Institute (VÚV-TGM)
in Prague. The two distorted aerodynamic models represented the upstream
reservoir and the downstream area of the barrage, with scales Mh = 150
and Ml = 300. Both models showed in detail the river bed (modelled in
polystyrene and putty) and the navigation approaches, with the barrage
and power station represented only schematically (in wood and plastic).
As the water levels were known and were represented by fixed covers, the
model operation was straightforward (see Section 7.4.4). The main purpose

Figure 13.8 Děčín barrage – mathematical model of power station forebay (courtesy of
VÚV- TGM, Prague)
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Figure 13.9 Děčín barrage – aerodynamic model (courtesy of VÚV-TGM, Prague)

of the models was to determine approximately the optimum layout and
orientation of the barrage, with the result forming the input to detailed
investigations on the hydraulic model. Flow conditions were tested by flow
visualization by introducing burning sawdust into the air stream. Detailed
measurements of the velocity field constant were made using temperature
anemometers and cylindrical probes (see Chapter 6). Figure 13.9 shows an
overall view of the aerodynamic model.

The conventional hydraulic model (Figure 13.10) had a scale Ml =70 and
was used to optimize the final layout of the barrage, lock dividing walls and
approaches, power station inlets and outlets, and the entry and exit of the
fish passes.

An important part of the modelling process were nautical experiments
using models of push trains and barges (scale 1:70) to determine the suit-
ability of the design from the navigation point of view, and to test conditions
during the barrage construction stages (see Section 13.3.2) (Figure 13.11).

13.5.3 Fusegate stability

The Jindabyne rockfill dam on the Snowy River in New South Wales,
Australia (completed in 1967), has a service spillway with two radial gates
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Figure 13.10 Děčín barrage – hydraulic model (courtesy of VÚV-TGM, Prague)

and a capacity of 3,000 m3/s. In 1997, the new guidelines for dam safety
and spillway capacity showed that substantial new spillway capacity was
required, and it was decided to add a new auxiliary spillway to the dam with
eight labyrinth-type fusegates, with a total capacity of 5,600 m3/s (with all
the gates tipped). The design parameters of the reinforced-concrete gates
with stainless-steel well tops are 7.60 m high, 11.24 m long and weight
380 t. Considering the unique size and design of the gates, an extensive
model study was undertaken at the Sogreah Laboratory in Grenoble (Jones
et al. (2006)).

Two models were used:

• A large model, scale Ml =45, to study the flow in the approach channel,
the downstream conditions and the spillway performance for various
operational possibilities of the fusegate spillway system.

• A small sectional model, scale Ml = 20, with two gates to study the
fusegate stability. On this model the gates were fully functional and
tipped at the design upstream water levels. The fusegates were built
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from resin, with a cement and gravel ballast to give the correct weight
and position of the centre of gravity. The model was used to measure
the water-surface profiles above the fusegates, the pressures, the gate
stability (also under impact from boats) and the actual displacement of
the gate (see also Section 13.3.1.11).

Figure 13.12 shows the flow in the larger model with a discharge of
2,646 m3/s after the tipping of four gates. The models were operated accord-
ing to the Froude law and the Reynolds numbers were sufficiently high to
ensure a fully rough turbulent flow regime and a good representation of
the frictional losses on the models (even on the smaller scale model, the
Reynolds number was over 2,000 for the smallest discharge, and rose to
70,000 for the highest discharge before the tipping of the gates and to
200,000 without the gates in position).

Figure 13.11 Děčín barrage – nautical experiment (courtesy of VÚV-TGM, Prague)



578 Modelling of hydraulic structures

Figure 13.12 Fusegate model (courtesy of Sogreah, Grenoble)

The main results of the model tests were the determination of the spillway
discharge coefficient and water-level–discharge relationships for various
operational situations, and the confirmation of the design assumptions for
the correct tipping of the gates and their stability.

13.5.4 Combined sewer screening chamber

A hydraulic model study of a combined sewer screening chamber for a com-
mercial client was carried out in 2003 in the hydraulic laboratory of the
School of Civil Engineering and Geosciences at the University of Newcastle
upon Tyne (Valentine (2003)). The main objectives of the study were:

(1) to provide efficient energy-dissipation measures for the flow into the
chamber and to ensure a maximum velocity of 0.9 m/s and uniform
flow conditions at the rotary screens;
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(2) to reduce the length of the chamber in order to minimize the impact on
the existing rail embankment;

(3) to achieve self-cleaning conditions, good side-weir performance and
reasonable hydrodynamics when all or any screen is isolated.

A model scale of Ml = 18.4 was chosen which, when operated accord-
ing to the Froude law, ensured sufficiently high Reynolds numbers and
permitted the use of standard pipe diameters (see also Section 13.3.3).
Figure 13.13 shows the layout of the model (including the test results). The
rotary screens were represented by flat ones, but with the correct head loss.
Downstream control levels were established from tidal levels and sewer line
losses.

The objectives of the study were achieved by suitably dimensioning and
positioning the dividing piers in front of the screens. An energy dissi-
pater in the form of an equilateral-triangular-sectioned pillar was placed
at the chamber inlet in such a position that sufficient energy dissipation
occurred to promote uniform flow conditions to the screens with a max-
imum approach velocity of 0.7 m/s and a possible reduction in the weir
length by 8.25 m (from the original length of 21.8 m).

Figure 13.13 Sewer screening chamber model (courtesy of University of Newcastle
upon Tyne)
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13.5.5 Moislains lock

With a 30 m head the Moislains lock is the highest of the seven locks in
the new 106 km-long Seine–Nord canal, which is the central link of the
Seine–Scheldt waterway.

