Инструкция по HBV

Краткое описание модели

Модель HBV разработана в Шведском метеорологическом и гидрологическом институте и начала широко использоваться в Швеции с 1990 года для моделировании стока. В настоящее время разные версии этой модели используются в 30 странах мира.

Модель моделирует суточный сток, используя суточные данные по осадкам, температуре и испарению в качестве входных. Также в качестве входных данных модель использует данные цифровой модели рельефа, классифицируемые по высоте с помощью ГИС.

Для реки Нура были выбраны данные стока по гидропосту Балыкты, метеоданные выбраны по станциям Аксу-Аюлы, Бесоба, Караганда, Каркаралы.

Проводились работы по калибровке модели. Одним из обязательных условий калибровки является выбор исторических данных при естественном стоке реки. Как известно, на реке Нура был нарушен естественный сток с 1973 года после построения Иртышского канала.

Наилучшими результатами калибровки, которую посчитала модель стали исторические данные за 1956-1957 гг. Связь между наблюденным стоком и смоделированным стоком составила 0,97 (рис.1).

Рисунок 1. График калибровки

1. Подоготовка файла РТQ

Da	te]	Р		Т		Q
19	500101	(C		-15.2		0
19	500102	-	1.3		-20		0.006
	Где Date – дата в формате для HBV						
	А	В	C	Ι)		E
1	Год	Месяц	День	Форм	ормат 1 Формат НВV		ормат HBV
2	1950	1	1	=Лата(А	2:B2:C2)	=Текст(Г	02: "ггггММлл")

1.1) Открываем документ Excell

Р, Т – суточные данные суммы осадков и средней температуры воздуха по метео станциям

Q – суточный сток в миллиметрах

Для того, чтобы сток перевести из м3/сек в мм используем формулу:

 $Q_{MM} = q_{(M3/cek)} * 86400/12300/1000$

Q=	q(м3/сек)*	86400/	12300/	1000
суточный	Измеренный	Количество	Площадь	
сток в мм	расход	секунд в	водосбора	
		сутках	Нуры	

1.2) Открываем папку HBV_Nura – data – открыть файл ptq.dat – Вырезать *шапку*

Nura_River

date p t q

Выделить все – удалить все – Вставить *шапку* - вставляем подготовленные данные в ptq – файл – сохранить

2. Подготовка файла CLAREA.dat

2.1 Скачать ЦМР своей исследуемой территории из сайта <u>http://srtm.csi.cgiar.org</u>

2.2 Открываем ЦМР в ArcGIS (при необходимости создаем мозаику*)

2.3 ArcToolbox – Spatial Analyst – извлечение - извлечь по маске (входные данные: ЦМР) – переименовываем выходной растр Extract_DEM – ок

*Если необходимо соединить несколько квадратов SRTM, создаем мозику:

- Поиск – мозаика – мозаика в новый растр – появилось диалоговое окно - открываем желтую папку – выбираем SRTM, которые необходимо соединить в одну мозаику – Выходное местоположение указываем папку, куда хотим сохранить полученный файл – указываем имя набора растровых данных с расширением (например **Nura_srtm.tif**) – тип пикселя указываем 16_BIT_UNSIGNED – число каналов указываем 1 – ок

2.4 Очертить водосборную область по ГП

2.4.1 Spatial Analyst – Гидрология - Заполнение Fill (входные данные: ЦМР извлеченные по маске **Nura_srtm.tif**) – переименовываем выходной растр **DEM_Fill** - ок

2.4.2 Spatial Analyst – Гидрология - Направление стока Flowdirection (входные данные: посчитанные от Fill **DEM_Fill**) – переименовываем выходной растр **DEM_Flowdir** - ок

2.4.3 Spatial Analyst – Гидрология - Суммарный сток Flowaccumulation (входные данные: посчитанные от Flowdirection **DEM_Flowdir**) – переименовываем выходной растр **DEM_Flowacc** - ок

2.4.4 Spatial Analyst – Алгебра карт – Калькулятор растра – Указываем в поле **DEM_Flowacc** >2100– переименовываем выходной растр **DEM_Rastercalc** – ок

2.4.5 Ставим на карту точку гидропоста в соответствии с координатами (инструмент на панели «Перейти к точке XY»). Если точка не лежит на водотоке, необходимо ее подвинуть – Далее Действия - конвертировать графику в объекты – выбираем «Точечную графику» - переименовываем выходной растр **Post_Balykty** – Удалить графику после конвертации – галочка – ок.