The 195 m-long lock, of width 12.5 m, is provided by five thrift basins,
each with four culverts leading to a common valve chamber beneath the
thrift basins, and a pressure chamber beneath the lock connected to it by an
array of nozzles. Each of the 20 culverts from the thrift basins is governed
by a fixed-wheel, vertical lift gate; there are also vertical lift gates in the two
filling and emptying culverts in the upstream and downstream lock head,
governing the filling and emptying of the remaining two-sevenths of the
lock-chamber volume. The operation of the 24 gates is computer controlled
to achieve the smallest possible safe time for the lock filling/emptying (of the
order of 14 min).

To study the design and operation of the lock, a model of scale Ml = 25
was constructed at the Sogreah laboratory in Grenoble (O. Cazaillet, per-
sonal communication, 2008). The model (Figure 13.14) reproduced the lock
chamber and the thrift basins, a portion of the upper and lower canal
reach, the 24 culverts and gates, the valve and pressure chambers, and
the 1,056 nozzles. The model was used to measure the water levels in the

Figure 13.14 Moislains lock model (courtesy of Sogreah, Grenoble)
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lock (six gauges) and one thrift basin (three gauges), the water levels in the
upstream and downstream reaches (echo sounding), the forces on hawsers
(three boats were studied – one 110 m long, one 85 m long, and a leisure
boat – with the boats fixed by two mooring lines on floating bollards), the
waves in the downstream reach and thrift basins, and the vortices at the
water intakes (see also Section 13.3.2). In-depth studies of the uncertainty
in each measured parameter were carried out.

13.6 Concluding remarks

From the above, some generally valid conclusions can be drawn:

(1) Experimental hydraulics still has many roles to perform in elucidat-
ing the details of the physics and processes in the flow at hydraulic
structures, particularly with regard to the air–water (aeration) and
structure–soil–water (erosion) interfaces and to refining the limits of
similarity.

(2) Physical modelling, particularly of more complicated situations and
non-conventional structures, has, and will continue to have, an impor-
tant role in the design process.

(3) Hybrid modelling is an economical way to deal with the problems men-
tioned above, and can considerably speed up the modelling process.
This applies to a combination of hydraulic and computational mod-
elling, as well as to a combination of these methods with aerodynamic
modelling.

(4) Mathematical modelling plays an important and increasing role in the
design of structures, but requires good input data and careful validation
and calibration.

(5) The design, operation and, particularly, the interpretation of the results
obtained from modelling are both an art and science, and require good
engineering judgement and experience, especially where the safety of
the structure is of concern.

(6) Field (prototype) measurements are of paramount importance, and are
really the only way to confirm the validity of the conclusions drawn
from the modelling process.
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Čábelka, J. 2, 5, 187, 190, 190–1,
193, 195, 200, 202, 203, 224, 295,
299, 303, 315, 342, 352, 382, 386,
391, 463, 464, 480, 512, 529, 552,
558, 568–9, 584

Callander, R. A. 141, 155



Author index 587

Camichel, C. 195
Canale, R. P. 455, 479
Cantero Mariano, I. 224
Cappelaere, B. 304, 314
Carlson, H. 496, 527
Cartwright, D. E. 436, 479, 496
Cassidy, J. J. 546, 582
Casulli, V. 292, 452, 479
Causon, D. M. 508, 528
Cazaillet, O. 427, 465, 580, 583
Cedergren, H. R. 195
Chadwick, A. 42, 50, 154, 439, 460,

487–8, 494, 497, 499, 508, 529, 532,
534, 582

Chang, K. A. 501, 528
Chanson, H. 539, 560–1, 582
Chapman, D. 149, 154
Charnock, H. 285, 314
Cheng, R. T. 452, 479
Chiew, Yee Meng 551, 584
Chow, V. T. 534, 536, 538, 582
Chung, T. J. 104, 105, 110
Churchill, R. V. 45, 50
Coleman, S. 550, 584
Comolet, R. 195
Cop, H. D. 550, 582
Copeland, G. J. M. 505, 527
Cornil, J. M. 221, 224
Courant, R. 254, 314
Csanady, G. T. 430, 479
Cunge, J. A. 24, 50, 105, 110, 194,

261–2, 265–6, 270–1, 276, 280, 291,
294–5, 314–15, 328, 337–8, 352,
396, 410, 417

D’Alpaos, L. 187, 194, 558, 582
Daily, J. W. 112, 154
Dalrymple, R. A. 499, 511, 527
Damle, P. M. 559, 582
Daubert, A. 286–8, 314
Dean, R. G. 499, 511, 527
Defant, A. 436, 479
Delft Hydraulics Laboratory

568, 582
Dette, H. H. 512, 528
DHI 269–70, 305, 314, 406–7, 417
DiLorenzo, J. L. 442, 479
DiPrima, R. C. 7, 50
Dodd, N. 508, 527
Douglas, J. F. 112, 154
Durst, F. 216, 224
Dyer, K. R. 444, 479

Dyke, P. 456, 479
Dysart, B. C. 452, 479

Edwards, D. C. H. 7, 50
Ekman, V. W. 428, 479
Elder, R. A. 546, 582
Engelund, F. 500, 527
Enke, J. 496, 527
Ervine, D. A. 543, 582
Escande, L. 195
Ettema, R. 564, 582
Evans, G. T. 453, 479
Ewing, J. A. 496, 527

Faires, J. D. 71, 81, 83, 110
Falconer, R. 136, 154
Farlow, J. 9, 50
Farr, J. A. 457, 479
Fernandes, E. H. 447, 480
Fertziger, J. H. 71, 92, 110
Flannery, S. A. 67, 69, 77, 110
Flather, R. A. 439, 479
Fleming, C. A. 147, 154, 439, 460,

487–8, 481, 494, 497, 499, 502, 504,
505, 523
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