2.4.6 Spatial Analyst –Гидрология – Водосборная область Watershed (входные данные: растр направления стока **DEM_Flowdir** и точка гидропоста **Post_Balykty**) – переименовываем выходной растр **Nura_watershed** - ок

2.4.7 ArcToolbox – Конвертация – из растра- растр в полигоны (входные данные: растр **Nura_watershed**) – переименовываем выходной полигон **Nura_poligon** - ок

2.4.8 ArcToolbox – Управление данными – Растр – Обработка растра – Вырезать (входной растр ЦМР **Nura_srtm.tif**, выходной экстент полученный ранее полигон **Nura_poligon**) - переименовываем выходной растр **Nura_DEM** – ок

2.5 Подготовка данных для Excel файла «Band of elevation» В ArcMap:

2.5.1 Spatial Analyst – Переклассификация - Переклассификация (входные данные: вырезанный по полигону ЦМР 2.4.8 **Nura_DEM**) – Классифицировать – Метод Равный – Классов 20 (либо 10 при малых высотах до 1500 м) – Выписать вручную граничные значения - переименовываем выходной растр **Reclass_Nura_DEM**– ок

2.5.2 Spatial Analyst – Поверхность – Экспозиция (входные данные: **Nura_DEM**) - переименовываем выходной растр **Aspect_Nura_DEM**;

2.5.3 Spatial Analyst – Переклассификация - Переклассификация (входные данные: **Aspect_Nura_DEM**) – Классифицировать – Заданный интервал – ок – Исправить таблицу :

<u> </u>	
Старые значения	Новые значения
0-45	3
45-135	1
135-225	2
225-315	1
315-360	3
-1-0	1

- Переименовываем выходной растр Recl_Asp45_Nura - ok

2.5.4 Spatial Analyst – Алгебра карт – Калькулятор растра – Из окна «Слои и переменные» выбираем **Reclass_Nura_DEM*100+ Recl_Asp45_Nura** - переименовываем выходной растр **Nura_rastercalc** – ок

2.5.5 Правой кнопкой мыши щелкаем по **Nura_rastercalc** – открыть таблицу атрибутов – опции таблицы – экспортировать – указываем путь куда необходимо сохранить – браузер – тип Таблица dBASE – переименовываем **Nura.dbf** – сохранить – добавить таблицу к текущей карте - нет

Таблица 💷 - 🖶 🖓 🖾 🐢 🗙					
raste Опции табл	ицы				
OBJECTID *	Value	Count	среднее		
▶ 1	101	105113	<null></null>		
2	102	65314	<null></null>		
3	103	65869	<null></null>		
4	201	154784	<null></null>		
5	202	100899	<null></null>		
6	203	105470	<null></null>		
7	301	192378	<null></null>		
8	302	136757	<null></null>		
9	303	127452	<null></null>		
10	401	147232	<null></null>		
11	402	118283	<nhlls< td=""><td></td></nhlls<>		
14 4	1 ⊢ ⊢I		(0 из 30 Выбранны	ie)	
rastercalc7					

2.5.6 Заполнить эксел файл ШАБЛОН band of elevation1.

Вставить данные Nura.dbf;

Высоты использовать раннее выписанные при переклассификации из пункта 2.5.1.

2.5.7 В файле CLAREA.DAT заменить значения данными Band of Elevation

	3 2 1							
				CLAREA.DAT — Блокнот				×
Файл Г	Іравка Формат	Вид	Справка					
Nura_R	iver							^
10	,		3					
724	,		724					
0								
523.0	0.047367		0.029682	0.029432	0	0	0	
577.0	0.069750		0.047528	0.045468	0	0	0	
619.5	0.086691		0.057433	0.061626	0	0	0	
661.0	0.066347		0.049523	0.053301	0	0	0	
705.5	0.044461		0.035762	0.034166	0	0	0	
754.5	0.037824		0.030424	0.025107	0	0	0	
809.0	0.024025		0.020798	0.016614	0	0	0	
872.5	0.017274		0.014169	0.012024	0	0	0	
948.5	0.011094		0.009457	0.008920	0	0	0	
1102.5	0.005353		0.004650	0.003730	0	0	0.000001	
								~
<								>
Jura	river – на	азва	ание ис	слелуемой реки	T			
· · · · · · · -				penergy entitient pener	-			

10 - количество классов (переклассификация)

3 – количество классов

724 – Средняя высота используемых станций

Далее диапазон, который необходимо заменить в 2.5.7

P.s.: В последних трех столбцах должны быть нули, за исключением последнего значения которое равно 0.000001 (как на скрине)

3 Подготовка файла Ечар

В этом файле содержатся многолетние среднемесячные данные испарения

	e	vap.d	lat — Блокнот	-	 ×
Файл Прав	ка Формат	Вид	Справка		
Файл Прав evap 0.56 0.867 1.603 4.152 5.287 5.279 5.279 5.26 6.087 5.233 2.965 1.191 0.558	ка Формат	Вид	Справка		^
					~
<					>

$$\Pi H = 0,0018(t+25)^{2} * (100-F),$$

где,

ПИ – потенциальное испарение,

t – среднемесячная температура воздуха

F – относительная влажность (месячные выводы из cliware)

Прим.: можно воспользоваться данными по испарению, рассчитанные специалистами КНР:

	Китай
Янв	0.56
Фев	0.867
Мар	1.603
Апр	4.152
Май	5.287
Июн	5.279
Июл	5.56
Авг	6.087
Сен	5.233
Окт	2.965
Нояб	1.191
Дек	0.558

4 Запуск и калибровка исторических данных при естественном стоке

4.1) В файле .*ini* прописываем путь до папки, где хранятся папки data и results.

4.2) Запуск программы HBV – указываем путь, до папки, где хранятся входные данные data – ok

Имя	Дата изменения	Тип	Размер
🐌 Nura_River	28.03.2018 20:11	Папка с файлами	
GAPopti	09.01.2017 10:10	Параметры конф	1 КБ
HBV BV	09.01.2017 10:11	Параметры конф	1 КБ
🗮 Hbv_2d_glacial	10.07.2009 2:06	Приложение	820 KE

4.3) Extra – GAP optimization – ok – load parameter – выбрать *pmul_obs.mul* (в этом файле указаны пределы все параметров, рассчитанные КНР), либо в папке data использовать файл *pmul002.mul (для территории PK больше подходит)*

🌗 data	28.11.2018 13:44	Папка с файлами	
🌗 results	30.11.2018 15:49	Папка с файлами	
HBVcatch	30.11.2018 15:28	Параметры конф	1 КБ
pmul_obs.mul	07.05.2014 12:26	Файл "MUL"	1 КБ

Далее указываем исследуемый период

(Пример: **warming up period** 19550101 – начало фактических данных, в основном начиная с января

from 1955**1001** to 1959**0831**)

from ... to ... - гидрологический год

- No of model runs 10000 - start calibration - yes - yes - close

Запустили процесс автокалибровки								
0		Ор	timization		- 🗆 ×			
TT		R = < >	PEDC					
CFMAX	-1.5		Alpha					
SFCF	0.5		·					
CFR		0.1	K1	0.05 0.3				
CWH	0	0.2 💽	K2	0.001 0.1				
FC	50	500	MAXBAS	1 7				
LP	0.3		CET	0 1				
BETA	BETA 1 6 0							
		Simulation period	1					
Start of 'warming	J-up' period:	Date	No.		1			
19800101	1 from to	19871001 19880901	94	Load Parameter Save Parameter				
	E SU	mated end of calibra 18.06.2018 16:21:	ation: 11					
Population	1	Change S	ton runs	Calibration Batch-Ca	itch Close			
Generation	50	settings		trials Calibrati	on			
Best fit so far:	0.824485	ld local optimisation		Multi Catchment Calibration				
No of model runs:	10000 No of optim	runs for local isation (Powell)		Save details				
Done so far:	2476 Extra far:	runs done so						

4.3) Work - parameter – load parameter – result – GAcal1 (смотрим последнее по времени и дате создания) – открыть – ок

4.4) Work – Run

Смотрим значение NSE, чем ближе к 1, тем лучше результат. **4.5**) Result – Graph – Plot

В папке results открыть полученный файл resu001.dat в Excell – выделить первый столбец – данные – текст по столбцам – далее – «запятая» - готово

Модель выдает значения стока Qsim и Qobs в миллиметрах, необходимо перевести **мм** в **м3/сек** по формуле:

$Q_{\text{M3/cek}} = Q_{\text{MM}} * 12300 * 1000000/24/3600/1000$

46) Посчитать корреляцию между смоделированным и наблюденным стоками (Qsim и Qobs)

4.7) Построить график связи Qsim и Qobs, добавить значения осадков, температуры и снега (по вспомогательной оси). В качестве примера представлен выше рис.1.

5 Прогноз стока по HBV

5.1) Подготовка данных для файла ptq

Date	Р	Т	Q
19500101	1.3	-15.2	9999
19500102	0	-16.2	9999

9999 – подразумевает нет значений (на весь период выставляем)

5.2) Вставить данные в ptq.dat – сохранить

5.3) Запуск программы HBV – указываем путь, где хранятся входные данные data – ок

5.4) Work – parameter – указать моделируемый период (Simulation period) – load parameter – выбрать GAcal1 (лучший вариант по результатам калибровки) – ok

5.5) Work – Run

Прим.: При валидации, efficiency должен быть 0.0000. Graph-Plot показывать ничего не будет.

Производим расчет по пункту **2.5**. Затем строим график по значениям смоделированного стока Qsim, затем в график добавить значения осадков, температуры и снега (по вспомогательной оси). В Качестве примера представлен ниже рис.2.

Рисунок 2. Прогноз стока по Нуре на 2016-2017 гг.